
J. Astrophys. Astr. (1989) 10, 391– 406
 
 
 
 
Gaussian States in de Sitter Spacetime and the Evolution of
Semiclassical Density Perturbations.
 

1. Homogeneous Mode
 
T. R. Seshadri & T. Padmanabhan  Astrophysics Group, Tata Institute of
Fundamental Research, Homi Bhabha Road, Bombay 400005
 
Received 1989 January 30; accepted 1989 August 8
 

Abstract. The evolution of Gaussian quantum states in the de Sitter
phase of the early universe is investigated. The potential is approximated
by that of an inverted oscillator. We study the origin and magnitude of the
density perturbations with special emphasis on the nature of the semi-
classical limits. 
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1. Introduction
 
Α Friedmann universe with power law expansion for the scale factor [S(t) = tn, n< 1]
fails to explain the origin of galaxies on two major counts. Firstly, it does not have any
natural seeds for the origin of density inhomogeneities. Secondly the scales on which
the inhomogeneities exist today would all have originated outside the ‘physical
horizon’ (which is (S/S)–1) in the early universe; it is difficult to imagine physical
processes which can give rise to such coherence.

An inflationary model can solve both these problems: The quantum fluctuations of
the scalar field which drive inflation can provide the seeds for density perturbations.
The second difficulty is circumvented because, during the phase of exponential
expansion the Hubble radius remains constant, but the proper wavelengths grow
exponentially. Thus the galactic scales can originate from inside the horizon at the
early epochs. 

Given any model for inflation it is therefore possible to compute the spectrum and
amplitude of the density perturbations. Such calculations have been done by several
people (Guth & Pi 1982; Starobinski 1982; Hawking 1982; Bardeen, Steinhardt &
Turner 1983) with the following result: Inflation leads to a (desirable) ‘scale-invariant’
spectrum; but generically the amplitude of perturbation is too large (by a factor
105–106). This amplitude can be brought down only if the inflationary potential is fine-
tuned in a very unnatural way. This makes inflation aesthetically unappealing.

With the aim of re-analyzing the origin of large semiclassical density perturbation,
in the inflationary scenario, we consider a toy-model. There are two main features in
our toy-model. Firstly we consider only the homogeneous mode of the scalar field.
Strictly speaking, a homogeneous mode cannot produce a density inhomogeneity.
This however is not a serious drawback since the density inhomogeneity in any case is
 

·
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expected to have a weak k-dependence. Further, the results of the toy-model are in
confirmity with those obtained by a complete analysis by taking into account the
inhomogeneous modes also. The second feature of our toy-model is the simple form for
the potential which we have used 
 

(1)
 
The significance of this potential is the following. In the standard inflationary
potential, 
 

(2) 
 
The minimum of the potential occurs at 
 
 

(3) 
 
 
Assuming Vmin=0, we get  
 
 (4) 

 
Hence V(φ) can be expressed as 
 

(5) 
 
Inflation proceeds as long as V(φ) is a constant, i.e.           In this limit V(φ) can be
approximated by the expression in (1). 

The potential of type given in Equation (1) has been previously used by Guth and Pi
(1985). However they had used the complete scalar field (homogeneous and in-
homogeneous modes). Since we are using only the homogeneous mode, the analysis of
the problem is greatly simplified. 

The main issue of concern here is the method by which classical density perturba-
tions are computed from quantum mechanical operators. Let us briefly review the
conventional approach (as proposed in references Guth & Pi 1982; Starobinski 1982;
Hawking 1982; Bardeen, Steinhardt & Turner 1983), and—what we believe to be—its
unsatisfactory features. 

It is natural that if inflation occurs at GUT scale or earlier, the driving scalar field
should be described by a quantum field theory. A self-consistent treatment would then
require that the spacetime metric be also quantized. Not having such a theory, one is
compelled to describe the system by semiclassical equations which treat gravity
classically and matter quantum mechanically. Such a semiclassical description of
gravity has a long history, and—in a way—formed part of the subject ‘quantum field
theory in curved spacetime’. It is usually believed—at least in the days before the
invention of inflation—that the source for semiclassical gravity is the expectation value
of Tik . According to this view-point semiclassical gravity is described by the equations
 

(6)  

(7)  
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where |ψ> denotes the quantum state of the field .Ĥ is the Hamiltonian governing the
evolution of φ and Gik stands for (Rik – ½gik R). Here (6) is the semiclassical Einstein’s
equation and (7) is the Schrödinger picture evolution equation for the quantum state of
the field φ. 

This viewpoint, however, leads to difficulties in the inflationary scenario. It is usual
to assume that the quantum field driving the inflation is in the vacuum state in the
de Sitter spacetime; but the expectation value <0|Tik(x, t)|0> is homogeneous (i.e.,
independent of x) because of the translational invariance of the vacuum state |0>.
Thus, we will never get an x-dependent (δρ/ρ) out of this prescription. We must
abandon the rule that <0|Tik|0> is the source for semiclassical gravity. 

Once we abandon it, we are at a loss to select another unique ‘source’. (The proper
approach will be to start with the Wheeler-DeWitt equation in quantum gravity and
consider its semiclassical limit. Unfortunately, there are several subtilities involved in
this approach cf. Hartle 1987; Halliwell 1987; Padmanabhan 1989; Padmanabhan &
Singh 1989). We need to proceed in a somewhat intuitive manner. The conventional
view has been the following (Brandenberger 1985). 

We define a classical field φ cl (x, t) as consisting of a homogeneous part and a
perturbation 
 

(8)
 
Since φ 0 (t) cannot be defined as 〈0|φ (x, t) |0〉 (which vanishes), it is defined as the
(regularized) rms value: 
 

(9) 
 
Defining δφ (x, t) is trickier. We first define the power spectrum of the scalar field by
 

(10)
 
 
and construct δφ (x, t) as the Fourier transform of √P(k,t). In this manner, δφ(χ, t) is
made to carry information about the inhomogeneities. This classical field φcl(x, t) l is
then used to construct a classical energy-momentum tensor Tik (which is no longer
homogeneous). From this T ik a nonzero density perturbation can be obtained. This,
essentially, is the conventional approach. 

It is clear that the information regarding the spatial dependence can be smuggled in
only through the expectation values of the two-point functions. This procedure of
defining a classical field through a correlation function is somewhat ad hoc and
arbitrary. The necessity of such a round-about method of constructing φ c1 arose
because the scalar field was assumed to be in a quantum state which is translationally
invariant (a vacuum state in the conventional approach). 

A second issue of importance is the mode of transition from the quantum to the
classical limit. Although in literature attempts have been made to study this transition,
the schemes followed conventionally have several serious drawbacks. The most
detailed discussion available today is probably the analysis by Guth and Pi: They
assume the field φ to be in a vacuum state and study the classical limit using a classical
distribution function, F(x, p, t) which is constructed from the vacuum state. It is
claimed that at late times, F peaks around the classical trajectory. In other words, for
 

cl

tribpo



394 T. R. Seshadri & T.Padmanabhan 
 
late times the distribution function F behaves like
 

(11)
 
where pcl is the classical momentum (Guth & Pi 1985). 

To study the classical limit, the proper way is to start with the wavefunction and
construct the Wigner function using this. We can construct the Wigner function
explicitly and study its behaviour at late times. In particular we will check if the Wigner
function peaks around the classical trajectory (Wigner 1932; Landau & Lifshitz 1985,
Section 6). This has been discussed in Appendix 1. 

As has been shown in Appendix 1, for late times, F behaves as 
 

(12)
 
 
where σ is the spread in the position x. As t → ∞, σ → ∞ and F  tend to a vanishingly
small uniform value for all x. Thus the analysis shows that F does not peak around any
classical trajectory. 

The above discussion emphasizes the need to develop an alternative approach to the
study of the classical limit. In the conventional approach, we cannot interpret the
expectation value of the field operator 〈  φ 〉  as φ cl because the field is assumed to be in a
vacuum state. (The vacuum state is the Gaussian state with a zero mean value.) 

We know from quantum mechanics that coherent state is the nearest approximation
to a classical, state. Since we cannot define coherent states in an expanding background
in a strict sense, we may use general Gaussian states. Since these quantum states need
not be the ones with zero mean value, the classical value of φ can now be identified
with the expectation value 〈 φ 〉  in these states. We explore this approach in this paper.

Yet another motivation for the use of Gaussian states arises from the finite
temperature effects. If the field is in equilibrium with the sourrounding radiation, then
it is not in a pure state but in a mixed state. Its quantum description necessitates the use
of density matrix. However, the effects of finite temperature can be mimicked to a
certain extent by a Gaussian state whose spread has the appropriate dependence on
the temperature of the surrounding radiation. (For a discussion on density matrix in
quantum mechanics refer to Landau & Lifshitz 1985, Section 14). Thus the Gaussian
state is a very natural choice for the field to be in.

The rigorous method to approach the problem is to start from the full field operator
φ(x, t) and decompose it into the Fourier components φk(t). The full analysis would
involve the use of all these Fourier modes. (Seshadri & Padmanabhan (1989); hereafter
referred to as Paper 2). The toy-model which we use in this paper makes use of only the
homogeneous mode of the field operator. This simplification allows us to see the
various constraints and assumptions involved in a clear way. This is a major
advantage of the toy-model. Further, the use of only the homogeneous mode is not a
major drawback since the perturbations in density, in any case, is expected to give only
a weak k-dependence. Strictly speaking, however, the use of merely the homogeneous
mode cannot produce spatial inhomogeneity in density. Thus our method cannot be
justified within the framework of the toy-model. 

However, a complete analysis gives us the result which is in agreement with the
results arrived at in this toy-model. Hence this model is a very helpful guide to the
analysis of the origin of large density perturbation.
 

–^
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The plan of the paper is as follows: Gaussian states in an exponentially expanding
background are considered in Section 2. We use these results to compute density
perturbation in Section 3. Section 4 deals with the discussion of the main features of
the result. 

 
 

2. Gaussian states in exponentially expanding background
 
We will assume a spatially flat universe with the line element
 

ds2 = dt2 – S2 (t) (dx2 + dy2 + dz2). (13)
 

In this spacetime we are given a scalar field with the action
 

(14)
 
We will consider only the homogeneous mode of the scalar field. 

For a homogeneous scalar field, the space derivatives of φ vanish and the action in
(14) reduces to  
 

(15)
 
where Ω is the comoving normalization volume. Since Ω appears as an overall
multiplicative factor the exact value of Ω does not affect our final results. For a closed
universe it is convenient to take Ω = 2π2. For the sake of uniformity we will set Ω to this
value. (This is just a choice of normalization volume.) We rewrite the action in a
slightly different form using the transformation of the time coordinate
 

(16)
 
In terms of T, we get 
 

(17)
 
 

This action is similar to the action for a nonrelativistic particle with a time-dependent
potential energy (2π2)S6 V. φ is like the coordinate of the particle and T is like the usual
flat-spacetime coordinate. 

By inspection we can write the Schrödinger equation as
 

(18)
 
We will now assume ψ to be of the form 
 

(19)
 
(where Α, Β and f are functions, only of time) and V is a quadratic function V= aφ 2

+ bφ + c. 
In order to determine A, B, and f in Equation (19), we substitute the expression for ψ

in the Schrödinger Equation (18) and compare coefficients of φ 2 , φ 1 and φ 0 on either
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side of the equation separately. The results we obtain are

(20)

(21)
 
 

(22)
 
where overhead dot denotes differentiation with respect to t. 

Using the ansatz for ψ in Equation (19) we can compute |ψ|2 to be 
 

 
(23)

 
where 
 

(24) 
 
 

(25)
 
and Ν is the normalization factor.      satisfies the classical equations of motion
 

(26) 
 
To solve for Β we substitute 
 

(27)
 
in Equation (20). This gives the equation for Q as  
 

(28)
 

It is worth noting that     is affected both by the linear as well as the quadratic terms
in V, while Q is affected only by the quadratic part. We will be using the solutions to the
above equations in the context of inflationary scenario in the next section.

Inflation occurs when the constant energy density V0 drives the expansion. For a
homogeneous and isotropic universe whose energy density is dominated by a constant
V0, the Einstein’s equations are 
 

(29)
 
where K= – 1, 0 or +1. The solutions to the above equation are
 

(30)
(31)
(32)
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where 

(33) 
 
We will be only interested in the asymptotic limit of these solutions, for Ht  1.
Asymptotically all three kinds of solutions behave similarly. For Ht  1, 1, the scale
factor may be taken to be  
 

(34) 
 
in all the three cases. The exponential growth of S(t) makes S/S a constant ( = H).

We will now consider the solutions to (26) and (28) for the inverted oscillator 
potential when S(t) is given by (34). 

For such a potential, the mean value,    evolves according to the classical equations 
of motion: 
 

(35) 
 

This equation has the solution 
 

(36) 
 
Where φI denote the values of      and      at t = 0 and 
 

(37) 
 

To compute the spread σ, we first have to evaluate Q in Equation (28). For the
present case it turns out to be 
 

(38) 
 
Substituting this, in Equation (27), Β can be evaluated. For the computation of σ we
require only the real part of B. We have, 
 

(39) 
 
 

where A=AR + iA i and 
 

(40) 
 
 

(41) 
 
 

The spread σ can be computed to be 
 

(42) 
 
 

In terms of the initial spread σ0 this can be written as 
 

(43)
 

·
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The above results have been derived for the case of the exponentially expanding
background. We will see how      and σ evolve in this case and compare it with the case
of flat space-time. 

The late-time behaviour of     turns out to be (from Equation 36)
 

(44)
 
where 
 

(45)
 

and that of σ to be 
 

(46)
 
The flat spacetime case is achieved by using Η→0 limit and we get 
 

(47)
 

(48)
 
Both   and  σ grow exponentially with time in the case of exponentially expanding
background as well as that of flat spacetime. However, in the case of the expanding
background these quantities grow at a slower rate than in the case of flat spacetime.
This is because of the fact that the background expansion provides a damping factor in
their evolution. 
 
 

3. Density perturbations with Gaussian states 
 
Large density inhomogeneities have always been a problem in developing a workable
inflationary scenario. With the aim of probing the origin of such large inhomogeneities
we will consider a toy-model. In a complete theory we have to include the homogen-
eous as well as the inhomogeneous parts of the ‘inflation field’. In our toy-model we
will neglect the inhomogeneous part. This reduces the field theory problem into a
quantum mechanical one. 

Earlier we have argued why it is more natural to assume the field to be in a Gaussian
state. We will therefore assume that the wave-function for the homogeneous mode is
given by equation (19). The quantum spread σ as well as the mean value    have been
computed in the last section. We will estimate the density inhomogeneity δρ/ρ at the
epoch of entering the horizon by the expression  
 
 

(49)
 
 

where t1 is the time when the relevant scales freeze out of the horizon.
The spread σ is the spread of the wave-packet. Thus σ/   is a measure of the time

interval between the leading and the lagging edge of the wave packet. The right-hand
side is a dimensionless number related to the quantum spread of the wave-packet. So
we expect that the expression (49) will give the correct order of magnitude for the
density perturbations.
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We consider a Gaussian wave packet as given in Equation 19. In the last section we

have derived the expressions for    and the spread of the Gaussian wave-packet for
such a potential. At later times the expression for    is given by Equation (44). At late
times the spread evolves as

 
(50)

 
 

where 

 

and 
 
 
 

Density inhomogeneity is computed using the expression,
 

(51)
 
We see that both      and  σ have the same time dependence at late times. Hence δρ/ρ is
time-independent for late times. 

It is clear that the density perturbation will depend on the initial spread, σ0, of the
wave-packet. The value of σ0 cannot be arbitrary but is constrained in a de Sitter
spacetime. Α de Sitter spacetime is assumed to have an intrinsic temperature ( = Η/2π).
The initial spread is assumed to be greater than or of the order of this temperature:
 

(52)
 
This point has been discussed in an earlier paper of ours (Padmanabhan & Seshadri
(1986). This gives 
 

(53)
 
 
where 
 

(54)
 
and 
 

(55)
 
There is, however, one more constraint. In order to solve the problems of Standard

cosmology, the Universe should undergo sufficient exponential expansion. Since we
assume that the expectation value of      is the source term for Einstein’s equations, we
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require that the constant term V0 should dominate 〈     〉 for a duration of at least Δt
(55-60)H –1 . This imposes further constraints on the parameters of the potential; we 
will now discuss these constraints. 

The action for the homogeneous scalar field in this potential is given by 
 

(56) 
 
The momentum pφ conjugate to the field φ is given by 
 

(57) 
 
Using this the energy density       is given by 
 

(58) 
 

In our analysis, the expectation value of    is the source for the semiclassical
Einstein’s equation 
 

(59) 
 
where 
 

(60) 
 

For an exponential expansion of the universe, we require that the expectation value of
      should be dominated by the constant term V0. For sufficient inflation we require
that inflation should last at least for a time (55-60) Η 

–1 . So the expectation value of    . 
 should be dominated by V0 for at least this much time The scale factor grows
exponentially for a constant value for <       >: 
 

(61) 
 
where 
 

(62) 
 
From the condition that inflation should last for at least 55 e-folding times we get,
 

 
(63) 

 
 

where ρ = λ/Η and Ep is the Planck energy scale (     1019 Gev). (Here we have used the
condition that the initial spread σ0 is equal to the de Sitter temperature, Η/2π.) 

We can now study the magnitude of density inhomogeneities produced in infla- 
tionary models when there is sufficient inflation. 

In the standard GUT-scale inflation V0 = (1014 Gev)4. Using the Equation (62) we
have 
 

(64) 
 

≃ 
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which gives H   2× 109 Gev. Using these in Equation (63) we can put bounds on the
value of p( = λ/Η). From the definition of p t follows that p    1.5. (ω = 0 implies p = 1.5.
This corresponds to 2p – 3 = 0.) Using the value of Η in the inequality (63), we first of
all see that e n for p = 2 the inequality cannot be satisfied. Hence p cannot be much
different from unity. Assuming φ i      Η, we simplify the condition for sufficient inflation
as 
 

(65)
 
We can put bounds on (2p – 3) depending upon the order to which we want to satisfy
this inequality. The left-hand side is about 20. If we demand that the right-hand side
should be less by about 18, we get (2p – 3)     0.1. A lower value of (2p – 3) will improve
the inequality. 

Since in the region of interest, p is of order unity (p      1.5) the expression for density
perturbation in Equation (53) reduces to 
 

(66) 
 
 

For (2p – 3) ≤ 0.1, and φi      Η, 
 

(67) 
 
As is usually the case with density perturbation in inflation, the value of δρ/ρ is too
large to be acceptable. 
 
 

4. Discussion of the result 
 
We have seen in the last section that the magnitude of density perturbations is very
large. Similar toy-models using a constant potential and a potential with a constant
slope, had also given large density inhomogeneity (Padmanabhan (1985); Padmanab-
han & Seshadri (1986)). Thus merely changing the form of the potential has not helped
to resolve the problem. 

Production of density inhomogeneity in inflation using the inverted oscillator
potential has been studied in literature before (Guth & Pi 1985). We are interested in
small values for (2p – 3). In this limit p is of order unity. Then the result obtained by
Guth and Pi reduces to 
 

(68) 
 
 

(In the paper by Guth and Pi, they have used a random variable, φα. However we can
replace this random parameter by a nonrandom variable φc using a transformation in
the time coordinate. The above result has been obtained after this transformation. For
details refer to Appendix 2). Here φc is a constant and k’s are the physical wave modes.
For small values of (2p – 3) we can express δp/ρ as 
 

(69) 
 

≃ 

< 

≃ 

≃ 

≃ 
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For small (2p – 3) we clearly have
 

(70) 
 
Clearly this result matches with the result obtained by us in equation (67). 

Before concluding this paper we would like to discuss once again the simplifying
assumption in this paper. 

We have worked with a toy-model to compute density perturbations. The toy-
model involves two simplifying assumptions: (i) the potential is of a very simple form,
and (ii) we have considered only the homogeneous mode of the scalar field. We will
now discuss the validity of these assumptions. 

The inverted oscillator potential which we have used has the distinct advantage that
we can do an exact analysis of the evolution of the Gaussian wave-packet. This is
because the potential we have used does not include powers of φ higher than
quadratic. This feature does not exist for a realistic inflationary potential. A realistic
inflationary potential is too complicated to yield such a simple analysis as the one in
this paper. The details of the result, however, are reasonably insensitive to the exact
details of the potential. Thus the result obtained using our simple potential is expected
to be very close to the realistic case, while, at the same time allowing us to do an exact
analysis. Thus the simplification of the form of the potential is certainly a very valid
and useful assumption. 

The next question concerns the use of only the homogeneous mode of the scalar field
to compute density perturbation. As is clear from Equation (49), the nonzero quantum
spread in the wave-packet is responsible for the generation of inhomogeneities.
Intuitively one would expect that this is certainly plausible. Although intuitively
appealing, this procedure needs explanation. The trouble which arises is that if one
uses only the homogeneous mode, it is not clear how a spatial dependence in density
(which is what we need to compute density perturbation) arises. This is because we
have not introduced any spatial dependence at any stage. Thus, strictly speaking, the
computation of density perturbation in our analysis cannot be rigorously justified
within the frame work of the toy-model. We are, however, able to compute density
perturbation using the above formalism because the density perturbation has only a
weak k-dependence. Thus the absence of spatial information in our model is not a
serious drawback. 

In order to justify the above toy-model a complete analysis (which takes into
account, the contribution from the inhomogeneous modes also) needs to be done.
Paper 2 deals with this detailed analysis.
 
 
 

Appendix 1
 
In the conventional approach the classical limit of the evolution of the scalar field is
analyzed using a classical distribution function. It is also usually claimed (see e.g. Guth
& Pi, 1985) that the distribution function peaks around the classical trajectory of the
field, at late times. 

In this appendix we will construct a classical distribution function and study its late-
time behaviour. In order to do this we will consider the quantum mechanics of a
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particle of a mass m in an inverted oscillator potential 
 

(A1.1) 
 

In classical statistical mechanics, one uses a probability distribution function
P(x, p, t) where p is the momentum of the particle. The probability of finding a particle
in the position interval x and x + dx and momentum interval p and p + dp is
P(x, p, t) dx dp at time t; Ρ obeys the Louville’s equation: 
 

(A1.2)
 
where V is the potential experienced by the particle. The expectation value of position
is given by  
 

(A1.3)
 
and the momentum expectation value by 
 

(A1.4)
 
In the classical statistical mechanics, one could define this probability distribution
because, one can measure the position and the momentum simultaneously to arbitrary
accuracy. 

In quantum mechanics, however, a simultaneous measurement of position and
momentum is not possible. Hence we cannot, strictly speaking, define a probability
distribution function in quantum mechanics. This being the situation one can at best
see if we can construct some function of x, p and t from the quantum state of the
particle ψ(x, t), which mimics the classical distribution function as much as possible.
One such function is the Wigner function (Wigner 1932; Landau & Lifshitz 1985,
Section 6). We will first define the Wigner function and mention some of the properties.

Given a wavefunction ψ (x, t), the Wigner function is defined as
 

(A1.5)
 
The dynamics of the quantum-mechanical particle is described by a wavefunction
ψ(x, t) which is governed by the Schrödinger equation 
 

(A1.6)
 
If ψ obeys the above equation then the Wigner function satisfies the following equation
 

(A1.7)
 
Two points are worth noting in the above equation: (i) The right-hand side involves
powers of h  greater than or equal to two. For a general potential, the right-hand side
can be ignored if we neglect second and higher powers in h. (ii) The right-hand side
involves third and higher derivatives of the potential. If the potential is (at least
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Approximately) quadratic, then the right-hand side vanishes (This is the case we are
interested in.) In either of these cases the equation governing F is 
 

(A1.8) 
 
which is identical to the Louville equation (A1.2). 

Further, it can be shown that the Wigner function has the following properties:
 

(A1.9)
 
 

(A1.10)
 
 
 

(A1.11)
 
Here ψ (p, t) is the Fourier transform of ψ (x, t) and represents the probability
amplitude to find a particle with momentum p at time t. < > implies the expectations
value in the given quantum state. 

There is, however, a problem in interpreting F as a probability distribution function.
Unlike the classical probability distribution, P, F may take negative values. It has been
further argued by wigner (1932) that no expression, F, exists which satisfies (A1.11)
and is everywhere positive. Of all the possible expressions for F, (A1.5) was chosen by
Wigner, because it is the simplest. However, when one uses this function, one should
ensure the F does not take negative values for the case it is being used. For the
inverted oscillator case, F is always positive.

We next study the classical limit using this distribution function. A particle in an
inverted oscillator potential is described by a wavefunction which is governed by the
Schrödinger equation 
 

(A1.12)
 
From now on we will choose units for which h = 1. 

Consider a Gaussian wave-packet of the form. 
 

(A1.13)
 

where A  and B are functions only of time. The mean value of x in the above state is
zero. Once A and B are given, the wavefunction is completely specified. Substituting ψ 
in the Schrödinger equation we get the expression for B as 
 

(A1.14)
 
where α = –mω/(2B0). (B0 is the initial value of B. We have imposed the condition that
B0 is the rel. This does not lead to any loss of generally as it just fixes the phase of the
wave-packet.) The probability density |ψ|2 for finding the particle between x and x+ dx
at time t is given by 
 

~

(A1.15)
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where Ν is a normalization factor and σ is related to Β by
 

(A1.16)
 
Using equations (Al.14) and (Al.16) we get for late times 
 

 
(A1.17) 

 
 

The Wigner function for our case turns out to be 
 

(A1.18) 
 
Where 
 

p = –2xIm(B). (1.19)  
 

We see that p is proportional to x at late times. This is precisely the behaviour for the
momentum of a classical particle in the potential V = – (l/2)mω2x2. (For t → ∞, 
xcl(t) ~ eωt, Ρcl(t) ~ eωt ~ x). Thus it is tempting to write (Al.18) as 
 

(A1.20)
 
where Δ2 = (1/4σ2) and |ψ|2 is the first factor in (A1.18). Since Δ goes as σ –1, from
Equation (Al.17) it is clear that Δ → ∞ as t → ∞, so that the Gaussian in (p – pcl) in
equation (A1.18) becomes more and more close to a δ-function. This seems to suggest
that F is sharply peaked around pcl. Due to this, in the past, some authors (for e.g
Halliwell 1987) have claimed that for large times the distribution function goes to a
delta function. 

This, however, is not (rigorously) true as can be easily seen from the full form of
(A1.18). The limit in which the second factor becomes a δ-function, the first factor
vanishes. Since σ → ∞ as t → ∞. we can expand F as 
 

(A1.21) 
 
at fixed, finite x, p. It is clear from this that strictly speaking, F goes to zero as σ → ∞. (It
does not become a δ-function). Thus one has to be careful in the interpretation of F as a 
classical distribution. 
 
 
 

Appendix 2 
 
In this appendix we give some sort of details of how one can arrive at Equation (68).

In the limit of small values for 2p – 3, p is of order unity. In this limit the results
obtained by Guth and Pi become 
 

(A2.l)
 

-
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Here k' is not the physical wavenumber and φ α is a random variable. This randomness
is removed by transforming to a new time coordinate. This new time coordinate t' is
defined as 
 

(A2.2) 
 
where φc is not a random variable. Using this transformation it can be shown that
 

(A2.3) 
 
k is now the physical wave mode. Using Equations (A2.1) and (A2.3) we get
 

(A2.4)
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