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Abstract. In the computation of density perturbation in inflation it is
conventional to assume the inflation field to be in the vacuum state. There
are, however, some advantages in relaxing this assumption. In an earlier
paper we have estimated the density perturbations in a Gaussian coherent
state using a toy-model. Here we extend this work by doing an exact
analysis of this problem. The advantages of this method is discussed and
the results are compared with earlier results.
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1. Introduction
 
After the inflationary universe was suggested (Guth 1981; see also Sato 1981; and
Kazanas 1980) and subsequently modified (Linde 1982) various people have computed
density perturbations arising out of this scenario (Guth & Pi 1982; Starobinsky 1982;
Hawking 1982; Bardeen Steinhardt & Turner 1983). All the conventional models
(generically) produce too large a magnitude for the density contrast unless some sort of
fine-tuning or Planck length cut-off (Padmanabhan, Seshadri & Singh 1989) is
resorted to. The conventional model, however, produces the correct spectral depend-
ence; suggested by Harrison & Zeldovich (Harrison 1970; Zeldovich 1972).

In this paper we have analyzed the various subtleties and drawbacks of these
approaches. We have studied the density perturbations using Gaussian states. In
earlier works (Padmanabhan & Seshadri 1986; Seshadri & Padmanabhan 1989), we
had worked with toy-models for inflation which used only the homogeneous mode. In 
this paper we have considered the full scalar field including the inhomogeneous modes.
 

 
2. Gaussian state in inflationary universe

 
The conventional approach and its drawbacks have been discussed in an earlier paper
(Seshadri & Padmanabhan 1989). We will briefly summarize these difficulties. The
conventional approach assumes that the scalar field is in a vacuum state. This leads to
problems at two levels. (i) In the ‘pre-inflationary days’ it was believed that the
expectation value of the energy-momentum tensor is the source of semiclassical
gravity. Such a prescription however leads to difficulties in the inflationary scenario.
Since the vacuum state is translationally invariant, the above method cannot give rise
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to density perturbations, (ii) The conventional picture makes use of an intermediate
classical field, φ'cl, to construct density perturbations. This classical field is constructed
using the two-point correlation function of the field operator in the vacuum state. This
method is a bit ad hoc. (It is more proper to use the energy-momentum tensor operator
directly instead of using the intermediate field.) Clearly these difficulties arise because
the quantum state in which the field is assumed to be is translationally invariant. It is
worthwhile to try out Gaussian states as an alternative to vacuum state. With this in
view, we will now study the evolution of Gaussian states in an exponentially expanding
background. 

We will work in the Schrödinger picture field theory. Using the action, we can define
the momentum π conjugate to the field φ. In the Schrödinger picture, the momentum
operator π is to be represented by the functional derivative operator
 

(1)
 
so that the field operator, φ and its momentum, π, are related by the commutation
relation 
 

[φ, π] = ih (2)
 

(see e.g. Narlikar & Padmanabhan 1986; Chapter 4, Section 4.4). The quantum
dynamics of the system is described by the wavefunctional ψ[φ(x), t]; |ψ|2 represents
the probability for the field to have the field configuration φ(x) at time t. We will use
the Schrödinger picture field theory since it is convenient to describe coherent
excitations and semiclassical limit in this approach.

Instead of the approach based on wavefunctional, we will follow a simpler
procedure. We will first expand the scalar field in terms of its Fourier modes. The
action for the scalar field can now be expressed in terms of its Fourier components. If
we consider a potential which is at most quadratic in φ, the total action is just the sum
of the action for each mode.All these modes behaveas harmonic oscillators.Denoting
by ψk the wavefunction for the kth mode we can write a Schrödinger equation which
governs the evolution of ψk. The full wavefunction for the field is just the (infinite)
product of the wavefunctions of all the modes.

Consider a scalar field in a quadratic potential of the form 
 

(3)
 

The action for the field is given by 
 

(4)
 
The scalar field can be expressed in terms of Fourier modes. 
 

(5)
 
Dropping the constant term in the potential (because the evolution of the wave-
function is independent of V0), we may write the action in terms of φ k (t) as
 

(6)
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The Fourier modes, φ k, are complex quantities. Instead of working with these it is
simpler to work with the real abd imaginary parts of φ k. These are real quantities. We
will denote then generically by qk. In terms of qk the action can be written as
 

(7)
 
This is basically the sum of the actions for all the modes. Using a new time coordinate
defined as 
 

(8)
 
we get 
 

(9)
 
 

In the Schrödinger picture, the dynamics is described by a wavefunction ψk for the
mode qk . (Tomonaga 1946; Wheeler 1962; Narlikar & Padmanabhan 1986, Chapter 4,
Section 4.3; Feynman & Hibbs 1965, Section 8, Chapter 9). Using the action in
Equation (9) we write the Schrödinger equation for the evolution of ψk as 
 

(10)
 
At any time t, the complete wavefunctional ψ [φ(x,) t] of the field is the direct product
of the wavefunction of all the modes 
 

(11)
 

In this paper we will be interested only in the case ω   k/S. So from now on, we
will neglect the term ω with respect to k/S. Transforming back to the time coordinate t
we can write the Schrödinger equation in this limit as  
 

(12)
 

(It can be easily seen that we get the same Schrödinger equation (effectively) for the
case of a linear potential as well. If 
 

(13)
 
substituting this in the action and expressing it in terms of the Fourier modes of φ, we
will see that the linear term gives only a δ-function in k. Since we are only interested in
nonzero k, we can ignore the delta-function. The gradient term will still give the k2/S2

term. So the Schrödinger equation in this case is the same as in Equation 12). 
The Schrödinger equation can be solved by the ansatz 

 
(14)

 
Following the procedure we have been using, this ansatz can be plugged into the
 

^

^

^^

^
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Schrödinger equation. This yields the equations for Ak, Bk, and f

k
 to be 

 
(15) 

 
 

(16) 
 
 

(17) 
 
(We have suppressed the index k.) These equations can be solved by the substitution,
 

(18) 
 
This gives 
 

(19) 
 

(20) 
 
where Q satisfies the equation 
 

(21) 
 
From Equation (14), the probability density |ψ|2 can be computed to be
 

(22) 
 
where 
 

(23) 
 

(24) 
 
qk is the mean value of the Gaussian. It obeys the classical equation of motion 
 

(25) 
 
This equation has the simple solution, 
 

(26) 
 
where ak and bk are constants. 

To obtain the solution for the spread σk one has to first solve the Equation (21) for
Qk. Solving this equation we get the solution for Qk to be 
 

(27) 
 

-



Gaussian states in de Sitter spacetime. 2. 411
 

We see that qk and Qk obey the same differential equation and have similar solutions.
Each of these have two constants. While we have a handle on Qk by comparison with
the flat space vacuum, the constants in the expression for qk 

are in our hand. 
We have two constants to be fixed in the expression for Qk. We will now fix these by

comparing the wavefunction with the flat-space wavefunction. Let us first evaluate our
expression for Q in the limit H → 0, S → 1, i.e., the flat-space limit. In this limit Q
becomes, 
 

(28)
 
where 
 

(29)
 
and 
 

(30)
 
From equations (14) and (18) we see that ψ goes as 
 

(31)
 
in the limit Η → 0. In flat spacetime, the vacuum state wavefunction must have the form
(Landau & Lifshitz 1985, Section 23). 
 

(32)
 

So for our wavefunction to have the correct flat-space limit we require,
 

(33) 
 
at all times. From Equation (28) it follows that we need αk = 0. 

So in the inflationary phase, our solution is  
 

(34)
 
Β can now be computed from Equations (18) and (34). 
 

(35) 
 
 

Substituting this in Equation (23) we get 
 

(36)
 

The σk 
is the same as the power spectrum defined via two-point function. This is to

be expected as can be seen from the following argument: σk which we have derived here
is the spread of the vacuum-state wavefunction. The power spectrum, Pk, is related to
the two-point correlation function of the scalar field via the relation:
 

(37) 
 

–

–
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Substituting for φ in terms of its Fourier modes qk we get
 

 
 

(38)
 
Since the expectation value of φk in the vacuum state is zero, we get Pk = σk .

We will use these results for the computation of density perturbations in inflationary
universe. 

 
 
 

3. Density inhomogeneities in Gaussian states
 

The goal is to construct δρ/ρ (which is a c-number) starting from a quantum field
φ(x, t). This passage from a quantum to classical quantity is not unambiguous: There
are two ways in which this may be done. One way is to define a classical field, φcl, and
use that to compute the density inhomogeneity. The other method is to compute δρ/ρ
directly from the energy-momentum tensor, Tk of the scalar field. The latter method
will be studied in Section 7. In this section we will confine ourselves to the computation
of δρ/ρ via an intermediate classical field φ cl.  

In the conventional approach also, the density inhomogeneity is computed using an
intermediate classical field. However, the way φcl is conventionally defined from the
field operator φ(x, t) is somewhat ad hoc and arbitrary. In this section we will consider
a more natural way of constructing φcl  from φ(x, t). 

Our ultimate aim is to construct the cnumber δρ/ρ starting from the field operator
φ(x, t). In order to understand the physics involved in a clear way; it is preferable to
study the semiclassical evolution of the scalar field. In flat spacetime this could have
been done by assuming the field to be in a coherent state. Since we are interested in the
case of expanding universe, coherent states cannot be defined in a strict sense. So we
assume the field to be in a Gaussian state. We shall study the origin of density
perturbation using these Gaussian states. 

The evolution of the field is described by the wavefunctional ψ[φ(x, t)] of the field
configuration. It is easier to study the evolution by expanding φ(x, t) in terms of its
Fourier modes as 
 

(39)
 
 

and study the evolution of each mode. This approach has been studied in Section 2.
We will be using the following two kinds of Gaussian states: 

(a)  A state in which fk = 0 for k ≠ 0 and fk ≠ 0 for k = 0: For these states the mean
value for the inhomogeneous modes is zero. The homogeneous mode, on the other
hand, has a nonzero mean. So the homogeneous mode is in a general Gaussian state.
Hence for such states we have 
 

(40)
 

(41)
 
We will denote these states by |ψ1〉 .  

^
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(b) A state in which the mean value is non-zero for all modes: We will denote these
states by |ψ2〉 .For these states 
 

〈  q k 〉  ≠ 0 for all k. 
 

In this case, all the modes are in a general Gaussian state. 
We will now compute density perturbations in these two states. 
 
 

4. Density perturbations in |ψ
1

 
As pointed out earlier, we will construct an intermediate classical field φcl (x, t) and
define the density perturbations via this classical field. φcl is a sum of a homogeneous 
part φ0 (t) and an inhomogeneous part δφ (x, t). 
 

(42)
 

The spatial dependence of φcl comes completely from δφ(x, t). Having done this we 
give a prescription to compute φ0 and δφ(x, t) (and hence φcl). 

The inhomogeneous part of φcl (which is δφ (x, t)) is defined as the Fourier transform 
of the spread σk.  
 

(43) 
 
As has been shown in Section 2, σ2 is the power spectrum of φ. Hence this definition of
δφ (x, t) is the same as the conventional definition. 

We define φ 0(t) as the expectation value of the field in the state |ψ1〉 Since 〈qk〉 0
for k ≠ 0 in this state, φ 0 defined in this way is space-independent. Since the
expectation value of an operator obeys the classical equation of motion, φ0 obeys the
equation 
 

(44)
 

The φ0 can be connected up with the expectation value of the homogeneous mode of
the scalar field (Padmanabhan & Seshadri 1986; Seshadri & Padmanabhan 1988). We
note that the expectation value of the inhomogeneous modes in the state |ψ1〉 are zero.
Hence the expectation value of φ (x, t) in the state |ψ1〉 is just the expectation value of
value of the homogeneous mode of φ (x, t) in a general Gaussian state.The equation 
satisfied by φ 0 is the same as the one satisfied by the expectation value of the 
homogeneous mode. Having defined φ 0 (t) and δφ(x, t) we can construct φcl via 
Equation (42). 

Using φcl, the energy density of the scalar field is given by
 

(45)
 
This is a spatially dependent quantity. Substituting for φcl in terms of φ0 and δφ we
have 
 

(46) 
 

k

^

^

^

〉
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We assume that δφ < φ 0. Hence we will retain only those terms which are up to linear
order in δφ . We will split p(x, t) as a sum of a homogeneous part ρo(t) and an 
inhomogeneous part δρ(x, t). We can now write p(x, t) as 
 

(47) 
 
Taking the Fourier transform (with respect to the spatial coordinates) of the above 
equation we have 
 

(48)
 
(Recall that we defined δφ as the Inverse Fourier transform of σk.) 

In arriving at the above equation for ρk we have dropped the term involving the
potential. Though this is always done in standard literature (See e.g. Brandenberger
1985), it is not strictly correct. However, for reasons given in Appendix 1, ρk remains to
be of the same order of magnitude even if we include the extra terms. Hence that term
will not change the results significantly.

From equation (47) we can compute the density inhomogeneity at the time tk, when
the perturbation leaves the Hubble radius during inflation. Using Bardeen’s formalism
(Bardeen, Steinhardt & Turner 1983) we can relate the density perturbation at the
epoch, tk, of re-entry into the horizon with the density perturbation at the epoch, tk,
 

(49)
 
 

where p0 is the homogeneous background density. 
At the epoch t = t

k
 the physical size of the perturbation is equal to the Hubble radius.

Therefore at tk
 

(50)
 
We will now compute the right-hand side of Equation (49). At tk the universe is in an 
inflationary phase. At this epoch, the background density is dominated by the constant 
term V0 . Thus 
 

(51) 
 
In Equation (49) w is the ratio of the pressure to the density. During inflation 
 

(52) 
 
Using equations (48), (49), (51) and (52) we get the density contrast at the epoch when
the perturbation re-enters the horizon to be 
 

(53) 
 
 

In order to compare the results derived above with the one which we used in the toy-
models (Padmanabhan & Seshadri 1986; Seshadri & Padmanabhan 1989), it is
instructive to write Equation (53) in a slightly different form. As we have seen
 

<
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in Section (2) the spread, σk, of the wave-packet for the kth mode is given by
Equation (36). 
 

(54) 
 
where k = |k| . Taking its time derivative, we get 
 

(55) 
 
 

σk can be expressed in terms of σk as 
 

(56) 
 
where θk = k/(HS). At the epoch of Hubble radius leaving during inflation (i.e. at t = tk), 
we have 
 

(57) 
 
Using this in Equation (56) we get 
 

(58) 
 
Using Equation (53) we can express density contrast in terms of σk and φ0 as  
 
 

(59) 
 
At this stage we may recall the expression for density inhomogeneity in our toy-models
(Padmanabhan & Seshadri 1986; Seshadri & Padmanabhan 1989). The toy-model
consisted of a homogeneous scalar field φ which depended only on time. The quantum
state for φ was assumed to be a Gaussian. The density perturbation was estimated
using the spread of this quantum state and the mean value of the field φ in that state
using the relation (we use the symbol δρ /ρ), 
 

(60)
 
Let us compare the Equations (59) and (60). We may note that the two expressions
match up to an order of magnitude if we identify the quantum spread σ(t) in the
Gaussian for the homogeneous mode in the toy-model, with k3/2 σk of our rigorous
analysis. We will now see the condition under which these two can be identified.

If σ 0 is of the order of the de Sitter temperature at the epoch t = tk, then σ(tk)   Η/2π.
Using the value of σ in Equation (60) we get 
 

(61) 
 
We next estimate the value of δρ/ρ in our analysis with spatial dependence. Equation
(54) gives  
 

(62)

·

-

≃ 
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Using this in Equation (59), we get  
 

(63) 
 
 

Comparing Equations (61) and (63) we come to the following conclusion. If we equate
the quantum spread of the homogeneous mode in the toy-models to the de Sitter
temperature, then the density contrast obtained from the toy-model is of the same
order as that obtained from a complete analysis. 

We next compute the density perturbations in two kinds of potentials: (i) Steady-
slope model (Padmanabhan & Seshadri 1986) and (ii) Inverted oscillator potential
model (Seshadri & Padmanabhan 1988). We may recall that for the steady-slope
model, the potential is of the form 
 
 
 
 

(64)
 
 
where n, λ are dimensionless and φf is a dimensional constant and the inverted
oscillator potential is of the form. 
 

(65)
 
We will compare the results with the one obtained in the toy-model.
 
 
 

5. Specific examples
 

In this section we will consider the specific cases of steady slope and the inverted
oscillator potentials. We have derived the equation governing the evolution of the
homogeneous mode φ 0 and the spread σk of the wave-function of the kth mode.
(Equation 44 & 56). Using these in (59) we can arrive at the expression for Δρ/ρ at the
epoch of re-entry. For the steady-slope case, this comes out to be
 

(66) 
 
 

This clearly has no k-dependence. For the inverted oscillator case this comes to be
 

(67)
 
where 
 

p2 = (ω /H)2 + 9/4.
 

For sufficient inflation we require that (2p–3) should be small. This automatically
ensures a weak k-dependence of Δρ/ρ. For example, (2p–3)  0.1 implies
Δp/p| tf   k0.05. A smaller value for k  is more conducive for sufficient inflation. It also
weakens the k-dependence of (Δρ/ρ). 
 

≃ 
≃ 

(68)
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6. Density perturbations in the state |ψ2 〉  
 
Till now in this paper we have followed a hybrid approach. The inhomogeneous modes
were assumed to be in a vacuum state, i.e. in a Gaussian state with zero mean value.
The homogeneous mode was assumed to be in a Gaussian state with nonzero mean. In
this section we will consider Gaussian states for which the mean value for all the modes
is nonzero. 

We know from quantum mechanics that given an operator θ  the corresponding
classical quantity is the expectation value of θ in the given quantum state. This suggests
that we should define φcl as 
 

(69)
 

This straightforward procedure to compute φcl would not have been of any use
when we worked with the state |ψ1〉. In that state only the homogeneous mode is in a
general Gaussian state. The inhomogeneous modes are all in a Gaussian state with
zero mean value. Hence the expectation value of φ in the state |ψ1〉  will not have any
spatial dependence and cannot be used for computing density perturbations. So we
had resorted to a different approach to construct φ cl . 

When the field is in the state |ψ2〉  the above-mentioned problem will not arise
because all the modes are in a general Gaussian state. Hence φcl defined in Equation
(69) does carry information about spatial dependence and hence can be used to
compute density inhomogeneity. 

The scalar field operator φ can be expressed in terms of its Fourier modes φ k (t). The
classical field φcl corresponding to the field operator φ  can be expressed as
 

(70)
 
 

where φ k is, the expectation value of φ k in the quantum state |ψ2|〉 . φ k is however,
complex. As mentioned in section 2; it is more convenient to work with the real
quantities qk rather than φk  
The fourier transform, pk, of the density excess δρ, can be related to φ 0 and qk as
 

(71)
 

φ 0 is simply the expectation value of the homogeneous mode which was used in
studying the toy-model. The expression for qk has already been derived in Section 2.

We can consider two kinds of potentials: the steady slope and the inverted oscillator
potentials. For both the cases we get the solutions of qk be that given by Equation (26).
(For inverted oscillator potential we have used ω  < k/S. This is so because for sufficient
inflation we require ω < 2πΗ. Further, we are interested in a wavelength till it grows to
the size of the Hubble-radius: k/S   2πH. So we require ω < k/S.) The density contrast
at the epoch of re-entry, comes out to be, 
 

(72)
 
where φ 0 is just the expectation value of the homogeneous mode of the scalar field.

In the case of the steady slope model, for late times, we have 
 

(73)
 

^

^

^

^
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Using Equation (72) the density contrast turns out to be
 

(74) 
 
 

From the above equation, it is clear that the density perturbation depends on the
quantum state that has been chosen. This dependence comes about through the
parameter Ck. The k-dependence of Ck governs the spectrum of density perturbations.
In order to get the correct k-dependence for (Δ ρ  / ρ ) we must have
 

|Ck| = αHk –3/2 (75)
 

where α is a dimensionless constant.
For the inverted oscillator case the density contrast at tf turns out to be

 

(76) 
 

For sufficient inflation we require ω < H, i.e., (2p – 3) < 1.Thus the term
(2πH/k)1/2(2p–3) has a weak k-dependence. Further, if Ck goes as Hk–3/2 the density
contrast has a nearly flat spectrum. This is what we require.

We have seen that there are various alternatives for the quantum state for the scalar
field which can produce the required k-independent spectrum for density perturbation.
In particular we used two kinds of states denoted by |ψ1〉 and |ψ2〉. In the case of |ψ2〉,
however, we observe that the density perturbation spectrum depends on Ck and hence
on the initial state of the field. 

The alternatives which we have discussed have a major advantage over the vacuum
state which is used conventionally. The way φ0 is constructed from the operator is
somewhat ad hoc and unnatural in the conventional scenario. However, when we
choose the quantum state to be |ψ1〉 or |ψ2〉, φ0 can be defined as the expectation
value of the homogeneous mode of φ . This is certainly more straightforward and
natural. 

 
 

7. Density perturbation using energy-momentum tensor
 

Till now we have computed density perturbations using an intermediate classical field.
It is, however more natural to compute density contrast directly from the energy-
momentum tensor. We will, further assume that the field is in a Gaussian state |ψ2〉
which we discussed in the previous section. In this state all the Fourier modes of φ are
in a Gaussian state with nonzero mean. Classical energy density is identified with the
expectation value of       in the state |ψ2〉   
 

(77)
 

This straightforward method of transition from quantum to classical physics would
not have been possible in the conventional approach, since the field is conventionally
assumed to be in a vacuum state. Since the vacuum state is translationally invariant,
〈0|  |0〉  is homogeneous and cannot give rise to density perturbations. This
problem, however, does not arise in our method since we have assumed the quantum
state to be a general Gaussian state.

 

^

< <

−
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We first express the scalar field φ(x, t) in terms of the Fourier modes. We then
describe each mode by a wave function ψk. As we have pointed out earlier, we are
interested only in the case of the free field. So ψk satisfies the Schrödinger Equation
(12). The complete wavefunctional ψ(φ(x)) is obtained by computing the product of
the modes (as in Equation 11). The mean value 〈q k〉  and the spread is given by
Equations (23) and (24). The energy-momentum tensor for the scalar field is given by
 

(78)
 

Since we are only interested in the density perturbations we need to consider only the
component      

 
. From equation (78) we have 

 
(79)

 
The expectation value of    in the state |ψ2〉  is interpreted as the energy density

ρ(x, t)· As we have shown in Appendix 2, spatially dependent part of ρ(x, t) turns out to
be just 
 

(80)
 
(The spread in the quantum state also contributes to the density ρ(x, t). It, however,
contributes terms which do not have any spatial dependence. Hence these terms will
not give rise to density inhomogeneities. So we have dropped the terms arising out of
the spread in the quantum state. For further details we may refer to Appendix 2.) Here
φ is the expectation value of φ0 in the Gaussian state |ψ2〉. So φ is the same as φcl which
we defined earlier (cf. Equation 69). As we did there for φcl we can express φ  as a sum of
the homogeneous part φ0 

and the inhomogeneous part δφ. The Fourier transform of
ρk is given by 
 

(81)
 
where qk is the Fourier transform of δφ. The density contrast in this case turns out to be
exactly the same as in Section 6. The spectrum of density perturbations depends on the
initial conditions. 

In this paper we have shown that it is possible to find Gaussian states which do not
give rise to the Zel’dovich spectrum. The spectrum of density perturbations depends
on the initial Gaussian state. Conventionally it is believed that a scale-free spectrum
for density perturbations is generic to inflation. We have shown that the scale-free
spectrum is obtained only for certain special initial conditions on the quantum states
of the scalar field, even in the inflationary scenario.

 
 

Appendix 1
 

In Section 1 of this paper we have defined ρ(x, t) in terms of φcl (x, t). We have
constructed φcl as the sum of φ0 (t) and δφ (x, t) where δφ (x, t) is the Fourier transform
of σk (Recall that σk is the spread of the Gaussian state for the kth mode.) In arriving at
expression for pk in equation (48) we had dropped the potential-dependent term.
Strictly speaking this term should have been included. We show in this appendix that
 

^

^ –

–
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even after dropping that term the result has the correct order of magnitude and that the
results are not significantly different from the correct value.

The energy density of the scalar field is given by 
 

(A1.1)
 
In the approximation δφ < φ 0 

we will retain terms only upto linear order in (δφ). 
Dropping the higher powers of δφ, we get, 
 

(A1.2) 
 
where we have Taylorexpanded V (φ0 + δφ) around φ0 and retained only upto linear
terms in δφ. The first term in Equation (A1.2) is space-independent. Hence the
complete expression for δφ is given by
 

(A1.3)
 
Fourier transform of both sides of the above expression gives us the following
expression for pk: 
 

(A1.4) 
 

where V' denotes the derivative of V(φ ) with respect to φ . 
Let us first consider the simple case of an inverted oscillator potential:

 
(A1.5)

 

We will work in the limit ω < k/S . The spread σ k of the wave packet for the kth mode is
given in equation (36) to be 
 

(A1.6)
 
On differentiating this with respect to time we can express σk in terms of the σk as
 

(A1.7)
 
where θk = k/(HS).φ0 is the expectation value of the homogeneous mode of scalar
field. At late times φ0 goes as
 

(A1.8)
 
where we have assumed Vi = 0. Differentiating with respect to time we get
 

(A1.9) 
 
where  
 

 
(A1.10)

 

·

<

<
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For the inverted oscillator potential (Equation A1.5) we have
 

(A1.11)
 
Hence from Equation (A1.4) we express ρk as 
 

ρk(t) = φ0σk – ω2φ0σk. (A1.12)
 

Substituting in Equation (Al.12) the expressions for σk and φ0 from Equations (A1.7) 
and (A1.9) respectively, we get, 
 

(A1.13) 
 
At the epoch of Hubble radius crossing (i.e., at t = tk), θk= 2π. From equation(Al.13), 
ρk(tk) turns out to be, 
 
 
 
 

(A1.14) 
 
As we have repeatedly pointed out, we are interested in the case of ω < H. In this limit,
 

(A1.15)
 
 

and we have 
 

(A1.16) 
 
Had we neglected the term arising from the potential in ρk we would have got
 

(A1.17) 
 

So we see that at least for the case of the inverted oscillator potential, dropping the 
term arising out of the potential in ρk does not significantly change the result.

Let us now consider the case of a more general potential 
 

(A1.18)
 
We assume that the potential is very flat. So the expression for ρk remains as in the
previous case 
 

(A1.19)
 
and 
 

(A1.20) 
 
φ0 will be governed by the classical equation of motion 
 

(A1.21) 
 

· ·

· ·

<
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For the potential given in Equation (Al.18) we have
 

(A1.22)
 
So the equation of motion for φ0 goes as
 

(A1.23) 
 

This, however, cannot be solved exactly. Hence we will use some approximations. We
assume that the potential is very flat near φ0 = 0. In that case the acceleration term φ0 
is much smaller compared to 3Ηφ0. So we will neglect φ0 in Equation (A1.23). This
gives 
 

(A1.24) 
 
Using Equations (A1.4), (A1.20) and (A1.22) in (A1.24) we get
 

(A1.25) 
 
 

At the epoch tk when the perturbation leaves the Hubble radius we have 
 

(A1.26)  
 
 

(A1.27) 
 
Had we dropped the contribution from the term containing the potential, we would 
have got 
 

(A1.28)
 
Once again we observe that the result does not change significantly by dropping that
term.
 
 
 

Appendix 2 
 

In this appendix we will derive an expression for the expectation value of     of the
scalar field φ in the Gaussian state. The action for a free scalar field is given by
 

(A2.1)
 
We have ignored terms which arise from the potential. For our purpose it is sufficient
to consider the case of a free field. The action can be expressed in terms of the Fourier
modes φk (t). To do this we first expand φk (x, t) as
 

(A2.2)
 

· ·

· · ·

^ ^
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In terms of φk (t) the action can be written as
 

(A2.3)
 
 
φk are complex quantities. It is easier to work with real quantities instead of φk. So we
express φ k (t) in terms of its real and imaginary parts
 

(A2.4) 
 

All Rks and Ik s are not independent. Because of the fact that φk is a real field, Rk for k> 0 
are related to Rk for k<0. Similarly, the values of Ik for positive and negative k are
related. 

The action can now be expressed in terms of Rk and Ik as 
 

(A2.5)
 
From this action we can compute the momentum conjugate to Rk and Ik. We will
denote them by PRk and PIk. 
 

(A2.6)
 
and 
 

(A2.7)
 
Using the action in Equation (A2.5) we may now write the Schrödinger equation for
the kth mode as 
 

(A2.8)
 
and a similar equation for Ik. 

We assume that ψk is a Gaussian of the form, 
 

(A2.9)
 

The full wavefunction for the field is the product of the wavefunctions for all the modes.
The energy density       is given by  

 
(A2.10)

 
To evaluate the expectation value of     we need to compute the terms 〈 φ 2〉  and 
〈 (∇φ)2〉 . We have already specified the quantum state of the kth mode. Hence we can
compute the expectation value of φ 2 and (∇φ)2 A straightforward computation gives
us the following result: 
 

(A2.11) 
 

(A2.12)
 
 

^ ^

^

^

–

–^ ^
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where φ denotes expectation value of φ. The interesting point in both these equations
is that only the second term contributes to spatial dependence, This term depends only
on the mean value of the field. So only the second term contributes to the density
perturbations. Thus the expectation value of      

 
for our purpose can be taken to be

 
(A2.13)

 
which is Equation (80). 
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