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An 2-Theorem for Ramanujan’s 7-Function
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§ 1. Introduction

Let 7(n) be defined by

x

A(2)= Y 1(n)q"=q H (1—g"*,  g=e"=

n=1
This function was first studied by Ramanujan [6]. He wrote, for every prime p,

1172

t(p)=2p "“cosb,

and conjectured that 6, is real. This was proved by Deligne [2]. It is known
that

piia2 sm(oc-l— 1) 0‘
W= sm() '

If d(n) denotes the number of divisors of n, then it follows that
le(m) <n''2 d(n),

as t is a multiplicative function. Therefore, for some constant ¢, >0,

1
=0 (1" exp (L) )

It is conjectured that

»
t(n)zQ( 1112 exp <_122gl‘:)gg”ﬁ)) 1)

for some constant ¢, >0.
A conjecture of Sato and Tate states that the angles 0, are equidistributed
in [0, 27] with respect to the measure

Esin20 dé.
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It is easy to see that the conjecture of Sato-Tate implies (1). In fact, if
card(p=x: 0=0,29)>x°

for some (p<% and some 6>0, then (1) follows easily. Both assertions about

the distribution of the angles 0, remain unproved.
With respect to unconditional results, Rankin [5] showed

le(m)l _

n11/2

lim sup

n— 00

and Joris [3] proved
t(n)=Q(n' /2 exp(c(log n)*/22- %)),
We shall show below that
() =Q(n' V2 exp(c(log n) 2’3 ¢)).
For an arbitrary normalized Hecke eigenform
f= i a,e*rinz
n=1

of weight k, a similar result is true if we assume that
o0
n=1

has no real zeroes in the critical strip k—1 <o =<k
Nevertheless, by an elementary method, one can show that

1
k-1 m

anzg (n 2 exp (M))
loglogn

2
la,|
n

This result remains true if f is a normalized eigenform of even weight for an
arbitrary congruence subgroup of SL,(Z).

Notation. For the sake of brevity, we write

and
o0 ,L.f
f() zngl g

§2. Real Zeroes of f(s)

We show that f(s) has no real zeroes in the critical strip 0So < 1.
Let z=x+1iy and set

-1 s
ple =" (2) ro s e+l
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where the dash on the summation indicates we sum over all pairs of integers
(m, n)=*=(0,0). If we let

Kz =Y exp (=" mz-snf?).

then it is easily seen that

P(z,5)= ; 9—1)}0 4w ) K(z,w)dw 2
1
as
1+K(z,w)=‘1}{1+K(z,%)},
Letting
Y(s)=(2m) 26+ 1D I(s+11) I'(s) £(25) f(s) s(s— 1)
we see that
dxd
)=y 141 ¢z, ) j,zy’ 3)
17

where 2 denotes the standard fundamental domain for the full modular group
acting on the upper half-plane. Also, ¥ satisfies the functional equation.

Y(s)= (1 —s).

In view of this functional equation and the fact that f(s) has a simple pole at s
=1, 1t suffices to consider %§s<l in our search for real zeroes.

Lemma 1.
y+ 1

[ K(zwydwslog () =210zt Iz

where vy is Euler's constant and

7](2 7!12/12 H 2mnz

Proof. From Kronecker’s limit formula (see e.g. Ramachandra [7]), it follows
that

lim [(%) F) S mztn =28 —ﬁ] ~log (%) —2log(y* In(2)?)

s—1
But
2 1 o .
q(q:(j’ls)) oD 1+ ! (1 +%> K(z,w)dw+higher powers of (s—1)
so that

14 (1) K dw=tog (1) ~21ogy* o)

from which the result follows.
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Corollary.
3 o0
(i) for géyél | K(z,w)dwgé,
1
(ii) for y=1, fK(z,w)dw§%y.
1

Proof. We have

b4 ad )
logl(z)) = =2+ 3, logll —¢27",
n=1
So that
—2ny
—log 1"1(2)l_ 12 (',—z,zy)z (4)

It follows that

| K(z, w)dwggy—logy—0.92
1

as
y+ 1
log (e4 ):—0.95...
7
and
eflny
méSOX 1073
~e

for ygl/i/z. Both (i) and (ii) are now easily deduced.
Theorem 1. Y(5)+0 for 1 <s<1.
Proof. From (2) and (3), we observe that

9(; dxdy

t/f(S)— (4,4)+ Uy“IA (=) {j S pw %) K(z, w)dw} e

where (-,*) denotes the Petersson inner product. It is apparent that for $<s<1,

dxd
W(s)—1 (4, 4)] §ﬂ§y12|4(2 )2 (sz w)dw) xay
By the corollary to Lemma 1, this is
1
U+ [y @ dxdy.
y>2
Noting that
e—Zny
logl4(z)|=24logln(z)| < —27W+24'(Tm,

we deduce
4@z £(1-1)e ™

for y 21/5/2.



An Q-Theorem for Ramanujan’s t-Function 245

This estimate implies

oo 2 4 ,—4n
JJ @R dxdysan fytte raysaean ()9
2 14
y>2 —47
<(0-04) 5
Vi
It follows that
3 e 4T
> (4, 4)—(0.01
025 (4. 4) (001

We note that, if F(x)=) ¢}7*"*, then for k=2,

dxdy

iy IFE)I

[xf<%
y>1

X
Z lc |2 j'yk 26—41'("} dy
n=1

o

2le,f? J et dy
1
—4n

4n

Taking in particular, k=12, ¢, =1(n), we have

> 8

[4
:|C1|2

(A,A)Ze_:—
We finally obtain

b2 >0
for <s<1.

Remarks. 1. Lehmer [4] has computed (4, 4)=1.036 x 10~ °.
2. It is possible to estimate

| K(z,w)ydw
!
without appealing to Kronecker’s limit formula. We split the sum
Y [exp (—nyl lmz+n|2) dw
1

into fours parts corresponding to n=0, m=0, |n|<|m|y and |n]>|m| y, where in
the latter two cases, we utilise the inequalies |mz+n|?Zm?y? and |mz
+n|>22n|* in the respective cases. The resulting four sums are easily esti-
mated and the main contribution arises from the term corresponding to n=0.

We indicate another proof of Theorem ! which can be based on the
following idea. From Chowla-Selberg [1, p. 106] we know

2¢(z,5)  L2s)y*  L2s—1)y'-
s(s—1) s(2s—1) (s—1)(2s—1)

+R(y,s)
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where
_s(s—=1) 52 (s)
&) =" ri3)ee
and
8 1
IR(y, )| S———
s y e —1
for $<s<1.

A simple calculation reveals |R(y, 5)] £0.01. Utilizing the fact that

0=+ U

where

it is straightforward to show that for y<2.

2¢(z,5) .1 (ys ye

s(s—1) T 2s—1

s 1-—s

>+O.15.

A simple application of Rolle’s theorem reveals that

2¢(Z,S)§ —01
s(s—1)
for y=2.
A similar argument shows that for y =2 and $<s<1,
20029 _
s(s—1) T

These two inequalities are enough for Theorem 2 to be deduced.

§ 3. Zeroes of (s} in the Critical Strip

Let N(T, ) be the number of zeroes of Y(s) satisfying O<o<1 and O0<t<T

Lemma 2.

2

N(Ty)=—Tlog T+ O(T).
n

Proof. Let R be the rectangle with vertices 2, 2+i7, —1+iT, —1. In view of the

functional equation and the fact that (s) has no real zeroes in —$<0¢ <3, we

see that
aN(Ty)=A4,arg Y(s),

where 4, denotes the variation in the argument as s traverses from 3 to 3+iT
and then to ++iT Stirling’s formula easily gives

Aparg((2r)~ 2722 s(s— 1) I'(s) ['(s+11))=2T log T+ O(T).
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Moreover, as ¥(s) is of order 1, it is deduced, in a standard way, that

1

—— —=0(log T),
g‘ 1+(T—7)?
as p runs through the zeroes of (s).

It follows that the number of zeroes o +ivy, with |[T—y|<1 is O(log T) and

20 f 1
2)+—(s)=) ' ——+0(logt),
£ f Zp (s—p)

where the dash on the summation indicates the sum is over zeroes of y(s) for
which [t -yl <1, p=0+iy. We have

A, arg({(2s) f(s))={ Im (2%(2s) +‘)%(s)) ds
_ _%+iT g ‘ f;
~o() %Jirlm (2 L9+ (s)) ds.
the O(1) term coming from the variation along o=3. As
24+iT
{ Im(s—p) lds=4arg(s—p)=0(1)
3+iT

for those zeroes p satisfying |t —y| <1, we deduce
4y (arg({(2s) f(s) =O(log T).
This completes the proof.

§4. Other Lemmas

Lemma 3. Let r§>1. For such a prime p, there is an m=m(p) and an absolute
constant ¢ such that v, 2c>1 and

M(p)<ri_1.

Proof. 1f 12 —1>10"'°, then take m(p)=1. Now suppose

0<tZ—1<10"'.

. i 2n . 4
Then 0, is close to 3 or 3 we consider the case 0, close to 3 the other case

being similar. Also, 0<0,<%. If 6,<¢

3 we may take m(p)=1. So we may
ass men<9 <L
ume o<, <.
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Choose m=0(mod 6) such that

s
10

so that sin(m+1)6, =sin ((m+1)%+(m+1) (9p—§)>§sin (§+%)’ as

n .
o, —5\ <2lsin 6|

T
0,—5

<2cost,—1|=17—1=10""°.

Therefore,

. (m
. sin (4+—)
sm(rfl—kl)BP 310 -
sinf,

Moreover, m satisfies

This completes the proof.

Lemma 4.
) Bl + 00
rzgl pﬂ ,
for <3 ’
2
Proof. Set 0(s)=%(—(;l f(s). We know
2cosnf +1 21 123
log 0(s)= ) (1+ E——+ )
B0 =Y~ % 5 T
Now write
2—1
Y= ()= f ()
» P
where
ti—1
foe)= 3 5
7>1 14
and
21
f=-Y 2
zg<l p

Suppose that f. () <. Then, for ¢>3%, f, (s) is analytic. By Lemma 2, log 6(s)
has singularities with Res=1 arising from the zeroes of Y(s). The set of
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singularities of logf(s) coincides with the set of singularities of f (s) for
Res>1 If this set is not empty, f (s) has a real singularity by Landau’s
theorem. Therefore, Y(s) has a real zero which contradicts Theorem 1. There-
fore, all the singularities of log (s) lie on the line ¢=13. As log 0(s) is analytic at
s=3, both f, (s) and f_(s) have a singularity at s=1. Therefore,

2 —1

Y L=+
t—¢

p

r;>1

and

2—-1

Y E=—o

r P

t12,<1

This completes the proof of the lemma.

§5. Main Theorem

2|
Theorem 2. Suppose )’ %o ;—=+t00. Then
p

7
rp>1

1 .
7, =Qexp(c(logn)?-5 ).
Proof. Clearly, the set

is infinite. Since

) = 35S 3
1
O<t?—l<—r—7

we see that

2—
T:{m: y gi}

o apeent p m
%>12~|>~~v—1v——
L . T p' "logp
1s infinite.
For each meT, we know
2
tr—1_1
P
Yoo+ Y 4t )y 7 25
<ti-1<3 pr<id-l<idy Pt

< gl—l<phf tHe
logp * P

The number of sums is O,(1). Therefore, for some 7y,
e >@

PP T mt

p*"/'*;<r§ -l<p™”
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Hence if
W={p:e"<p<e™lp 7 i<il—1<p},
then

]W]e—muxw)zf(fl

m)ﬂ+ Y

Now, set B W such that |B| =(imz—, and define

n= H pm(p)

pEx
peB

where m(p) is defined by Lemma 3. Then by Lemma 3,

cxﬂ“
TP (m)'

Since,
xﬂ+2y+e
logns ) p'**logps
27O o
peB
we have
xf+27+e>(logn) (log x).
As
Z 1 xP+v
logn= 0gpZ——=7,
pEX (logx)z
peB
we have

By
‘L'n g exp (C((log n) (10g 10g ng)ﬂ+ 2y+e¢ )
(loglogn)
Noting that,
0=y+es1-,

we finally deduce 1

t, 2 exp(c(logn?—# ),
as desired.

Corollary 1. 1, =Q(exp(c(log n)*~*)).

Proof. By Lemma 4 any B <7 satisfies the condition of the theorem. This gives
the result.

Remarks. 1. By utilizing the fact that

12—1
FrEa
21 P
P

and repeating the above argument, one can deduce that

Il <exp(—c(logn)*~*)

for an infinity of n.
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2. The argument can be extended to any real valued multiplicative function
c satisfying
(i) ¢(p)® —1=c(p?)
(i)) c(my=0(n%)
(iii) the Dirichlet series
nuation to Res=0. S) n=h

2 oc 2
¢2y > c(:;) =L(s) (say) has an analytic conti-
Also, if L(s) has only non-real zeroes in Resgé, then
c(n)=Q(exp(c(log n)* ).
In fact, if Res=o is the largest zero-free half-plane for L(s), then

c(n)=Q(exp(c(log n)*~ %))

§ 6. General Results

o0

Let f(z)= ) a(n)e*™"* be a normalized Hecke eigenform of weight k for the

n=1
full modular group. Then k is even and as the a(n)s are integers, we have for
primes p,

If we let

then

Lemma 5. There is an m=m(p) such that |a,.|Zc>1, where c is a fixed constant
and

i
a’—1}

la

m{p) <€

The proof of this lemma proceeds exactly as in Lemma 3 and therefore, we
suppress it.
By the preceding remarks, it is evident that m(p) in Lemma 5 satisfies

m(p)<p*~ 1.
Therefore, if we let
= ),
1
then
a ch(x)'
But

logn= Y m(p)logp=<x~.

pEx

This proves the following theorem.
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Theorem 3. If f(z)=Y a(n)e*™'"* is a normalized Hecke eigenform, weight k,
then 1

1
k-1 c(log n)k
- P
atn)=22 (n cxp <log log n))
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