(C) Springer-Verlag 1982

An $\boldsymbol{\Omega}$-Theorem for Ramanujan's $\boldsymbol{\tau}$-Function

R. Balasubramanian* and M. Ram Murty*

School of Mathematics Institute for Advanced Study Princeton, NJ 08540, USA

§ 1. Introduction

Let $\tau(n)$ be defined by

$$
\Delta(z)=\sum_{n=1}^{\infty} \tau(n) q^{n}=q \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{24}, \quad q=e^{2 \pi i z} .
$$

This function was first studied by Ramanujan [6]. He wrote, for every prime p,

$$
\tau(p)=2 p^{1 / 2} \cos \theta_{p}
$$

and conjectured that θ_{p} is real. This was proved by Deligne [2]. It is known that

$$
\tau\left(p^{\chi}\right)=p^{11 \alpha / 2} \frac{\sin (\alpha+1) \theta_{p}}{\sin \theta_{p}} .
$$

If $d(n)$ denotes the number of divisors of n, then it follows that

$$
|\tau(n)| \leqq n^{11 / 2} d(n),
$$

as τ is a multiplicative function. Therefore, for some constant $c_{1}>0$,

$$
\tau(n)=O\left(n^{1 / 2} \exp \left(\frac{c_{1} \log n}{\log \log n}\right)\right) .
$$

It is conjectured that

$$
\begin{equation*}
\tau(n)=\Omega\left(n^{11 / 2} \exp \left(\frac{c_{2} \log n}{\log \log n}\right)\right) \tag{1}
\end{equation*}
$$

for some constant $c_{2}>0$.
A conjecture of Sato and Tate states that the angles θ_{p} are equidistributed in $[0,2 \pi]$ with respect to the measure

$$
\frac{2}{\pi} \sin ^{2} \theta d \theta
$$

[^0]It is easy to see that the conjecture of Sato-Tate implies (1). In fact, if

$$
\operatorname{card}\left(p \leqq x: 0 \leqq \theta_{p} \leqq \varphi\right) \gg x^{\delta}
$$

for some $\varphi<\frac{\pi}{3}$ and some $\delta>0$, then (1) follows easily. Both assertions about the distribution of the angles θ_{p} remain unproved.

With respect to unconditional results, Rankin [5] showed

$$
\limsup _{n \rightarrow \infty} \frac{|\tau(n)|}{n^{11 / 2}}=+\infty
$$

and Joris [3] proved

$$
\tau(n)=\Omega\left(n^{11 / 2} \exp \left(c(\log n)^{(1 / 22)-\varepsilon}\right)\right)
$$

We shall show below that

$$
\tau(n)=\Omega\left(n^{11 / 2} \exp \left(c(\log n)^{(2 / 3)-\varepsilon}\right)\right)
$$

For an arbitrary normalized Hecke eigenform

$$
f=\sum_{n=1}^{\infty} a_{n} e^{2 \pi i n z}
$$

of weight k, a similar result is true if we assume that

$$
\sum_{n=1}^{\infty} \frac{\left|a_{n}\right|^{2}}{n^{s}}
$$

has no real zeroes in the critical strip $k-1 \leqq \sigma \leqq k$.
Nevertheless, by an elementary method, one can show that

$$
a_{n}=\Omega\left(n^{\frac{k-1}{2}} \exp \left(\frac{c(\log n)^{\frac{1}{k}}}{\log \log n}\right)\right)
$$

This result remains true if f is a normalized eigenform of even weight for an arbitrary congruence subgroup of $S L_{2}(\mathbb{Z})$.

Notation. For the sake of brevity, we write

$$
\tau_{n}=\tau(n) / n^{11 / 2}
$$

and

$$
f(s)=\sum_{n=1}^{\infty} \frac{\tau_{n}^{2}}{n^{5}} .
$$

§ 2. Real Zeroes of $f(s)$

We show that $f(s)$ has no real zeroes in the critical strip $0 \leqq \sigma \leqq 1$.
Let $z=x+i y$ and set

$$
\phi(z, s)=\frac{s(s-1)}{2}\left(\frac{y}{\pi}\right)^{s} \Gamma(s) \sum^{\prime}|m z+n|^{-2 s}
$$

where the dash on the summation indicates we sum over all pairs of integers $(m, n) \neq(0,0)$. If we let

$$
K(z, w)=\sum^{\prime} \exp \left(-\frac{\pi w}{y}|m z+n|^{2}\right)
$$

then it is easily seen that

$$
\begin{equation*}
\phi(z, s)=\frac{1}{2}+\frac{s(s-1)}{2} \int_{1}^{\infty}\left(w^{s-1}+w^{-s}\right) K(z, w) d w \tag{2}
\end{equation*}
$$

as

$$
1+K(z, w)=\frac{1}{w}\left\{1+K\left(z, \frac{1}{w}\right)\right\}
$$

Letting

$$
\psi(s)=(2 \pi)^{-2(s+11)} \Gamma(s+11) \Gamma(s) \zeta(2 s) f(s) s(s-1)
$$

we see that

$$
\begin{equation*}
\psi(s)=\iint_{\mathscr{D}} y^{12} \cdot|\Delta(z)|^{2} \cdot \phi(z, s) \frac{d x d y}{y^{2}} \tag{3}
\end{equation*}
$$

where \mathscr{D} denotes the standard fundamental domain for the full modular group acting on the upper half-plane. Also, ψ satisfies the functional equation.

$$
\psi(s)=\psi(1-s) .
$$

In view of this functional equation and the fact that $f(s)$ has a simple pole at s $=1$, it suffices to consider $\frac{1}{2} \leqq s<1$ in our search for real zeroes.

Lemma 1.

$$
\int_{1}^{\infty} K(z, w) d w \leqq \log \left(\frac{e^{\gamma+1}}{4 \pi}\right)-2 \log \left(y^{\frac{1}{2}}|\eta(z)|^{2}\right)
$$

where γ is Euler's constant and

$$
\eta(z)=e^{\pi i z / 12} \prod_{n=1}^{\infty}\left(1-e^{2 \pi i n z}\right)
$$

Proof. From Kronecker's limit formula (see e.g. Ramachandra [7]), it follows that

$$
\lim _{s \rightarrow 1}\left[\left(\frac{y}{\pi}\right)^{s} \Gamma(s) \sum^{\prime}|m z+n|^{-2 s}-\frac{1}{s-1}\right]=\log \left(\frac{e^{\gamma}}{4 \pi}\right)-2 \log \left(y^{\frac{1}{2}}|\eta(z)|^{2}\right) .
$$

But

$$
\frac{2 \phi(z, s)}{s(s-1)}=\frac{1}{(s-1)}-1+\int_{1}^{\infty}\left(1+\frac{1}{w}\right) K(z, w) d w+\text { higher powers of }(s-1)
$$

so that

$$
-1+\int_{1}^{\infty}\left(1+\frac{1}{w}\right) K(z, w) d w=\log \left(\frac{e^{\gamma}}{4 \pi}\right)-2 \log \left(y^{\frac{1}{2}}|\eta(z)|^{2}\right)
$$

from which the result follows.

Corollary.

(i) for $\frac{\sqrt{3}}{2} \leqq y \leqq 2, \int_{1}^{\infty} K(z, w) d w \leqq \frac{1}{2}$,
(ii) for $y \geqq 1, \int_{1}^{\infty} K(z, w) d w \leqq \frac{\pi}{3} y$.

Proof. We have

$$
\log |\eta(z)|=-\frac{\pi y}{12}+\sum_{n=1}^{\infty} \log \left|1-e^{2 \pi i n z}\right| .
$$

So that

$$
\begin{equation*}
-\log |\eta(z)| \leqq \frac{\pi y}{12}+\frac{e^{-2 \pi y}}{\left(1-e^{-2 \pi y}\right)^{2}} \tag{4}
\end{equation*}
$$

It follows that

$$
\int_{1}^{\infty} K(z, w) d w \leqq \frac{\pi}{3} y-\log y-0.92
$$

as

$$
\log \left(\frac{e^{\gamma+1}}{4 \pi}\right)=-0.95 \ldots
$$

and

$$
\frac{e^{-2 \pi y}}{\left(1-e^{-2 \pi y}\right)^{2}} \leqq 5.0 \times 10^{-3}
$$

for $y \geqq \sqrt{3} / 2$. Both (i) and (ii) are now easily deduced.
Theorem 1. $\psi(s) \neq 0$ for $\frac{1}{2} \leqq s \leqq 1$.
Proof. From (2) and (3), we observe that

$$
\psi(s)=\frac{1}{2}(\Delta, \Delta)+\frac{s(s-1)}{2} \iint_{\mathscr{D}} y^{12}|\Delta(z)|^{2}\left\{\int_{1}^{\infty}\left(w^{s-1}+w^{-s}\right) K(z, w) d w\right\} \frac{d x d y}{y^{2}}
$$

where (\cdot, \cdot) denotes the Petersson inner product. It is apparent that for $\frac{1}{2} \leqq s \leqq 1$,

$$
\left|\psi(s)-\frac{1}{2}(A, A)\right| \leqq \frac{1}{4} \iint_{\mathscr{Z}} y^{12}|\Delta(z)|^{2}\left(\int_{1}^{\infty} K(z, w) d w\right) \frac{d x d y}{y^{2}} .
$$

By the corollary to Lemma 1 , this is

$$
\leqq \frac{1}{8}(\Delta, \Delta)+\frac{\pi}{12} \iint_{\substack{D_{2} \\ y \geqq 2}} y^{11}|\Delta(z)|^{2} d x d y
$$

Noting that

$$
\log |\Delta(z)|=24 \log |\eta(z)| \leqq-2 \pi y+24 \cdot \frac{e^{-2 \pi y}}{\left(1-e^{-2 \pi y}\right)^{2}},
$$

we deduce

$$
|\Delta(z)| \leqq(1 \cdot 1) e^{-2 \pi y}
$$

for $y \geqq \sqrt{3} / 2$.

This estimate implies

$$
\begin{aligned}
\iint_{\substack{\mathscr{D} \\
2}} y^{11}|\Delta(z)|^{2} d x d y & \leqq(1 \cdot 21) \int_{2}^{\infty} y^{11} e^{-4 \pi y} d y \leqq(1 \cdot 21)\left(\frac{2}{e}\right)^{4 \pi} \frac{e^{-4 \pi}}{4 \pi} \\
& \leqq(0 \cdot 04) \frac{e^{-4 \pi}}{4 \pi}
\end{aligned}
$$

It follows that

$$
\psi(s) \geqq \frac{3}{8}(\Delta, \Delta)-(0.01) \frac{e^{-4 \pi}}{4 \pi}
$$

We note that, if $F(x)=\sum c_{n e}^{2 \pi i n z}$, then for $k \geqq 2$,

$$
\begin{aligned}
\iint_{\substack{|x|<\frac{1}{2} \\
y>}} y^{k}|F(z)|^{2} \frac{d x d y}{y^{2}} & =\sum_{n=1}^{\infty}\left|c_{n}\right|^{2} \int_{1}^{\infty} y^{k-2} e^{-4 \pi n y} d y \\
& \geqq\left|c_{1}\right|^{2} \int_{1}^{\infty} e^{-4 \pi y} d y \\
& =\left|c_{1}\right|^{2} \frac{e^{-4 \pi}}{4 \pi}
\end{aligned}
$$

Taking in particular, $k=12, c_{n}=\tau(n)$, we have

$$
(\Delta, \Delta) \geqq \frac{e^{-4 \pi}}{4 \pi}
$$

We finally obtain

$$
\psi(s) \geqq \frac{e^{-4 \pi}}{16 \pi}>0
$$

for $\frac{1}{2} \leqq s \leqq 1$.
Remarks. 1. Lehmer [4] has computed $(\Delta, \Delta)=1.036 \times 10^{-6}$.
2. It is possible to estimate

$$
\int_{1}^{\infty} K(z, w) d w
$$

without appealing to Kronecker's limit formula. We split the sum

$$
\sum^{\prime} \int_{1}^{\infty} \exp \left(-\frac{\pi w}{y}|m z+n|^{2}\right) d w
$$

into fours parts corresponding to $n=0, m=0,|n| \leqq|m| y$ and $|n|>|m| y$, where in the latter two cases, we utilise the inequalies $|m z+n|^{2} \geqq m^{2} y^{2}$ and $\mid m z$ $+\left.n\right|^{2} \geqq \frac{3}{4}|n|^{2}$ in the respective cases. The resulting four sums are easily estimated and the main contribution arises from the term corresponding to $n=0$.

We indicate another proof of Theorem 1 which can be based on the following idea. From Chowla-Selberg [1, p. 106] we know

$$
\frac{2 \phi(z, s)}{s(s-1)}=\frac{\xi(2 s) y^{s}}{s(2 s-1)}+\frac{\xi(2 s-1) y^{1-s}}{(s-1)(2 s-1)}+R(y, s)
$$

where

$$
\xi(s)=\frac{s(s-1)}{2} \pi^{-s / 2} \Gamma\left(\frac{s}{2}\right) \zeta(s)
$$

and

$$
|R(y, s)| \leqq \frac{8}{\pi \sqrt{y}} \cdot \frac{1}{e^{\pi y}-1}
$$

for $\frac{1}{2} \leqq s \leqq 1$.
A simple calculation reveals $|R(y, s)| \leqq 0.01$. Utilizing the fact that

$$
\xi(s)=\frac{1}{2}+\frac{s(s-1)}{2} \int_{1}^{\infty} \psi(x)\left(x^{s-1}+x^{-s}\right) d x
$$

where

$$
\psi(x)=\sum_{1}^{\infty} e^{-n^{2} \pi x}
$$

it is straightforward to show that for $y \leqq 2$.

$$
\frac{2 \phi(z, s)}{s(s-1)} \leqq \frac{1}{2 s-1}\left(\frac{y^{s}}{s}-\frac{y^{1-s}}{1-s}\right)+0.15
$$

A simple application of Rolle's theorem reveals that

$$
\frac{2 \phi(z, s)}{s(s-1)} \leqq-0.1
$$

for $y \leqq 2$.
A similar argument shows that for $y \geqq 2$, and $\frac{1}{2}<s \leqq 1$,

$$
\frac{2 \phi(z, s)}{s(s-1)} \leqq y^{2}
$$

These two inequalities are enough for Theorem 2 to be deduced.

83. Zeroes of $\psi(s)$ in the Critical Strip

Let $N(T, \psi)$ be the number of zeroes of $\psi(s)$ satisfying $0<\sigma<1$ and $0<t<T$.

Lemma 2.

$$
N(T, \psi)=\frac{2}{\pi} T \log T+O(T)
$$

Proof. Let R be the rectangle with vertices $\frac{3}{2}, \frac{3}{2}+i T,-\frac{1}{2}+i T,-\frac{1}{2}$. In view of the functional equation and the fact that $\psi(s)$ has no real zeroes in $-\frac{1}{2} \leqq \sigma \leqq \frac{3}{2}$, we see that

$$
\pi N(T, \psi)=\Lambda_{L} \arg \psi(s)
$$

where Δ_{L} denotes the variation in the argument as s traverses from $\frac{3}{2}$ to $\frac{3}{2}+i T$ and then to $\frac{1}{2}+i T$. Stirling's formula easily gives

$$
\Delta_{L} \arg \left((2 \pi)^{-2 s-22} s(s-1) \Gamma(s) \Gamma(s+11)\right)=2 T \log T+O(T)
$$

Moreover, as $\psi(s)$ is of order 1 , it is deduced, in a standard way, that

$$
\sum_{\rho} \frac{1}{1+(T-\gamma)^{2}}=O(\log T)
$$

as ρ runs through the zeroes of $\psi(s)$.
It follows that the number of zeroes $\sigma+i \gamma$, with $|T-\gamma|<1$ is $O(\log T)$ and

$$
\frac{2 \zeta^{\prime}}{\zeta}(2 s)+\frac{f^{\prime}}{f}(s)=\sum_{\rho}^{\prime} \frac{1}{(s-\rho)}+O(\log t)
$$

where the dash on the summation indicates the sum is over zeroes of $\psi(s)$ for which $|t-\gamma|<1, \rho=\sigma+i \gamma$. We have

$$
\begin{aligned}
\Delta_{L} \arg (\zeta(2 s) f(s)) & =\int_{L} \operatorname{Im}\left(2 \frac{\zeta^{\prime}}{\zeta}(2 s)+\frac{f^{\prime}}{f}(s)\right) d s \\
& =O(1)-\int_{\frac{1}{2}+i T}^{\frac{3}{3}+i T} \operatorname{Im}\left(2 \frac{\zeta^{\prime}}{\zeta}(2 s)+\frac{f^{\prime}}{f}(s)\right) d s
\end{aligned}
$$

the $O(1)$ term coming from the variation along $\sigma=\frac{3}{2}$. As

$$
\int_{\frac{1}{2}+i T}^{\frac{3}{2}+i T} \operatorname{Im}(s-\rho)^{-1} d s=4 \arg (s-\rho)=O(1)
$$

for those zeroes ρ satisfying $|t-\gamma|<1$, we deduce

$$
\Delta_{L}(\arg (\zeta(2 s) f(s)))=O(\log T) .
$$

This completes the proof.

§4. Other Lemmas

Lemma 3. Let $\tau_{p}^{2}>1$. For such a prime p, there is an $m=m(p)$ and an absolute constant c such that $\tau_{p^{m}} \geqq c>1$ and

$$
m(p) \ll \frac{1}{\tau_{p}^{2}-1} .
$$

Proof. If $\tau_{p}^{2}-1>10^{-10}$, then take $m(p)=1$. Now suppose

$$
0<\tau_{p}^{2}-1<10^{-10}
$$

Then θ_{p} is close to $\frac{\pi}{3}$ or $\frac{2 \pi}{3}$, we consider the case θ_{p} close to $\frac{\pi}{3}$, the other case being similar. Also, $0<\theta_{p}<\frac{\pi}{3}$. If $\theta_{p}<\frac{\pi}{6}$, we may take $m(p)=1$. So we may assume $\frac{\pi}{6}<\theta_{p}<\frac{\pi}{3}$.

Choose $m \equiv 0(\bmod 6)$ such that

$$
\frac{\frac{\pi}{10}}{\frac{\pi}{3}-\theta_{p}}<m+1<\frac{\frac{\pi}{10}}{\frac{\pi}{3}-\theta_{p}}+20
$$

so that $\sin (m+1) \theta_{p}=\sin \left((m+1) \frac{\pi}{3}+(m+1)\left(\theta_{p}-\frac{\pi}{3}\right)\right) \geqq \sin \left(\frac{\pi}{3}+\frac{\pi}{10}\right)$, as

$$
\left|\theta_{p}-\frac{\pi}{3}\right|<2\left|\sin \theta_{p}\right|\left|\theta_{p}-\frac{\pi}{3}\right| \leqq\left|2 \cos \theta_{p}-1\right| \leqq \tau_{p}^{2}-1 \leqq 10^{-10} .
$$

Therefore,

$$
\frac{\sin (m+1) \theta_{p}}{\sin \theta_{p}} \geqq \frac{\sin \left(\frac{\pi}{3}+\frac{\pi}{10}\right)}{\sin \frac{\pi}{3}}>1
$$

Moreover, m satisfies

$$
m \ll \frac{1}{\frac{\pi}{3}-\theta_{p}} \leqq \frac{\sqrt{3}}{\tau_{p}-1} \leqq \frac{3 \sqrt{3}}{\tau_{p}^{2}-1} .
$$

This completes the proof.

Lemma 4.

$$
\sum_{\substack{p \\ \tau_{p}^{2}>1}} \frac{\tau_{p}^{2}-1}{p^{\beta}}=+\infty
$$

for $\beta<\frac{1}{2}$.
Proof. Set $\theta(s)=\frac{\zeta(2 s)}{\zeta(s)} f(s)$. We know

$$
\log \theta(s)=\sum_{p, n} \frac{2 \cos n \theta_{p}+1}{n p^{n s}}=\sum_{p} \frac{\tau_{p}^{2}-1}{p^{s}}\left(1+\frac{\tau_{p}^{2}-3}{2 p^{s}}+\ldots\right) .
$$

Now write

$$
\begin{equation*}
\sum_{p} \frac{\tau_{p}^{2}-1}{p^{s}}=f_{+}(s)-f_{-} \tag{s}
\end{equation*}
$$

where

$$
f_{+}(s)=\sum_{\tau_{p}^{2}>1} \frac{\tau_{p}^{2}-1}{p^{s}}
$$

and

$$
f_{-}(s)=-\sum_{\tau_{p}^{2}<1} \frac{\tau_{p}^{2}-1}{p^{s}} .
$$

Suppose that $f_{+}\left(\frac{1}{2}\right)<\infty$. Then, for $\sigma>\frac{1}{2}, f_{+}(s)$ is analytic. By Lemma $2, \log \theta(s)$ has singularities with $\operatorname{Re} s \geqq \frac{1}{2}$ arising from the zeroes of $\psi(s)$. The set of
singularities of $\log \theta(s)$ coincides with the set of singularities of $f_{-}(s)$ for $\operatorname{Re} s>\frac{1}{2}$. If this set is not empty, $f_{-}(s)$ has a real singularity by Landau's theorem. Therefore, $\psi(s)$ has a real zero which contradicts Theorem 1. Therefore, all the singularities of $\log \theta(s)$ lie on the line $\sigma=\frac{1}{2}$. As $\log \theta(s)$ is analytic at $s=\frac{1}{2}$, both $f_{+}(s)$ and $f_{-}(s)$ have a singularity at $s=\frac{1}{2}$. Therefore,

$$
\sum_{\substack{p \\ \tau_{p}^{2}>1}} \frac{\tau_{p}^{2}-1}{p^{\frac{1}{2}-\varepsilon}}=+\infty
$$

and

$$
\sum_{\substack{p \\ \tau_{p}^{2}<1}} \frac{\tau_{p}^{2}-1}{p^{\frac{1}{2}-\varepsilon}}=-\infty
$$

This completes the proof of the lemma.

§5. Main Theorem

Theorem 2. Suppose $\sum_{\tau_{p}^{2}>1} \frac{\tau_{p}^{2}-1}{p^{\beta}}=+\infty$. Then

$$
\tau_{n}=\Omega\left(\exp \left(c(\log n)^{\frac{1}{2-\beta}-\varepsilon}\right)\right) .
$$

Proof. Clearly, the set

$$
S=\left\{m: \sum_{\substack{e^{m}<p<e^{m+1} \\ \tau \beta b>1}} \frac{\tau_{p}^{2}-1}{p^{\beta}} \geqq \frac{2}{m^{2}}\right\}
$$

is infinite. Since

$$
\sum_{\substack{e^{m}<p<e^{m+1} \\ 0<\tau_{p}^{2}-1<-\overline{p^{1}}{ }^{\beta} \log p}} \frac{\tau_{p}^{2}-1}{p^{\beta}} \leqq \int_{e^{m}}^{e^{m+1}} \frac{d t}{t \log ^{2} t} \leqq \frac{1}{m^{2}}
$$

we see that
is infinite.

$$
T=\left\{m: \sum_{\substack{e^{m}<p<e^{m+1} \\ 3>\tau_{p}^{2}-1>}} \frac{\tau_{p}^{2}-1}{p^{\beta}} \geqq \frac{1}{m^{2}-\sqrt{\log } p}\right\}
$$

For each $m \in T$, we know

$$
\sum_{\frac{1}{100}<r_{p}^{2}-1<3}+\sum_{p^{\prime}<\tau_{p}^{2}-1<\frac{1}{10 \overline{0}}}+\ldots+\sum_{\substack{p^{\beta} 1 \\ \log p} \tau_{p}^{2}-1<p^{\beta} 1+\sigma} \frac{\tau_{p}^{2}-1}{p^{\beta}} \geq \frac{1}{m^{2}}
$$

The number of sums is $O_{\varepsilon}(1)$. Therefore, for some γ,

$$
\sum_{p^{-\gamma-\varepsilon<} \tau_{p}^{2}-1<p^{-\gamma}} \frac{\tau_{p}^{2}-1}{p^{\beta}} \geqq \frac{c(\varepsilon)}{m^{2}} .
$$

Hence if
then

$$
W=\left\{p: e^{m}<p<e^{m+1}, p^{-\gamma-\varepsilon}<\tau_{p}^{2}-1<p^{-\gamma}\right\}
$$

$$
|W| e^{-m(\beta+\gamma)} \geqq \frac{c(\varepsilon)}{m^{2}}
$$

Now, set $B \subseteq W$ such that $|B|=\frac{\left(e^{m}\right)^{\beta+\gamma}}{m^{2}}$, and define

$$
n=\prod_{\substack{p \leq x \\ p \in B}} p^{m(p)}
$$

where $m(p)$ is defined by Lemma 3. Then by Lemma 3,

$$
\tau_{n} \geqq \exp \left(\frac{c x^{\beta+\gamma}}{(\log x)^{2}}\right) .
$$

Since,

$$
\log n \leqq \sum_{\substack{p \leqq x \\ p \in \boldsymbol{B}}} p^{\gamma+\varepsilon} \log p \leqq \frac{x^{\beta+2 \gamma+\varepsilon}}{(\log x)}
$$

we have

$$
x^{\beta+2 y+\varepsilon} \geqq(\log n)(\log x)
$$

As

$$
\log n \geqq \sum_{\substack{p \leqq x \\ p \in B}} \log p \geqq \frac{x^{\beta+\gamma}}{(\log x)^{2}},
$$

we have

$$
\tau_{n} \geqq \exp \left(\frac{c((\log n)(\log \log n))^{\frac{\beta+\gamma}{\beta+2 \gamma+\varepsilon}}}{(\log \log n)^{2}}\right)
$$

Noting that,

$$
0 \leqq \gamma+\varepsilon \leqq 1-\beta,
$$

we finally deduce

$$
\tau_{n} \geqq \exp \left(c(\log n)^{\frac{1}{2-\beta}-\varepsilon}\right),
$$

as desired.
Corollary 1. $\tau_{n}=\Omega\left(\exp \left(c(\log n)^{\frac{2}{3}-\varepsilon}\right)\right)$.
Proof. By Lemma 4 any $\beta<\frac{1}{2}$ satisfies the condition of the theorem. This gives the result.

Remarks. 1. By utilizing the fact that

$$
\sum_{\tau_{p}^{2}<1} \frac{\tau_{p}^{2}-1}{p^{\frac{1}{2}-\varepsilon}}=-\infty
$$

and repeating the above argument, one can deduce that

$$
\left|\tau_{n}\right|<\exp \left(-c(\log n)^{\frac{2}{3}-\varepsilon}\right)
$$

for an infinity of n.
2. The argument can be extended to any real valued multiplicative function c satisfying
(i) $c(p)^{2}-1=c\left(p^{2}\right)$
(ii) $c(n)=O\left(n^{\varepsilon}\right)$
(iii) the Dirichlet series $\frac{\zeta(2 s)}{\zeta(s)} \sum_{n=1}^{\infty} \frac{c(n)^{2}}{n^{s}}=L(s)$ (say) has an analytic conti-
ation to $\operatorname{Re} s=0$. nuation to $\operatorname{Re} s=0$.

Also, if $L(s)$ has only non-real zeroes in $\operatorname{Re} s \geqq \frac{1}{2}$, then

$$
c(n)=\Omega\left(\exp \left(c(\log n)^{\frac{1}{2}-\varepsilon}\right)\right) .
$$

In fact, if $\operatorname{Re} s \geqq \sigma$ is the largest zero-free half-plane for $L(s)$, then

$$
c(n)=\Omega\left(\exp \left(c(\log n)^{\sigma-\varepsilon}\right)\right)
$$

§6. General Results

Let $f(z)=\sum_{n=1}^{\infty} a(n) e^{2 \pi i n z}$ be a normalized Hecke eigenform of weight k for the full modular group. Then k is even and as the $a(n)$'s are integers, we have for primes p,

$$
\left|a(p)^{2}-p^{k-1}\right| \geqq 1
$$

If we let

$$
a_{p}=a(p) / p^{\frac{k-1}{2}}
$$

then

$$
\left|a_{p}^{2}-1\right| \geqq \frac{1}{p^{k-1}}
$$

Lemma 5. There is an $m=m(p)$ such that $\left|a_{p^{m}}\right| \geqq c>1$, where c is a fixed constant and

$$
m(p) \ll \frac{1}{\left|a_{p}^{2}-1\right|} .
$$

The proof of this lemma proceeds exactly as in Lemma 3 and therefore, we suppress it.

By the preceding remarks, it is evident that $m(p)$ in Lemma 5 satisfies

$$
m(p) \ll p^{k-1}
$$

Therefore, if we let

$$
n=\prod_{p \leqq x} p^{m(p)}
$$

then

$$
a_{n} \geqq c^{\pi(x)}
$$

But

$$
\log n=\sum_{p \leqq x} m(p) \log p \leqq x^{k}
$$

This proves the following theorem.

Theorem 3. If $f(z)=\sum_{1}^{\infty} a(n) e^{2 \pi i n z}$ is a normalized Hecke eigenform, weight k,
then

$$
a(n)=\Omega\left(n^{\frac{k-1}{2}} \exp \left(\frac{c(\log n)^{\frac{1}{k}}}{\log \log n}\right)\right)
$$

Acknowledgements. We would like to thank Professor A. Selberg for many of the ideas contained in this paper and Professor S . Chowla for his kind encouragement.

References

1. Chowla, S., Selberg, A.: On Epstein's zeta function. J. Reine Angew. Math. 227, 86-110 (1967)
2. Deligne, P.: La conjecture de Weil, I. Publ. Math. I.H.E.S. 43, 273-307 (1974)
(See also, Formes modulaires et representations l-adiques. Lecture notes Vol. 179, pp. 139-172. Berlin-Heidelberg-New York: Springer 1971
3. Joris, H.: An Ω-result for coefficients of cusp forms. Mathematika 22, 12-19 (1975)
4. Lehmer, D.H.: Ramanujan's function $\tau(n)$. Duke Math. J. 10, 483-492 (1943)
5. Rankin, R.A.: An Ω-result for the coefficients of cusp forms. Math. Ann. 203, 239-250 (1973)
6. Ramanujan, S.: On certain arithmetical functions. Trans. Cambr. Phil. Soc. 22, 159-184 (1916)
7. Ramachandra, K.: Some applications of Kronecker's limit formulas. Annals of Math. 80, 104148 (1964)

[^0]: * Supported in part by NSF grant MCS 77-18723 A04

