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w 1. Introduction 

Let r(n) be defined by 

A(z)= ~ r(n)q"=q [I (1 __qn)24 q=eZ~tiz. 
n-- I  n - . 1  

This function was first studied by Ramanujan [6]. He wrote, for every prime p, 

z(p) = 2p I */2 COS Op 

and conjectured that 0v is real. This was proved by Deligne [2]. it is known 
that 

r(p~) =p11~/2 sin(a+ 1) 0p 
sin 0p 

If d(n) denotes the number of divisors of n, then it follows that 

It(n)[ _-< n 11/2 d(n), 

as r is a multiplicative function. Therefore, for some constant cl >0, 

{ (CI 1ON F/.~ ~ 
"r(n) O ~nl 1/2 exp \log log n! 1" 

It is conjectured that 

[ ( c2 log n_.~ "~(H) O ~nl 1/2 exp \log log n] ] (1) 

for some constant C 2 > 0 .  
A conjecture of Sato and Tate states that the angles 0v are equidistributed 

in [0, 2n] with respect to the measure 

2 sin2OdO. 
7~ 
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It is easy to see that the conjecture of Sato-Tate implies (1). In fact, if 

card(p <x :  O<=Op<qo)>> x ~ 

7~ 
for some ~o<~ and some 6>0, then (1) follows easily. Both assertions about 

the distribution of the angles 0p remain unproved. 
With respect to unconditional results, Rankin [5] showed 

. [~(n)l 
lm sup ~ - =  + o0, 

and Joris [3] proved 

z(n) = f2(n 11/2 exp(c(log n) (1/22)- ~)). 

We shall show below that 

r(n) = Q(n 11/2 exp(c(log n) ~2/31 ~)). 

For an arbitrary normalized Hecke eigenform 

f =  ~ an ez~inz 
n-1 

of weight k, a similar result is true if we assume that 

la~ 
n= 1 g/s 

has no real zeroes in the critical strip k - 1  < a < k. 
Nevertheless, by an elementary method, one can show that 

1 

( k  1 (c(log n ) ~  
a ,=f2  n g e x P \ l o g l o g n ! ! .  

This result remains true if f is a normalized eigenform of even weight for an 
arbitrary congruence subgroup of SL2(7/). 

Notation. For the sake of brevity, we write 

r, = z(n)/n 11/2, 
and 

oc 2 

f ( s )=  ~ ~ .  

w 2. Real  Zeroes  of  f (s) 

We show that f(s) has no real zeroes in the critical strip 0_< a_< 1. 
Let z = x + i y  and set 

. s(s-1) 
4)(z,s)= 2 (Y)SF(s)~']mz+nl-Z~, 
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where the dash on the summat ion  indicates we sum over all pairs of integers 
(m, n) 4= (O, O). If we let 

7~W 

then it is easily seen that 

as 

Letting 

we see that 

~, . 1 s(s-1) ~ 
tz, s ) = ~ + ~  ~ (w ~ l +w-~)K(z,w)dw 

1 
(2) 

O(s)=(2rt) 2~+ l a) F(s+ 11) F(s) ~(2s) f(s) s(s-  1) 

dxdy 
~(s)=S~y 1 2 . ~  Id(~)l 2.4)(z,s) y~,  (3) 

where ~ denotes the s tandard fundamental  domain  for the full modular  group 
acting on the upper half-plane. Also, ~ satisfies the functional equation. 

O(s) = 0(1 - s). 

In view of this functional equat ion and the fact that f (s )  has a simple pole at s 
= 1, it suffices to consider �89 s < 1 in our  search for real zeroes. 

Lemma 1. 

(e '+ l  ~ 
~K(z, w) dw <log  \ ~ f  - 2 l~ It/(z)12)' 
1 

where 7 is Euler's constant and 

rl(z)=e ~iz/12 f i  (1--e2~t inz) .  

n = l  

Proof From  Kronecker ' s  limit formula (see e.g. Ramachandra  [7]), it follows 
that 

lim F(s) ~'  [mz + n] - 2s 1 e ~ s~l s -  1- = log  ~ - 2 1 o g ( y  ~- ]~(Z)[2).  

But 

so that 

2qS(z, s) 1 

s(s-1) (s-l) i' ( 1) K(z'w) dw+higherp~176 1+  1+  w 

( )  i 1 K(z,w)dw=log ~ -21og(y-~]t/(z)l 2) - 1 +  1+ w 

from which the result follows. 
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Corollary. 

(i) for <y<2, S K(z,w) dw<l- 
1 = 2" 

(ii) for y>l, ~'K(z,w) dw< ~ 

Proof We have 

l~ Ir/(z)l = 12 ,~1 l ~  " 

So that 

It follows that 

a s  

and 

e 2~y ~ y  
~ 1 o g  = = ~ - + ( 1 - - e  2~y)2- 

T~ ~'K(z, w) dw<~ y-log y-0.92 
1 

(e 
~/+ 1 ~ 

log \ ~ - !  - 0 . 9 5 . . .  

(4) 

e 2~y 
(1-e 2nY) 2~5"0• 3 

for y>lf3/2. Both (i) and (ii) are now easily deduced. 

Theorem 1 .0(s )  + 0 for �89 < s < 1. 
Proof From (2) and (3), we observe that 

1 S(S--1) re 12 {i(WS, }dxdy O(s)=~(A,A)+~J2Y IA(z)l 2 +w-S)K(z,w)dw 1,2 

where ( ' , ' )  denotes the Petersson inner product.  It is apparent  that  for � 8 9  1, 

L f f y 1 2  y2 [O(s)-�89 IA(z)l 2 K(z,w)dw dxdy 

By the corollary to Lemma  1, this is 

Not ing that  

we deduce 

for y >__l/5/z 

7C !j y" IAIz)l dxdy 
y > 2  

log ]A (z)l = 24 log It/(z)l < - 2ny  + 24 
e 2 n y  

(1 -e -2~Y)  2' 

rd(z) l~(1 .1)e  2~y 
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This est imate implies 

YY Y~'lA(z)ledxdy<=(l21)~yX~e 4~YdY<=(l'21)\e/" " -4~ 
2 

y>=2 
e - 4 r t  

< ( 0 . 0 4 ) - -  
4~; ' 

It follows that  

> 3 ( ~ , a ) _  ~ ~= 
~,(s)= 8 (o.ol) U~"  

We note that, if F ( x ) = ~  Cne2~inz, then for k>2, 

]F(z)12 d~d22 ~ ~' 5S yk Y _  iCnl2 ~yk 2 e 4=. , ,dy 
Ixl<�89 n = l  1 

y > l  

~>[CI[ 2 ~ e-4'~Ydy 
1 

--Ic,12 e 

Taking  in part icular,  k =  12, G = r ( n ) ,  we have 

e - 4 r ~  
(A,A)> 

= 4:r 
We finally obtain 

e.-  ~- rc 

O(s) => 56~-  > o 

for �89 

Remarks. 1, Lehmer  [4] has computed  (A, A) = 1.036 x 10 0 

2. It is possible to est imate 

~ K(z, w) dw 
l 

without  appeal ing to Kronecker ' s  limit formula.  We split the sum 

2 '  0 [ exp / 7z w 1 ~ - - T  [mzq-rtl2 dw 

into fours parts  cor responding to n =0,  m = 0, }n] < Iml y and [nl > Ira] y, where in 
the latter two cases, we utilise the inequalies ]mz+nl2>=mZy 2 and Imz 
+nl2>3hnb 2 in the respective cases. The resulting four sums are easily esti- 
ma ted  and the main  cont r ibut ion  arises f rom the te rm corresponding to n = 0 .  

We  indicate ano ther  p roof  of  Theorem 1 which can be based on the 
following idea. F rom Chowla-Selberg [ l ,  p. 106] we know 

2qS(z,s) ~(2s)y S ~ ( 2 s - l ) y  1 
- + - -  ~- R ( y ,  s )  s(s-1) s(2s-1) ( s - 1 ) ( 2 s - 1 )  
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where 

and 

~(s)=S(s-l)  ~z-~/2 F (s2) 

8 1 
IR(y, s)l < 

for �89 
A simple calculation reveals [R(y, s)[ < 0.01. Utilizing the fact that 

1 s ( s - 1 ) ~ , ( x ) ( x  ~ ~+x_~)c/x, 

where 
oo 

- V  e -"2~x q,(x)-~ 
1 

it is straightforward to show that for y <2. 

2~b(z,s)<_ 1 (~  yl s~ 
s ( s -  1) = 2 s - I  i ~ s / + 0 " 1 5 "  

A simple application of Rolle's theorem reveals that 

2 0(z, s) 
- - _ <  -0 .1  
s(s - 1 )  - 

for y<2.  
A similar argument shows that for y>2 ,  and �89  1, 

2q~(z, S) < y2. 

s ( s -  1 )  = 

These two inequalities are enough for Theorem 2 to be deduced. 

{} 3. Zeroes of qt(s) in the Critical Strip 

Let N(T, r be the number of zeroes of r satisfying 0 < a < 1 and 0 < t < T. 

Lemma 2. 
2 

N(T, O ) = -  Tlog T+ O(T). 

Proof Let R be the rectangle with vertices 3, 3 + i T, - �89 + i T, - �89 In view of the 
i< / 3  functional equation and the fact that ~b(s) has no real zeroes in - ~ = ~ ,  we 

see that 
lr N(T, ~)=A L arg ~,(s), 

where A L denotes the variation in the argument as s traverses from 3 to ~ + i T  
and then to �89 Stirling's formula easily gives 

A L arg((2~z)- 2s- 22 s ( s -  1) F(s) F(s + 11)) = 2 T log T+ O(T). 
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Moreover, as r is of order 1, it is deduced, in a standard way, that 

1 
~ 1  + ( T -  7) 2 

O(log T), 

as p runs through the zeroes of ~(s). 
It follows that the number of zeroes a +  i7, with IT-7l  < 1 is O(log T) and 

f '  1 
(2s) (st = Z'p + O(log t), 

where the dash on the summation indicates the sum is over zeroes of ~(s) for 
which ] t - T l <  1, P = a + i T -  We have 

A L a r g ( ( ( 2 s ) f ( s ' ) = [ I m ( 2 ~ ( 2 s ) + J ~ ( s ) ) d  s 

= O ( 1 ) -  ~ Im 2~-(2s)+ (s) ds, 
~+iT  tz 

the O(1) term coming from the variation along a=~.  As 

~ + i T  

I r a ( s -p )  l d s = A a r g ( s _ p ) = O ( l )  
�89 

for those zeroes p satisfying I t-7]  < 1, we deduce 

A L (arg(~(2 s) f(s))) = O(log T). 

This completes the proof. 

w Other Lemmas 

Lemma 3. Let ~2 > 1. For such a prime p, there is an m=m(p)  and an absolute 
constant c such that rein > C > 1 and 

1 
m(p)~ 2 1 . "Cp 

Proof  if  "Cp--2 1 > 10 --~~ then take m(p)= 1. Now suppose 

0 < r 2 _ l  <10 lo 

n 2n n 
Then 0 v is close to ~ or ~ - ,  we consider the case 0 e close to 3 '  the other case 

being similar. Also, 0<0p<~-.  If 0 e < ~ ,  we may take m(p)=l .  So w e  may 
7~ 7~ 

assume ~- < Op < 3" 
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Choose m -  0(rood 6) such that 

7~ 7[ 

10 10 
- - < m + l <  -+20 
/Z 7~ 

3 Op 3 Op 

so that sin(m+ 1)Or=sin ((m+ 1)3+(m+ l)(Op-3))=>sin (3+ ;0), as 

0v- 3 <2lsin0rl 0 . -  3 =<[2cos0p-ll_-<C-l=<10 -1~ 

Therefore, 
sin(n n )  

sin(m+ 1) Op_> 3-+10 >1. 

sin Op sin n 
3 

Moreover, m satisfies 

This completes the proof. 

Lemma 4. 

1 < ]~3 < 3l/3 
7Z = t p - -  1 = Zp 2 - - 1 "  

3 Op 

for 1~ < �89 

m ~  

2 

r 2 > 1 

~(2s) ~,, 
Proof Set O ( s ) = ~ ) j t s ~ .  We know 

Now write 

2 cos n 0 v + 1 
log O(s) = ~ np"" 

p, n 

where 

and 

--+oo, 

% ~  + 2 p U + )  �9 

z-~-I 
-f+ (s)-A (s) 

7 p~ 

2 1 %'p--  

f+ (S) = ~F,> p~ 
1 

2 1 
L ( s ) = -  Y z-"- ~< 1 pS 

Suppose that f+ (�89 < oo. Then, for cr > �89 f+ (s) is analytic. By Lemma 2, log O(s) 
has singularities with Res>�89 arising from the zeroes of ~k(s). The set of 
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singularities of log0(s) coincides with the set of singularities of f ( s )  for 
Res>�89  If this set is not empty, j r ( s )  has a real singularity by Landau 's  
theorem. Therefore, ~,(s) has a real zero which contradicts Theorem 1. There- 
fore, all the singularities of log O(s) lie on the line a=�89 As log O(s) is analytic at 
s = �89 both f+ (s) and f_  (s) have a singularity at s = �89 Therefore, 

E T p - -  r,] v>l p~ - - + o o  

and 

2 r ~ - i  - -  - -  - - ( } 0 .  
2p P~ 

z~< 1 

This completes the proof  of the lemma. 

w Main Theorem 

2 1 
Theorem 2. Suppose ~, r p -  

~G" ~ P~ 

Proof Clearly, the set 

is infinite. Since 

we see that 

- + oo. Then 

1 

r ,  = ~2(exp(c(log n)2- ~ ~)). 

2--1 2 }  
S =  m: ~ z ~ > _ _  

era< < e  m + l  r ~ > l  P/~ = m 2  

2 1  e~+* dt 1 
< _ _  E "cp - <  f 2 t=m2,  pe = t log e,,, <p< em. i e m 

l 
0<zvZ- l<p  T ' l o g p  

{ 2_, 5} 
r - =  lrt : E "r p 

e.<p<~m+, P" --> 
1 

3 > z Z _ l >  . . . . .  
p pZ ~logp 

is infinite. 
For  each meT, we know 

Y, + E +.. .+ X 
, < 2 1<3 "<r~a-- l<i to v -  P P_r i < r ~ _ l <  p . . . .  

logp 

The number  of sums is O~(1). Therefore,  for some 7, 

2 1 
2 zp - ->C(g)  

p - ~  2 l<p ~' P/~ = m 2 "  

2 1 1 T p - -  ~ - -  

pP = m  2 �9 
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Hence if 

then 
W={p:em<p<e=+l,p ~ ~ < r 2 _ l < p - V } ,  

IWl e m*~§  

(em]~ + 
Now, set B_c W such that IBI =" m2 and define 

11= H pro(p) 
p<=x 
pr 

where m(p) is defined by Lemma 3. Then by Lemma 3, 

Since, 

we have 

As 

we have 

Noting that, 

we finally deduce 

( cXB+y 
z, > exp \ ~ ] .  

X/~+ 2 ?,+e 
l ogn<  ~ pT+~logp< 

p ~ x = (log x) 
peB 

X/J+ 2 Y+e ~ (log n) (log x). 

X//+ ~, 
l ogn>  ~ logp>(logx)2,  

p<x 
peB 

.8+7 
(c((log n! (log log_ n))~+ 2 ~+ ~ ). 

r, > exp \ (log log n) 2 

O ~ ? + e ~ l - f l ,  

1 
r.  > exp(c(log 1"/) 2-/~ ~), 

as desired. 

Corollary 1. z, = f2(exp(c(log n) ~- 9). 

Proof. By Lemma 4 any fl<�89 satisfies the condition of the theorem. This gives 
the result. 

Remarks. 1. By utilizing the fact that 

2 1 Z T p - -  
• ~ - -  --O0 

~2<1 pa 

and repeating the above argument, one can deduce that 

[r.[ < exp( - c(log n) }-  9 

for an infinity of n. 



A n  ~ - T h e o r e m  for  R a m a n u j a n ' s  z - F u n c t i o n  251 

2. The argument can be extended to any real valued multiplicative function 
c satisfying 

(i) c(p)Z-  1 =c(p  2) 

(ii) c ( n ) = O ( n  ~) ~(2s) @ c(n) 2 
(iii) the Dirichlet series - - = L ( s )  (say) has an analytic conti- 

nuat ion to R e s = 0 .  ~(s) ,-~1 n~ 

Also, if L(s) has only non-real zeroes in Res>�89  then 

c(n) = f2(exp(c(log n) ~ ~)). 

In fact, if Re s > a is the largest zero-free half-plane for L(s), then 

c(n) = f2(exp(c(log n) ~ ~)). 

w 6. General Results 

o e  

Let f ( z ) =  ~ a(n)e  2~i"Z be a normalized Hecke eigenform of weight k for the 
n--1  

full modular  group. Then k is even and as the a(n)'s are integers, we have for 
primes p, 

]a(p)Z-p  k 1[~1. 

If we let 
lfi 1 

a v = a(p 2 , 
then 

1 la -lL> 
~ p k  - 1 ' 

Lemma 5. There is an m = m ( p )  such that ]avml > c>  1, where c is a f i x e d  constant 

and l 

m(p) ~ la 2 _ 1~" 

The proof  of this lemma proceeds exactly as in Lemma 3 and therefore, we 
suppress it. 

By the preceding remarks, it is evident that m(p) in Lemma 5 satisfies 

Therefore, if we let 

m ( p ) ~ p k  1. 

n =  1~ pro(p), 
p<x 

then 
an ~ C ~(x). 

But 
log n = ~ m(p) log p < x k. 

p<x 

This proves the following theorem. 



252 R. Balasubramanian and M. Ram Murty 

o o  

T h e o r e m  3. I f  f ( z ) = ~  a(n)e 2~i"z is a normalized Hecke eigenform, weight k, 
then 1 

1 

a(n) = f2 (n 5 e x p  \ ~  ] ] .  
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