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ABSTRACT

The decay of a magnetic field in a fluid conductor with internal motions is considered in case the mag-
netic and velocity fields have symmetry about an axis The underlying characteristic value problems are
solved for certain simple velocity fields The method of solution is based on a new classification of the
basic axisymmetric modes of the magnetic field in terms of Gegenbauer polynomials. The principal con-
clusion of the paper is that velocity fields of reasonable patterns and magnitudes can alter the time of
decay that will obtain in the absence of motions by quite large factors. The bearing of this result on the
problem of the origin of the earth’s magnetic field is briefly discussed Certain other related questions are
also considered.

1. INTRODUCTION

Current interest in the interaction between fluid motions and magnetic fields is in
large measure due to the many astrophysical and geophysical phenomena which appear
to be manifestations of this interaction. Indeed, the possibilities one might envisage by
requiring a fluid to conform simultaneously to the laws of hydrodynamics and electro-
dynamics are so many that it might be profitable, in the first instance, to begin at the
two ends. We might, for example, start from a well-understood hydrodynamic situation
and see how the phenomenon is altered progressively as a magnetic field of increasing
strength is impressed on the fluid. In recent years several such problems have been
studied (cf. Chandrasekhar 1953); and in some cases the theoretical predictions have
been confirmed by experiments (Lehnert 1952, 1955; Nakagawa 1935). Or we might
start from a well-understood electrodynamic situation and see how the phenomenon is
progressively altered as fluid motions of increasing strength are allowed to be present. It
is somewhat surprising that no such problem has hitherto been analyzed. It is the object
of this paper to consider one such problem. The problem we shall consider is the free
decay of a magnetic field in a fluid conductor. If there are no internal motions, the equa-
tion governing the decay is '

1 0H
2 =
viH 4re Ot W

where o denotes the electrical conductivity. The solution of this problem is well known:
it is, in fact, one of the standard problems in electrodynamics (cf. Stratton 1941). We
now ask: How is this decay affected if the fluid is in a state of internal motions? Apart
from its theoretical interest, the problem appears to be relevant for discussions relating
particularly to the origin of the earth’s magnetic field. This context in which the problem
first suggested itself is described in the next section.

2. THE PHYSICAL CONTEXT OF THE PROBLEM

The problem of the decay of a magnetic field in a fluid conductor is the first one to
which one’s attention is directed when one considers the origin of the earth’s magnetic
field. The reason is the following:

* The research reported in this paper has been supported in part by the Geophysics Research Direc-
torate of the Air Force Cambridge Research Center, Air Research and Development Command, under
Contract AF 19(604)-299 with the University of Chicago.
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According to the solution of equation (1), the mode which decays most slowly is
characterized by a mean life (cf. eq. [31]):

T=—". 2)

It has been estimated by Bullard and Gellman (1954) that the electrical conductivity of
the earth’s core is 3 X 107% e.m.u.; this value of o, together with the known radius
(=3.5 X 108 cm) of the core, leads to a mean life

7 (earth’s core) = 14000 years . 3)

On the other hand, paleomagnetic studies have established that, apart from secular
variations, the earth has retained its magnetic field at approximately its present strength
throughout most of its history (except, possibly, for brief periods during reversals; cf.
Runcorn 1953¢, b, in this connection). Consequently, there must be some mechanism
which maintains the field and prevents its decay.

It was first suggested by Larmor (1919) as a possible explanation that the earth’s mag-
netic field might be maintained by fluid motions in the core in the manner of a self-
exciting dynamo. This suggestion received a serious setback when Cowling (1934; see
also Backus and Chandrasekhar 1956) proved that steady dynamo action is impossible if
the magnetic field and the fluid motions have axial symmetry. The possibility, neverthe-
less, of dynamo action has been explored, intensively, in recent years by Bullard and
Gellman (1954), by Parker (1955), and by Elsasser (1955, 1956).

Bullard avoids a direct conflict with Cowling’s theorem by considering velocity and
magnetic fields which are azimuth-dependent. More particularly, Bullard and Gellman
(1954) have sought to solve the electromagnetic equations numerically by using a par-
ticular velocity distribution and adjusting its magnitude to give a steady field. The
method of solution is based on expansion in.orthogonal functions; and, as Bullard (1955)
has himself expressed, ““it is difficult to establish the existence of solutions by numerical
methods.”

In contrast to Bullard, Parker and Elsasser have sought to avoid a conflict with
Cowling’s theorem by giving up, also, the idea of a strictly steady dynamo. They devise
a sequence of interactions—nonuniform rotation generating a toroidal magnetic field
from an initial poloidal field; a succession of rising “cyclones” creating, out of the toroidal
field, loops of flux in the meridional planes, these loops coalescing and generating a
poloidal field—and try to establish by semiquantitative arguments the inherent plausi-
bility of the scheme by examining each element of the sequence separately.

The foregoing brief account of the current investigations on the dynamo problem
discloses one surprising lacuna. The lacuna becomes apparent when we restate the
underlying arguments as follows: One knows that in the absence of internal motions the
earth’s magnetic field will decay with a mean life of the order of 14000 years; ‘“‘there-
fore,” one seeks to devise fluid motions of a pattern and intensity which will prevent the
decay altogether and maintain a steady state. In so arguing, one has not sought to clarify
to one’s self the extent to which given internal motions can retard (or accelerate) the
free decay of a magnetic field in a fluid conductor. For example, one can ask: Can the
time of decay of 14000 years, in the absence of internal motions, be prolonged to 500000
years (say) by velocity fields of reasonable magnitudes and patterns? If this were pos-
sible, the problem of the origin of the earth’s magnetic field would take on a different
complexion. For, the earth’s magnetic field appears to reverse itself at intervals of the
order of a quarter- to a half-million years by passing through an intermediate transitory
phase of nearly zero random field (cf. Hospers 1954; Runcorn 19556). One can therefore
ask whether any particular meaning can be attached to constructing—if one can!—
dynamos which will maintain themselves for periods longer than between reversals. In
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all cases it is clear that the extent to which the decay of a magnetic field in a fluid con-
ductor can be retarded or accelerated by internal motions of assigned patterns is an
important theoretical question. It is to answering this question that this paper is prin-
cipally devoted.

In concluding this section it may be simply stated that the problem considered in this
paper is relevant in other astronomical connections, as, for example, the growth and
decay of the magnetic fields of sunspots (cf. Cowling 1946); but in these other connec-
tions the physical problems are not as direct.

3. THE EQUATIONS OF THE PROBLEM

In considering the problem of the decay of a magnetic field in a fluid conductor with
internal motions, we shall restrict ourselves to the case when the fluid is incompressible,
the conductivity is constant, and the velocity and the magnetic fields have symmetry
about an axis. The equations valid under these conditions have been derived in the pre-
ceding paper (Chandrasekhar 19566, this paper will be referred to hereafter as “Paper I"’)
They are (Paper 1, egs. [33] and [34]):

P 1 9 (@?P, w2U)

M T E G @

and
o _ 10T, =*U) 10(V,wP)

—— == = )
9t © 9 (2,®) w 0(z,® '’

AsT

where it may be recalled that length, time, and velocity are measured in the units
(Paper I, eq. [7]),

R(=347X108cm), 4woR2(=1.44 X 10% years),
and (47woR) ~1 (=7.65X 10-% cm/sec) ,

©)

respectively (The values given in parentheses are those which are appropriate for the
earth’s core.) In equations (4) and (5) P and T are the scalars defining the poloidal and
toroidal parts of the magnetic field, and U and V are the scalars defining the meridional
and rotational motions. Thus (Paper I, eqgs. [15] and [16])

oP 10
— — I R 2
h @ 32 lw+wT1¢+w 5 @?P) 1, )
and
oU 19
= — -— R 2
v o} 72 1w+wV1¢+w - @2U) 1,, (8)

where h = H/(4mp)'/? is a quantity of the dimensions of a velocity.

In considering equations (4) and (5), we shall regard the velocity scalars U and V as
given and seek solutions for the scalars P and T characterizing the magnetic field.

It will be observed that there is a fundamental difference in the equations governing
the poloidal and toroidal fields: The decay of the poloidal field is unaffected by the pres-
ence of toroidal fields or rotational motions; it is affected only by the presence of merid-
ional motions. On the other hand, the decay of the toroidal field is affected by the
presence of a poloidal field, provided there is nonuniform rotation.

Considering, first, the equation satisfied by P, we can separate the time dependence
by writing

P(z,@) e in placeof P(z,,1?) @)
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and obtain
19 (aﬁ’, =2 U)

— 1 (10)
o 9J (2, )

AP+ NP =

This equation is valid only for » < 1. For » > 1, the equation governing P is
AsP=0. an

For a specified velocity field, U, we must seek solutions of equations (10) and (11)
which have no singularity at the origin, vanish at infinity, and are such that

oP .
P and a7 are continuous on r=1. (12)

These boundary conditions clearly define a characteristic value problem for A?; and in the
context of the physical problem discussed in § 2, greatest interest is attached to the
dependence of the lowest characteristic value for A? on the sign and amplitude of the
specified velocity field.

Considering, next, the equation for 7', we can express the general solution as a super-
position of a solution of the homogeneous equation

T 19T, »0)

A== a a5 w

together with a particular solution of the nonhomogeneous equation (5). Equation (13),
like equation (10), can be solved by considering exponentially decaying solutions. Thus,
writing

T (2,w) et in place of T (z,w,1), (14)
we obtain
10, =2U)
T =
AsT + NT 5 9z (15)

The boundary conditions with respect to which this equation must be solved are

T=0 on r=1 and nonsingular at r=0, (16)

This is again a characteristic value problem for A?; and its solution will determine the
“free decay” of a toroidal field in the absence of nonuniform rotation or poloidal fields.
If a poloidal field should be present and the rotation is nonuniform, then there will be an
additional “induced” term (proportional to P) in the time variation of T'. In particular,
if the poloidal field which is present is one of the fundamental modes determined by the
characteristic value problem for P, we can find a particular solution for 7" which will
decay exponentially with the same mean life as the inducing field. Thus the decay of a
toroidal field will, in general, consist of two terms: a free decay and an induced decay.
In this paper we shall not consider this latter term: we shall, in effect, suppose that V
is constant.

4. THE SOLUTION OF THE DECAY PROBLEM IN THE ABSENCE OF MOTIONS

The fundamental modes of decay of a magnetic field in a spherical conductor have
been the subject of extensive investigations and go back to Horace Lamb (1881). Their
classification in terms of the solutions of the vector-wave equation are well known
through Elsasser’s (1946a, b, and 1947) systematization. Nevertheless, the particular
classification of the axisymmetric modes which we shall need appears to be novel in this
connection. We shall therefore begin with a description of this classification.
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a) The Poloidal Modes

In the absence of motions the equations governing the poloidal scalar, P, are (cf. egs.
[10] and [11])
AsP = — a?P (r £1) an
and
AsP =0 (r >1), as)

where, for later convenience, we have used o2 in place of N2
In spherical polar co-ordinates the axisymmetric five-dimensional Laplacian, A, is

_ 9 49 1—w ¥ 4ud
S=gntrartTm ap T A e

The fundamental solutions of equation (17) which are free of singularity at the origin
are (cf. Chandrasekhar 1956¢, eq. [17])

I
p,=Torssler) can ) (r<1), o

where C3/%(u) is the Gegenbauer polynomial! and J,.3/» is the Bessel function of order
(n+ 2). The corresponding solution of equation (18) is

4

Po= 15 C (w) (r>1), @

where A4 is a constant to be determined.
The boundary conditions at » = 1 (eq. [12]) require

Jnrs/e(a) = A4 (continuity of P at r = 1) (22
and

L (T s (ar) | - EAED) B

(23)
(continuity of dir (r2P)at r = 1) .
On simplifying equation (23) and eliminating 4 by means of equation (22), we find
3 nrze(0) T afppsn(a) = — (n+1) A= — (n+1) Jprs/2(a) (24)
or
aJrta2 (@) + (m+32) Totsa(a) =0. (25)

But the quantity on the left-hand side of this last equation is J,11/2(a). Hence the equa-
tion for determining a is

Jn+1/2 (a) = O . (26)

The characteristic values of a are, therefore, the roots of J,y1/2(x).
To distinguish the different zeros of the Bessel functions of different orders, we shall let

a;, » denote the jth zero of J 4379 (%) . (27)

This notation will be used consistently in this paper.
1 The notation is that of Watson (1944).
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The fundamental solutions representing the various poloidal modes are, therefore,

Juts/e (0, n—17) /2
Pn;j= 73/]2"’ Cn (I‘l') .

(28)

We shall call this the (%, §) poloidal mode. In particular, the solution describing the zero-
order modes is

i, —17
Po, ;= i?»_/ﬁ_(‘i_}_l, (29)

where aj, -1, being the jth zero of Jy/5(x) (which is proportional to sin x/4/x), is given by

a;,—1= jm (j=1,2,...). @0
The corresponding decay times are (cf. egs. [6] and [9])
47oR? 40R? .
== T (7=1,2,...). @p

The functions P,, ; provide a complete set of orthogonal functions in the unit sphere in
five dimensions. The orthogonality relations are

ARV 3/2 _ _2(n+1) (n+2)
Lot wetw a-wmap="00 0 g, e
and
1
_/(; v Tnrs/2 (0, n—17) Jnis/z (ap, n—17) d7 =3 [ Jntare (aj,n—1)128%. (33)

b)Y The Toroidal Modes

In the absence of motions, the toroidal modes of decay are given by the solutions of
the equation
A5T = - a2T ) (34)

which are finite at the origin and which satisfy the boundary condition
T=0 on =1, (35)
Accordingly, the fundamental solutions describing the various toroidal modes are

J -
Tn’ i= _”ﬂ&_’_’___)_ C2/2 (M) . (36)
r

We shall call this the (#, j) toroidal mode. In particular, the solution describing the zero-
order modes is

T, j=i3_/2(0«j,07’)

S (37
where a;, o is the jth zero of J3/5(x). For later reference we may note here that
al, o = 20.19 . 38)

The lowest toroidal mode, therefore, decays with a mean life which is about half that
of the lowest poloidal mode.
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The functions T, ;, like the functions P, ; form a complete set of orthogonal func-
tions in the unit sphere in five dimensions. The orthogonality relation (33) is now
replaced by

1
/(; r Tnta/a (aj,n?) Tnts/s (an,n?) dr =% [Tnras2(aj,n) 1285, (39)

c) Some Useful Formulae

We have seen that the fundamental solutions for the poloidal and toroidal modes are
expressed in terms of the Gegenbauer polynomials. We shall find, when working with
them, the need for the various recurrence relations which these polynomials satisfy.
Accordingly, we shall list here, for later reference, the most important of these relations:

pCYt = [+ DY+ (i 2) CL “o

T
dcs/z 1
(1 =% ip 2853

2C3/2 (n+1) (n+2)
" T 2n+3) 2n+5 T

[—n(n+1)C+ (n+2) (n+3)CL], @

(42)
(n+1) (n+ 3) n(n+2) 3/2 (n+1) (n+2) 302
+[(2n+ 3 (2nt s T GnLd) (2n+1)]C" T n¥3) 2 F D Camz,
cs” n(n+1) (n+2) L an 3n(n+3) "
B =)= g3 ks T @S kD & -
4 (n+1) (n+2) (n+3) Y2
2n+3) 2n+1) nE
—d—(l— 2oV (n+2)2(n+1) c¥ (n+2) (n+1) Ve
o RIS =T 0n¥3) 2n+5) " (2nds5) 2ut+1) *
(44)
+ (n+1)2(n+2) c

(2n+3) 2n+1)

5. THE INFLUENCE OF FLUID MOTIONS ON THE DIFFERENT
MODES OF THE MAGNETIC FIELD

To make the characteristic value problems formulated in § 3 definite, we must specify
the velocity field. For this reason it is important that we have some initial idea as to
the patterns of fluid motion to which the various modes of the magnetic field are most
sensitive. In this section we shall try to obtain this preliminary information by con-
sidering the rate of change of an integral property of the field (such as its energy) in the
presence of prescribed motions.

a) The Toroidal Modes

In the absence of nonuniform rotation, the equation satisfied by the toroidal scalar

is (eq. [5]) i
A5T-—a—t=5[T =2U] , (45)
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where, for the sake of brevity, we have introduced the notation (cf. Paper I, eq. [71])

(¢, ¥)

[¢, \l/] B—(—z——w—) (46)

Multiplying equation (45) by ®*T" and integrating over the range of the variables,
we have

S [o*TAsTdwd 2 — [o¥2dwd z = [ [T (T, ®2U] dwd z . (47)

1d
2 di f
Transforming the integral on the right-hand side of this equation by first using the
lemma of Paper I, § 6 (eq. [82]), and then integrating by parts, we obtain

S[oT ([T, s?U]l dwdz = — [[&?U [T, &*T] dwd 2

_ —ffasz/a—T—dwdz

(48)
= + [[&37? U dwdz.
93z
Using this last result in equation (47), we have
—d—z——ff ( TA5T+T26U> dwds, (49
where
T =3f[oTdwd 2, (50)

is a measure of the energy in the field.

Since U/ must vanish on the boundary (cf. Paper I, eq. [70]), it is clear that the normal
modes of the meridional motions are described by the same functions as the toroidal
modes of the magnetic field.

We shall suppose, then, that

U=86T.zx, (s1)

where 8 is a constant, and, further, that
T=T,; at t=0. (52)

For T and U thus prescribed equation (49) gives

aT”‘ *Vdwd 2 (53)

E(% .77 m, k) _ffngn J (a; » T+ B8
since
AT, j = — ai',nTn,J’ . (54)

By using the orthogonality relations (32) and (39) we can rewrite equation (53) in
the form

(n+1) (n+2)
2n+ 3

~L T, G m )= Ulews (ag.) 120k 48T (n, §3 m, B T) , 59

where

I(n, j; m, & T) = [[o'T2; T'" E dwd s (50
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is the matrix element which characterizes the interaction between the (u, j) toroidal
mode and the (m, k) velocity mode.
In spherical polar co-ordinates, equation (56) takes the form

1— 2 a>
P Tw,sdrdu. 57

. . 1 +1 9
Ton jsm kD = [ f =1 (st

Substituting for 7', & in accordance with equation (36) and making use of the recurrence
relations (40) and (41), we find

. 1 1 1
1(n, 7; m, k;T) =m_+_§f0 [1 drdur*(1— BT

d [Jm+3/2 (ar, m?)

><§;i7 Y ][<m+1)C%il+(m+2)c’;ﬁil1 (s8)

- Lme b n) |y (e ) CUE A+ (mt2) ()2 ]

From equation (58) certain selection rules can be derived from which one can infer
the different velocity modes which will interact with a given toroidal mode of the mag-
netic field and give rise to a nonvanishing matrix element, I(#, j; m, k; T). In this paper
we shall, however, restrict ourselves to the case

J ot
n=0 when T=T,;= —3/1—(;?/’7& (59)

The general case has, meantime, been treated by Siciy Pao (1956).

Since T% ; is angle-independent, it is apparent from equation (58) that only the
velocity modes (1, k) can arrest (or accelerate) the initial decay of the magnetic energy
in the (0, 7) toroidal mode. Thus

10, 4; m,k;T)=0 for m=#1, (60)
and, when m = 1,
10, 7;1,%7T)
_4 ! J3/2(¢1j,07') 2 d J5/2(ak,17') ]5/2(%,17’) (61)
=5 [ [P e e e

By making use of the recurrence relations satisfied by the Bessel functions, we can reduce
the integral on the right-hand side to give

10, 51, b T) =2 T (as07) ] 2T sa (o 1) - (62
» Ji Ly RS =z0kr,1 A 3/2 (5,07 3/28 @, 17 N )

With 1(0, j; 1, k; T) given by equation (62), we have (cf. eq. [55])

d ) )
—TO, 5Lk =4 [T (aj,0) 1%al,0 +BI(0, 451, k3 T) . 63)

We shall return to this equation in § 5, ¢, after we have derived a similar formula for
the poloidal modes.
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b) The Poloidal Modes
The equation satisfied by the poloidal scalar is (eq. [4])
_op
- at

Multiplying this equation by ®3P and integrating over the range of the variables, we
obtain, as in § 5, @ (cf. eq. [49]),

As P = &1—3 [@2P, w2 U] . (64)

aB _ ., 5, 0U
—-—(—ﬁ—ffq (—PAsP P dwd z, (65)
where
P=1f[oPdwd s . (66)
We shall suppose that
P=P,; att=0 (67)

and that the velocity field is the same as that considered in § 5, ¢, equation (51). Then
equation (65) gives

~ 2w n, gy m ) = [IaP s (s — 8 2m2) s -
and, by using the orthogonality relation (33), we obtain
d . (n+1) (n+2)
_ESB(”) g5 m, k) = 2n+3 []n+3/2(aj,n—1)]2a3',n—1 (69)
N —BI (n, j; m, k; P) ,
where
. 3p2 a11'm.,k
I(n, j; m, k; P) =ffan,,-—aT dwdsz. (70)

For the case » = 0, we find, as in § 5, a, that the matrix element

I(0, j; m, k;P) =0 if m#=1 7
and that, when m = 1 (cf. eq. [62]),
I(0 J 1, ki, P) =% a; 1f1[J/2(a~ —17) 1 2T 5/0 (o 17)£L (72)
y Jy Ly oy 5 A 3 7y ) \/r.

With 1(0, j; 1, k; P) given by equation (72), we have (cf. eq. [69])
d . .
’“E%(O: 51, k) =% [J3/2(aj,—1)]2a§',-—1 —BI(0, 5; 1, k; P), (73)

which is the present analogue of equation (63).

¢) Numerical Results

The matrix elements (0, 7, 1, k; T) and I(0, §; 1, k; P) have been evaluated numeri-
cally for the casesj = 1 and 2 = 1, 2, and 3. The resulting numerical forms of equations
(63) and (73) are

1.8174+0.296608 (k=1),

—ditz(o, 1,1, ) =41.8174+0.054138  (k=2), (re
1.817—0.007468  (k=3),
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.

and
—0.141128 (k=1),

4
El

—%%13(0, 1;1, k) ={%+0.034468  (k=2), r9)
£-0.019828 (k=3).

Remembering that the unit of velocity appropriate for the earth’s core is 7.6 X 10~°
cm/sec and that velocities of the order of 10~2 cm/sec are believed to exist, we can con-
clude from equations (74) and (75) that the prevalence of motions of the order contem-
plated will profoundly alter the rate of decay of the earth’s magnetic field such as will
obtain in the total absence of motions.

Two further points which are worth noting are, first, that we can retard or accelerate
the initial rate of decay by simply changing the sign of 3 (i.e., the sense of the meridional
circulation) and, second, that the lowest velocity mode (1, 1), which interacts with both
the (0, 1) poloidal and the (0, 1) toroidal modes, affects them in opposite ways—a fact
which should be kept in mind if we should wish to select a velocity field which will retard
the decay of both the poloidal and the toroidal fields.

6. THE EFFECT OF THE VELOCITY MODE (1, 7) ON THE
DECAY OF TOROIDAL MAGNETIC FIELDS

We now return to the principal problem of the paper, namely, that of determining
the effect of internal motions on the decay of a magnetic field.

In this section we shall consider the effect of meridional currents on the decay of
toroidal magnetic fields. As we have seen in § 3, this leads us directly to the following
characteristic value problem: To determine M so that the equation

10(T,w2U)
N = T
AsT + NeT p a(Z,UJ) (76)
allows solutions which are free of singularity at the origin and which vanish on the unit
sphere.
In spherical polar co-ordinates, equation (76) has the form
aTr d 19 oT
2 = — | — — 2 R, 2 — 2
MANT=—F [ - U]+ ern [a-w ], o

where Ajs is now given by equation (19).
Now, to make the characteristic value problem definite, we must specify a velocity
field. Since the preliminary discussion in § 5 has shown that the lowest toroidal mode,
(0, 1), is sensitive mostly to the presence of the velocity modes (1, 7), we shall suppose
that this is the pattern of the velocity field which is present. In other words, we shall

assume that
Js/2 (0i,17)

U=28 — ik p=BU(7)p (say) , (78)
where 8 is a constant. For this chosen form of U, equation (77) becomes
oT oT 1 d
2T 2 __ it — . 9L - @ e .
AT+NT =8 (3w —1) Us S+ u(1 W) 5 5i gy (7 A

and in the solution of this equation we shall mostly be interested in the dependence of
the lowest characteristic value of A2 on 8.
The method of solution we shall adopt consists in expanding 7" in terms of the basic
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toroidal functions T, ;. It is, however, convenient to carry out this expansion in two
steps: First, we expand T in the Gegenbauer polynomials C3/%(u) in the manner

@

=3 T.(NC (), (80)

and then expand the radial functions, 7'4(7), in terms of J,y3/9(aja7).
For T given by equation (80),

AT = D DT () s
n=0
where
d 4d nni3)
Bn= dr2+ rdr  rt ®2
Substituting the expansions (80) and (81) in equation (79), we get
M DTN 1.6
n=0 n=0 3

3/2
SIS AR S MIERE -y

=0

Using the recurrence relations (42) and (43) and equating the terms in the different or-
ders of the Gegenbauer polynomials (which we can, in view of their orthogonality), we
find

OuTn+ NT,
=B§ (ZnZ(ln)—(Zln)—l-l) [wl d?f" (n=2) Ty i : (’2U1)]
oo PO T b 9T g P ]
T [(32(;7:31))<(2nn:3§) + (2n3r35;1?—212¢)+ 0 1] Ui %
+ Qﬁf?ﬁﬁ 5 I» - ddr (rom t.
We now expand Tu(r) in terms of J.is/2(aj) in the manner
T.(r) = g An,; i”—Jr—?i%gi—”—Q, (85)
where 4, ; are constants. For T, given by equation (85),
DT, = — 2 oA n+3/2r(3</z2, 7). (86

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1956ApJ...124..244C

pJ: D T2l 1743T)

(19584

256 S. CHANDRASEKHAR
and
/2 AT, 1 &
1’32 p =21’L 3; An,jaj,n[ﬂjn+1/2(aj,nf) - (”+ 3)]n+5/2(a'j nr)] (87)
— 1 3 A
= Z—n 3 ; n, jaj,ann, j (say) .

Also it can be verified that
d
5(72U1) =1a;1[3Jsn(ai,17) = 2Tz (a1 1)) Vr =U(r) V7 (say). @9

Inserting equations (86)—(88) in equation (84), we have

Z — @l +N) Ap, i Tnrs/z(aj,nr)

nin—1) g_(

= r3/2 2n—1) 2n+1) n—2)U(r) Z An—2, 6 n—1/2 (01, n—27)

3J i1t >
5327&(1 11 ) Ex Ao, p g, n—o®Pn—s k%

(n+3) (n+4)
2n435) 2n+7)

+ g (mn+5)U(r) kZ=1 Anto, 6 nt1/0 (ke npa?) (89)

3J i
I = D DENERE NN

3n(n—+ 3) d
+ Cn+1) (2%-!—5)11(7) Z A, i nt3/2 (g, n?)

3(n+1) (n+3) 3n(n+2) CTRED)
oty a9 T @it s ks Z An, v, ]|

Multiplying equation (89) by 7J.43/2(a; »#) and integrating from 0 to 1, we get

%— ( - a?‘,n + )\2) [J7,L+3/2(aj,n) ] 2An,j

=ﬁ[ nin—1) 2An—2,kp(n_27k; n, j)-}-kE:lAn,.kP(n, k; n; k)

(2n—1) 2n+1) & (90)

_|_

(n+3) (n+4) S '
2n+35) 2n+7) ?‘;1 Anto, uP (12, k5 ) J)],

where the expressions for the various matrix elements on the right-hand side can be
written down by comparison with equation (89).

Equation (90) clearly provides an infinite determinant for A2. It is apparent that the
matrix is reducible if we include terms only in # = 0 and 1. For this reason, it would

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1956ApJ...124..244C

pJ: D T2l 1743T)

(19584

DECAY OF MAGNETIC FIELD 257

appear that we can get a good approximation to the lowest characteristic root by con-
sidering only the submatrix (0, &, 0, 7). In this approximation the characteristic deter-
minant simplifies considerably and is given by (cf. egs. [89] and [90])

1(—a5 0+ N) [Tz (aj,0) 1% 40,; =8 2 " Ao, 1P (0, k5 0, j), 1)
k=1
where
P(0, k0, 7) =2a Oflfs/z(a' 17) Js/2 (ag,07) Ts/2 (a; o")ir—- (92)
b ) b 5 ’ 0 Ty 9, s J \/r

The characteristic determinant provided by equation (91) has been solved numeri-
cally for the cases ¢ = 1 and 2. The results are summarized in Tables 1 and 2, where
TABLE 1
THE EFFECT OF THE VELOCITY MODE (1, 1) ON THE DECAY OF TOROIDAL MAGNETIC FIELDS

THE LOWEST CHARACTERISTIC ROOT A2 FOR VARIOUS VALUES OF THE
AMPLITUDE, (8, OF THE VELOCITY MODE

A2 A2
B [*]
2d 3d 4th 2d 3d 4th
Approx. Approx. Approx. Approx. Approx. Approx.
0* 20 19 20 19 20 19 0* 20 19 20 19 20 19
- 2 18 03 18 04 18 04 + S5 25 92 25 90 25 90
-4 15 96 15 98 15 98 + 10 321 319 319
— 6 13 98 14 03 14 03 + 15 386 38 0 380
— 8 12 11 12 22 12 22 + 20 45 6 44 0 44 0
—10 10 35 10 54 10 50 + 30 60 8 556 56 0
—12 8 73 9 02 8 95 + 40 78 3 66 6 67 6
—14 728 7 67 753 + 50 103 77 1 79 2
—16 6 06 6 50 6 24 + 60 87 3 90 8
—18 513 552 5.10 + 70 97 2 102
—20 470 472 4 07 +100 126 138
—22 4 09 3 15
—24 3 58 2 32
—26 314 155
—28 2 69 0 84
—-30 2 14 017

* The value for 8 = 0 is exact.

the different “approximations” refer to the number of rows and columns in the charac-
teristic matrix which were included in the evaluation of the characteristic root. The con-
vergence of the characteristic roots toward a limiting value as we go to higher approxi-
mations appears satisfactory, particularly in the case ¢ = 1. In any case, it would appear
that the general nature of the dependence of \? on B (illustrated in Figs. 1 and 2) has
been established. We shall return to a discussion of this dependence in § 8.

7. THE EFFECT OF THE VELOCITY MODE (1, 7) ON THE
DECAY OF POLOIDAL MAGNETIC FIELDS
In this case the equation to be solved is

1 8 (&P, 3*U) |

2Pp=__ """
BsP o NP = 5 S ©3)
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TABLE 2
THE EFFECT OF THE VELOCITY MODE (1, 2) ON THE DECAY OF TOROIDAL MAGNETIC FIELDS

THE LOWEST CHARACTERISTIC ROOT A? FOR VARIOUS VALUES OF THE
AMPLITUDE, 8, OF THE VELOCITY MODE

A2 A2
B 8
2d 3d 4th 2d 3d 4th
Approx. Approx. Approx. Approx. Approx. Approx.
o* 20 19 20 19 20 19 0*.. 20 19 20 19 20 19
-1 19 94 19 95 19 95 + 5 20 34 20 49 20 48
-2 19 60 19 63 19 64 +10 19 46 19 86 19 88
-3 19 13 19 21 19 23 +15 18 1 18 7 18 9
- 4 18 53 18 67 18 73 +20 16 4 17 3 17 7
-5 17 78 18 00 18 12 +25 14 6 15 6 16 4
- 6 16 9 17 2 17 4 +30 . 12 7 13 8 151
-7 15 8 16 2 16 6 +35 . 10 8 11 8 13 7
-8 14 5 14 9 15 8 +40 . 88 98 12 4
-9 131 135 14 8 +45 67 77 11 2
-—10 115 11 8 139 +50 . .. 47 56 99
-1 97 99 130 +55 .. 26 34 87
—12 78 78 12 1 +60 . 05 12 7.6
—13 57 54 11 4
—14 36 28 110
—-15 . . 13 01 109
—16 .. .. 11.4

* The value for 8 = 0 is exact.

1 1 | 1 | | ] 1 )
-35 30 -25 -20 =15 -10 -5 (¢} (o] +20 +40 +60 +80 +100 +I20

B B

Fic. 1.—The effect of the velocity mode (1, 1) on the decay of toroidal magnetic fields. The lowest
characteristic root N2 for various values of the amplitude, B, of the velocity mode. The curves are labeled
by the order of the approximation on which they are derived.
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and the boundary conditions are that the solution of this equation, which is finite at
the origin, and its normal derivative both join continuously (on the unit sphere) a
solution of the equation

AP =0, (94)

which vanishes at infinity. In spherical polar co-ordinates, the equation is
19 ] 109 ]
2P = —- 2 . —_ 2 L 2 P — 2 .
AsP 4+ NP 72P) [ay(l “)U]+r2ar(r U) Iia'u(l p,)P], (95)

r29r

i I { ! ] I 1 1 1 ) ] 12
-15 -10 -5 0 0 +10 +20 +30 +40 +50 +60

B B

Fi6. 2.—The effect of the velocity mode (1, 2) on the decay of toroidal magnetic fields. The lowest
characteristic root A2 for various values of the amplitude, B, of the velocity mode. The curves are labeled
by the order of the approximation on which they are derived

and with the same assumption regarding the velocity field as in § 6 (eq. [78]) we have

AP+ NP =B (32— 1) Ul[%%(rzP)]Jr[%gd;(ﬂUl)]u:—M (1— )P} o0

In solving equation (96), we shall expand P in terms of the basic poloidal functions
P, ;. Thus, letting

C Jotsse (@, n—1 7
P= > 4, ralenmn) oy on

n=0 j=1
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where the 4,, s are constants, we find, as in § 6, that we are led to the following infinite
system of equations:

[eo]

3 (=& V) Au, iTnrsss (a4, nn7)
i=1
_ B n(n—1) , -
—FEU(”,_ ) 2z+1) g — nll(r) ;:1 Ap—2, 15 n—1/2 (Ak, n—37)

ﬂ%(ii,ll 7’) ;gAn“2’kak’n_3\IIn_2’kz
(n+3) (n+4)
(2n+35) (2n+17)

3Js/2 (ai’,ll r)

2n+17

_l_

3 (”"l‘ 3HU(r) E Apra, e nv1/s (0, ni1?)
? k=1

o :
E - Anta, 505, nr1 Wnta, g
=1

(1) (n42)
(2n+1) (an— 5)

W(r) D AnTursz (0k,n17)
k=1

3(n+1) (n+3) 3n(n+2) Torz(ai,17) <&
+§ 3 2 +5 T @nt3) (@Zn¥1) 1% —27%'?3._—,;1 Aue 10,0t ‘I’"'kﬂ
where 3 ;
Y, = [ (n+ 2) Jug1/2 (o, n-1 r) — (n4+1) Jorse (ak, n—17) ] (98")

and U(r) has the same meaning as in équation (88).
Multiplying equation (98) by 7J.+3/2(aj,»—17) and integrating from 0 to 1, we get

% (— a?,n—l + \2) [Jn+3/2 (U-j,n-—1) ] 2A,n, i

= n(n—1) § o g > o
_B[(zn_ D 2n+1) ; An—2,1Q (n— 2, k; n, j) + ; An 1Q (1, k5 n,y ) (99)

(n43) (n44) o
+ (2n+35) (2n—I—WkE=1 Ant2,1Q (n+ 2, k5 0, ])] )

where the expressions for the various matrix elements on the right-hand side can be
written down by comparison with equation (98). Equation (99) provides the required
characteristic determinant for A2

Again, in view of the structure of the characteristic matrix given by equation(99),
it appears that we can (as in § 6) obtain a satisfactory approximation to the lowest
characteristic root by considering only the submatrix (0, 2, 0, 7). In this approximation
the characteristic determinant is given by

1(—al, 0+ M) ana;,-1) 1240 ;=8 40,:0(0, k0, /), o0
k=1
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where (cf. egs. [98] and [99])
Q(0, k0, j) =
2 arp, —1

1
——1‘5—./0‘ J5/2(az',17’) [2-]1/2(%,—17’) _]5/2(%,—17’)]f3/2(aj,—17’)”“‘

2ai,

25

1 d
/(; [3T5/2 (a5, 17) '—2]7/2(‘11',17)]13/2(ak,—lr)]3/2(aj,—lr)7t_

r.

The characteristic determinant provided by equation (100) has been solved numeri-
cally for the cases 7 = 1 and 2. The results are summarized in Tables 3 and 4 (and

TABLE 3
THE EFFECT OF THE VELOCITY MODE (1, 1) ON THE DECAY OF
POLOIDAL MAGNETIC FIELDS

THE LOWEST CHARACTERISTIC ROOT A2 FOR VARIOUS VALUES OF THE
AMPLITUDE, 8, OF THE VELOCITY MODE

A2 A2
8 B
2d 3d 2d 3d
Approx Approx. Approx. Approx.
0* 9 870 9 870 0* 9 870 9 870
-2 10 549 10 552 + 2 9 153 9 154
— 4 11 198 11 212 + 4 8 391 8 387
- 6 11 82 11 86 + 6 7 571 7 548
—10 13 01 13 15 + 8 6 68 6 61
—15 14 4 14 8 +10 570 5 56
—20 158 16 5 +12 4 60 4 38
—-30 18 4 20 0 +14 337 3 05
+15 270 2 34
+16 198 159
+17 122 0 82
+18 0 41 0 02

* The value for 8 = 0 is exact.

illustrated in Figs. 3 and 4), where the different “approximations” again refer to the
number of rows and columns in the characteristic matrix which were included in the
evaluation of the characteristic root.

8. SOME CONCLUSIONS AND SOME QUESTIONS

In considering the results summarized in Tables 1-4 and Figures 1-4, we should, of
course, remember that they have been derived for particular velocity fields. The velocity
modes assumed are the (1, 1) and the (1, 2) modes. These modes, in the usual treatments
of thermal convection (Chandrasekhar 1952; Backus 1955), will be described as belong-
ing to / = 2. And it is known that the first mode to be excited by thermal instability
in a fluid sphere is/ = 1 andj = 1; however, the Rayleigh numbers required to excite the
modes / = 2 are not very much larger: thus, for a sphere with a rigid boundary, the
Rayleigh numbers for the onset of instability are 8.04 X 103 for / = 1 and 1.04 X 10¢
and 1.33 X 104 for the two modes (1, 1) and (1, 2) belonging to / = 2. Therefore, the
velocity modes assumed in §§ 6 and 7 can very well prevail.
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The principal conclusion to be drawn from the results of §§ 6 and 7 is, then, that,
with suitable amplitudes and signs, likely patterns of meridional currents can alter the
times of decay of a magnetic field by quite large factors. It would, indeed, appear that
factors of the order of 20 or more can be achieved by |8| ~ 30. Values of B of this order
correspond to velocities which are very moderate. Thus in the earth’s core (where the
unit of velocity adopted has the value 7.7 X 1075 cm/sec) |8] ~ 30 corresponds to
velocities of the order of 2 X 10~¢ cm/sec; and this is five or six times as small as the
velocities which are believed to be present.

The conclusion, as it pertains to the earth, can be stated somewhat differently as
follows: Velocities that are believed to prevail in the earth’s core correspond to |8|~
200. From the results derived in §§ 6 and 7, it would certainly appear that velocities of

TABLE 4
THE EFFECT OF THE VELOCITY MODE (1, 2) ON THE DECAY OF
POLOIDAL MAGNETIC FIELDS
THE LOWEST CHARACTERISTIC ROOT A2 FOR VARIGUS VALUES OF THE
AMPLITUDE, 8, OF THE VELOCITY MODE

A2 A2
B B
2d 3d 2d 3d
Approx. Approx. Approx. Approx.

0* 9 870 9 870 0* 9 870 9 870
-3 9 584 9 577 4+ 1 9 950 9 949
-5 9 37 9 36 + 2 10 02 10 01
—10 877 876 + 3 10 08 10 06
—15 . 8 12 8 14 + 4 10 13 10 08
-20 ....... 7.45 7.51 + 5 10 16 10 06
=25 . . 675 6.90 + 6 10 17 9 98
—30 . 6 04 6 29 + 7 10 15 9 83
—35 5 32 S5 69 + 8 10 1 935
—40 4 53 510 + 9. 100 90
—45 3 87 4 52 410 . 9.9 8 2
—50 314 395 +11 . 96 70
-55 . 2 40 3 40 +12 . 93 53
—60 1 66 2 85 +13 89 .
—65 . 092 2.30 414 8 4
—-70 M 0 18 177 +15 77
—-75 e 124 +18 47

* The value for 8 = 0 is exact.

this magnitude (if of proper pattern and sign) can prolong the times of decay by factors
of the order of 50 or more. To the question raised in § 2: “Can the time of decay of 14000
years, in the absence of internal motions, be prolonged to 500000 years (say) by velocities
of reasonable magnitudes and patterns?” the answer would seem to be “Yes”; and if
the answer is “Yes,” the subsequent remarks in § 2 relative to the origin of the earth’s
magnetic field should have substance.

While the foregoing represents the principal conclusion of this paper, the analysis has
disclosed aspects of the decay of a magnetic field in the presence of fluid motions which
are unexpected and which raise a number of further questions. We may comment on
some of these.

First, we may notice that, in agreement with what was indicated in § 5, the velocity
mode (1, 1) has opposite effects on the poloidal and the toroidal fields: thus meridional
circulation of a sense which retards the decay of poloidal fields accelerates the decay of
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toroidal fields, and conversely. At first sight, this might appear an unfortunate fact, as
one might have hoped that the principal velocity pattern which retards the decay of the
poloidal field will also retard the decay of the toroidal field; but this does not appear to
be the case. However, it should be remembered in this connection that, if the fluid is in
a state of nonuniform rotation (as the earth’s core most likely is), then, as has been
pointed out in § 3, there will be in the decay of the toroidal field a term induced by the
poloidal field and proportional to it. If the free decay is a strongly damped term in the
prevailing meridional circulation, then it is the induced term which will be decisive.

A second fact which emerges from the results of §§ 6 and 7 is that it is not always true
that a reversal of the sense of the meridional circulation is accompanied by a reversal of

U
3 20

2

L 1 { l 1 |
-30 -25 -20 =15 -0 -5 0 +5 +10 +5 +20

Fic. 3.—The effect of the velocity mode (1, 1) on the decay of poloidal magnetic fields The lowest
characteristic root A2 for various values of the amplitude, g, of the velocity mode. The curves are labeled
by the order of the approximation on which they are derived

| | |
-80 -70 -60 -50 -40 -30 -20 =10 (o] +10 +20

B

Fic. 4 —The effect of the velocity mode (1, 2) on the decay of poloidal magnetic fields The lowest
characteristic root A2 for various values of the amplitude, 8, of the velocity mode. The curves are labeled
by the order of the approximation on which they are derived.
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its effect on the decay of a magnetic field. The (1, 1) velocity mode does act in this way
with respect to both the poloidal and the toroidal fields (see Figs. 1 and 3). But the (1, 2)
mode acts differently. Thus a negative § results in a slowing-down of the decay of both
toroidal and poloidal fields; although a slightly positive 8 does result in a slightly accel-
erated decay, the trend is soon reversed; and for increasing 8 the decay is retarded (as
when 8 is negative) (see Figs. 2 and 4).

The analysis of §§ 6 and 7 discloses, therefore, aspects of the decay problem which
require much detailed investigation. And several related questions also suggest them-
selves. Some of these are the following.

1. Equations (10) and (15) are not self-adjoint. Can one still assume that the solutions
belonging to the different characteristic values provide a complete basis for the expan-
sion of an arbitrary function which satisfies the boundary conditions of the problem? If
not, how is one to express the decay of an arbitrary field?

2. Are the characteristic values of equations (10) and (15) necessarily positive? In
particular, are complex roots excluded?

3. Why is it that sometimes the reversal of the sense of the meridional circulation is
accompanied by a reversal of its effects on the magnetic field and sometimes not?

4. What is the asymptotic behavior of N as 8— 4~ and as — — ©?

5. What is the general nature of the induced term in the decay of a toroidal field?

Answers to the foregoing questions may be expected to throw some light on the inter-
pretation of a number of astrophysical and geophysical phenomena in which magnetic
fields play a role. One example may be given.

Cowling (1946) has pointed out that, for a typical sunspot (R = 10° cm; o = 10~
e.m.u.), the time of decay may be estimated at 300 years. Nevertheless, the magnetic
field of a sunspot grows to its full strength in a matter of days; similarly, the time it
takes for the field to disappear, once it has started to decline, is also a matter of days.
As Cowling has emphasized, these facts raise a number of very difficult questions. But
there is one circumstance which would appear to be relevant to this problem and which
does not seem to have been considered. It is this: The unit of velocity appropriate to the
problem on hand is (¢R)™! = 0.1 cm/sec; and it is known that systematic velocities of
the order of 1 km/sec are present in sunspots. Consequently, 8 ~ 10¢, and one can ask:
What does 8 of this magnitude imply for the decay and growth of magnetic fields? And
can it be that a suitable pattern of velocity with 8 ~ 10° can alter the decay (and grow-
ing) time of magnetic fields by a factor of the order of 10%-10°? Answers to questions 3
and 4 are clearly very relevant to this problem.

It is possible that, to answer with some degree of completeness the various questions
that have been raised (and others that will naturally occur), one may have to look for
a simplified model to which exact analytical methods can be applied to a greater extent
than appears possible with the ones considered in this paper.

The subject is being pursued along several directions.

In concluding this paper, it is again & pleasure to record my indebtedness to Miss
Donna Elbert, who carried out the extensive numerical work which underlies the calcu-
lations included in this paper. My thanks are also due to Miss Siciy Pao for carefully
checking the manuscript.
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