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Implementing quantum-logic operations, pseudopure states, and the Deutsch-Jozsa algorithm
using noncommuting selective pulses in NMR
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We demonstrate experimentally the usefulness of selective pulses in NMR to perform quantum computation.
Three different techniques based on selective pulse excitations have been proposed to prepare a spin system in
a pseudopure state. We describe the design of ‘‘portmanteau’’ gates using the selective manipulation of level
populations. A selective pulse implementation of the Deutsch-Jozsa algorithm for two and three-qubit quantum
computers is demonstrated.

PACS number~s!: 03.67.Lx, 76.60.2k
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I. INTRODUCTION

The idea of exploiting the intrinsically quantum
mechanical nature of physical systems to perform comp
tions has generated a lot of excitement recently@1,2#. Logical
operations in quantum computation are implemented
quantum bits~qubits!, where a qubit can be any quantu
two-level system. The two eigenstates are mapped onto l
cal 0 and 1. While all classical computation can be p
formed using the above mapping, the fact that a qubit
exist in a general coherent superposition of logical state
and 1 leads to new possibilities for computation. The re
ization that computation can be performed reversibly@3,4#
paved the way for the quantum-mechanical implementa
of logic gates through unitary transformations@5,6#. The
power of quantum computing lies in the fact that a sin
input state of a quantum computer can be a coherent su
position of all possible classical inputs. Consequently, al
rithms that are intrinsically quantum in nature can be
signed to solve problems hitherto deemed intractable
classical computers@7–9#. A major hurdle in achieving
quantum computing experimentally is that of preserv
quantum coherence while the computation is being p
formed, and the search for such ideal quantum syst
yielded single charged ions confined in an ion trap@10# and
nuclear spins in a liquid as possible choices.

It has been demonstrated that assemblies of nuclear s
in a liquid, which are largely isolated from their environme
and have long relaxation times~so that coherence is retaine
for a while!, can be used to build quantum information pr
cessors@1#. A system ofN spins can exist in entangled qua
tum superposition states and can be thought of as anN-bit
quantum computer. However, quantum computing requ
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pure states as inputs, whereas nuclear spins at thermal
librium are in a statistical mixture of pure states. It was de
onstrated recently that it is possible to perform quant
computing with mixed-state ensembles rather than on an
lated system in a pure state@11#. This problem is circum-
vented by creating within the overall density matrix of th
system, a subensemble that behaves like a pure state. T
niques to prepare such ‘‘pseudopure’’ states have been
posed by different groups@11–13#. Previous workers in the
field employed various NMR methods like nonselecti
pulses, rf gradients, coherence transfer viaJ coupling, and
simultaneous multisite excitation to create pseudopure sta
construct universal logic gates, and implement quantum
gorithms for two- and three-qubit systems@14–21#.

In this paper, we explore the utility of transition- an
spin-selective pulses, and exploit the noncommuting na
of operations on connected transitions to prepare a spin
tem in a pseudopure state, execute different logical op
tions simultaneously, and implement the Deutsch-Jo
quantum algorithm on two- and three-qubit systems. TheT1
relaxation times in the molecules used, is of the order o
few seconds~3.4–4.6 sec!, whereasT2 relaxation occurs
within an interval of around 1 sec. Selective excitation h
been achieved using low-power, long-duration pulses o
rectangular shape. The length of these pulses is tailore
achieve sufficient selectivity in the frequency domain wit
out perturbing the nearest line, and hence depends on
magnitude of the smallestJ coupling present. The duratio
of the pulses applied varies from 100 to 263 ms~for J cou-
plings of 9.55–3.8 Hz!. For small computations, such as th
ones performed here, drastic decoherence or dephasing
not occur during the duration of these selective pulses. H
ever, the deleterious effects of such selective pulses mus
considered and compensated for, whenever larger comp
tions are attempted.

II. CREATION OF PSEUDOPURE STATES

The logical labeling technique to create pseudopure st
is broadly categorized by the fact that unitary transform
©2000 The American Physical Society06-1



u
o

u-
he
d

an
in
le

er
e

t

ub
t

le
i

ip
b

lear
wn
l,

ons

rn
the
s of

of
lear
as
ng

d
e ma-
n-

on
dis-
a-

tw

ear

la-

een
er

KAVITA DORAI, ARVIND, AND ANIL KUMAR PHYSICAL REVIEW A 61 042306
tions are used to redistribute the populations of states, s
that an effective pure state is obtained in the submanifold
qubits ~spins! to be used for computation, and ancillary q
bits are used as ‘‘labels.’’ While the concept underlying t
logical labeling method of pseudopure state creation was
lineated by Chuang and co-workers@13,16#, there have been
very few experimental implementations of such an eleg
technique@21#. We have designed a few pulse schemes us
transition-selective pulses to create such logically labe
pseudopure states. Consider a three-spin-1/2 system~AMX!,
with energy levels labeled as in Fig. 1. The selective inv
sion of two unconnected single-quantum transitions of thA
spin (u↑↑↓&→u↓↑↓& and u↑↓↑&→u↓↓↑&) would lead to the
creation of a logically labeled pseudopure state, withA being
the ‘‘label qubit’’ and M and X being the ‘‘work qubits’’
available for computation. The first four eigenstates~labeled
by the first spin being in theu↑& state! now form a manifold
that corresponds to a two-qubit pseudopure state, while
last four~labeled by the first spin being in theu↓& state! form
a separate manifold that corresponds to another two-q
pseudopure state. The creation of a pseudopure state by
method leads to relative population differences of

↑↑↑ ↑↑↓ ↑↓↑ ↑↓↓ ↓↑↑ ↓↑↓ ↓↓↑ ↓↓↓
3/2 21/2 21/2 21/2 1/2 1/2 1/2 23/2.

~2.1!

Homonuclear three-spin case: The experimental creation
of a logically labeled pseudopure state in the homonuc
three-spin system of 2,3 dibromopropionic acid is shown
Fig. 2. The pseudopure state has been distilled by man
lating unconnected single quantum transitions of the la
qubit A, as detailed in Eq.~2.1!. The transition-selectivep
pulses were applied on the two central~nearly overlapping!
transitions of theA spin.

FIG. 1. The creation of a pseudopure state in anAMX three-spin
system using logical labeling.~a! The population distribution of the
thermal equilibrium state.~b! The population distribution of a
pseudopure state, created by inverting the populations of the
single-quantumA transitions shown in~a! by long arrows.
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Heteronuclear three-spin case: The experimental creation
of a logically labeled pseudopure state in the heteronuc
three spin system of 4-fluoro,7-nitro benzofurazan is sho
in Fig. 3. Two selectivep pulses were applied on the centra
nearly overlapping unconnected single-quantum transiti
(u↑↑↓&→u↓↑↓& and u↑↓↑&→u↓↓↑&) of the A spin ~the pro-
ton in this case!. The A spin is the ‘‘label’’ qubit and the
other two spins~the third spin being fluorine in this case! are
the ‘‘work’’ qubits. It is to be noted that the spectral patte
of the X spin in the two pseudopure states created in
homonuclear and heteronuclear systems are mirror image
each other, i.e., intensities of~0,2,2,0! are obtained for theX
spin in Fig. 2~b!, while the X spin multiplet pattern is
~2,0,0,2! in Fig. 3. This difference reflects the relative sign
the coupling constants in these systems. Heteronuc
19F-1H spin systems are useful for quantum computing,
they have the twin advantages of good sensitivity and lo
relaxation times.

Other methods to implement a logically labele
pseudopure state can be designed, based on the selectiv
nipulation of the populations of multiple quanta. For i
stance, the inversion of the double quantumu↓↑↑&→u↓↓↓&,
followed by the inversion of the single quantum transiti
u↑↓↓&→u↓↓↓&, leads to another pseudopure state. The re
tribution of equilibrium populations leads to relative popul
tion differences for the pseudopure state

↑↑↑ ↑↑↓ ↑↓↑ ↑↓↓ ↓↑↑ ↓↑↓ ↓↓↑ ↓↓↓
3/2 1/2 1/2 1/2 23/2 21/2 21/2 21/2.

~2.2!

o

FIG. 2. A logically labeled pseudopure state in the homonucl
three-spin system~AMX! of 2,3 dibromopropionic acid.~a! The
equilibrium proton spectrum is shown, with the three protons
beledA, M , andX resonating atdA53.91 ppm,dM53.69 ppm,
anddX54.48 ppm, respectively.~b! The selective inversion of the
two ~nearly overlapping! central transitions of theA spin leads to
the creation of a logically labeled pseudopure state, which has b
read by a small flip angle (10°) detection pulse. Long, low-pow
rectangular pulses have been used for selective excitation.
6-2
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IMPLEMENTING QUANTUM-LOGIC OPERATIONS, . . . PHYSICAL REVIEW A 61 042306
Experimentally, the double quantum can be inverted b
cascade ofp pulses on progressively connected single qu
tum transitions@22#. The inversion of the single quantum
transition u↓↑↑&→u↓↑↓&, followed by the inversion of the
zero quantum u↑↓↓&→u↓↑↓&, leads to yet anothe
pseudopure state. The redistribution of equilibrium popu
tions leads to the relative population differences

↑↑↑ ↑↑↓ ↑↓↑ ↑↓↓ ↓↑↑ ↓↑↓ ↓↓↑ ↓↓↓
3/2 1/2 1/2 1/2 21/2 21/2 21/2 23/2.

~2.3!

Experimentally, the zero quantum can be inverted by a c
cade ofp pulses on two regressively connected single qu
tum transitions by the cascadep1,2p1,3p1,2~spectra not
shown! @22#.

The state of the system after the creation of the logica
labeled pseudopure state has been read out by a sma
angle detection pulse in each case. While it is usual in qu
tum computing to use pulses of flip angle 90° for the read
operation, this will not provide a useful output for logic
labeling experiments. To illustrate this point, consider a lo
cally labeled pseudopure state for the three-spinAMX sys-

FIG. 3. The creation of a logically labeled pseudopure state
4-fluoro,7-nitro benzofurazan~AMX system!. Transition-selectivep
pulses have been applied on the two overlapping central transi
of the ‘‘label’’ qubit ~proton A). The asterisk labels the solven
peak. The normal proton and fluorine spectra are shown in~a! and
~c! with the spins resonating atdA57.28 ppm, dM58.57 ppm,
and dX52110.35 ppm, respectively. The proton and fluori
spectra corresponding to the pseudopure state are shown in~b! and
~d!, respectively, with the ‘‘work’’ qubitsM andX being in a logi-
cally labeled pseudopure state. The state of the system has
monitored by a small flip angle detection pulse.
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tem, with A being the label qubit, andM and X the work
qubits @Eq. ~2.1!#. The traceless, deviation density matr
corresponding to this pseudopure state can be describe
terms of product operators~which are just products of spin
angular momentum operators!

sp-pure5Mz1Xz14AzMzXz . ~2.4!

A detection pulse of flip anglea leads to the NMR observ
able terms

~Mx1Xx!sina1~4AxMzXz14AzMxXz14AzMzXx!

3cos2a sina. ~2.5!

Hence a 90° detection pulse would not be able to read ou
the product operators present in the density matrix@Eq.
~2.4!#, and a small-angle read pulse is required.

III. QUANTUM LOGIC GATES

We now proceed toward the implementation of quant
logic gates using NMR@11,18#. The two-qubit quantumXOR

~or controlled-NOT! gate has been demonstrated to be fun
mental for quantum computation@5# and has been imple
mented in NMR by a selective@p#x pulse on a single tran
sition @11#. It has been proved that the reversible quant
XOR gate, supplemented by a set of general one-qubit qu
tum gates, is sufficient to perform any arbitrary quantu
computation@5#. Hence, with the achievement of the expe
mental implementation of theXOR and one-qubit gates in
NMR, it does not seem necessary to look for the design
construction of other gates. Nevertheless, it is importan
terms of complexity in large circuits and ease of experim
tal implementation, to look toward the design of efficie
logic networks. In this direction, gates that achieve t
implementation of two or more logic operations simult
neously would be useful in reducing computational time
circuits that require a large number of logical operations. W
detail the design and experimental implementation of s
gates here; borrowing from Lewis Carroll, we call su
‘‘many-in-one’’ gates ‘‘Portmanteau’’ gates@23#.

The logicalSWAP operation: Consider a two-spin system

FIG. 4. The logicalSWAP operation implemented on the two
spin system of Coumarin. The result of the application of a@p#x

pulse on one of theX transitions, followed by a@p#x pulse on the
regressively connectedA transition is shown, which corresponds
a logical SWAP on the nonequilibrium state of the spin system.
small angle (10°) read pulse has been used. The one-dimens
spectrum and structure of Coumarin are shown in Fig. 5.
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KAVITA DORAI, ARVIND, AND ANIL KUMAR PHYSICAL REVIEW A 61 042306
~AX! with each spin being a qubit, the spinA being the first
qubit and the spinX the second qubit. The eigenstates of th
system can be represented byue1 ,e2&, wheree1 ande2 are 0
or 1. The logicalSWAP operation completely exchanges th
states of a pair of qubits, fromue1 ,e2& to ue2 ,e1&, the unitary
transformation corresponding to such an operation being

USWAP5F 1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

G . ~3.1!

This gate might be useful during the course of a computa
when qubits need to be permuted@18#. In spin systems where
some scalarJ couplings are ill resolved, the logicalSWAP

could be used to compensate for the missing couplings@20#.
Madi et al. @20# implemented theSWAPoperation using an

INEPT-type sequence, with nonselective rf pulses andJ evo-
lution. It is interesting to note that the logicalSWAPoperation
can be achieved by selectively interchanging the populat
of the zero quantum levels. Since these levels are not c
nected by single-quantum transitions, the population
change will have to be achieved indirectly.

The inversion of the zero quantum~SWAP! requires a cas-
cade of three selectivep pulses on regressively connecte
transitions, for example,@p#x

A1@p#x
X1@p#x

A1 @22#. Since this
would lead to the same spectrum as the equilibrium sp
trum, a nonequilibrium state has been first created by pre
ing the cascade with a selective@p#x

A1 pulse, yielding the

cascade @p#x
A1@p#x

X1@p#x
A1@p#x

A15@p#x
A1@p#x

X1 . This
amounts to the execution of a logicalSWAP operation on a
nonequilibrium state. The experimental implementation
this operation is shown in Fig. 4 on the two spin system
Coumarin.

We now explore the implementation of gates that rea
various combinations of theSWAP, XOR ~XNOR!, and NOT

operations. The action and matrix representations of theXOR,
XNOR, andNOT gates~all with their outputs on the first qubit!
are given by

ue1 ,e2& →
XOR

ue1% e2 ,e2&, UXOR
1 5F 1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

G ,

ue1 ,e2& →
XNOR

ue1% e2,e2&, UXNOR
1 5F 0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 1

G ,

~3.2!

ue1 ,e2& →
NOT

u ē1 ,e2&, UNOT
1 5F 0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

G .
04230
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The superscript 1 indicates that the output of the gate
obtained on the first qubit. The matricesUXOR

2 , etc., corre-
sponding to the output on the second qubit, can be simila
constructed.

Logical SWAP1XOR(XNOR): The execution of a logica
SWAP operation followed by anXOR gate~with its output on
the first qubit!, can be defined through its action onue1 ,e2&,
and leads to the final stateue1% e2 ,e1&~or to ue1% e2,e1& for
a SWAP followed by anXNOR gate with its output on the firs
qubit!, with their explicit matrix representations being

USWAP1XOR5UXOR
1 USWAP5F 1 0 0 0

0 0 0 1

0 1 0 0

0 0 1 0

G ,

~3.3!

USWAP1XNOR5UXNOR
1 USWAP5F 0 1 0 0

0 0 1 0

1 0 0 0

0 0 0 1

G .

An implementation of these operations requires the appl
tion of selective@p#x pulses consecutively on two regre
sively connected transitions, and the resulting spectrum
two bits is identical to Fig. 4.

XOR(XNOR)1 logical SWAP1NOT: The implementation
of an XOR gate~with the output on the first qubit!, followed
by a SWAP operation and then aNOT gate on the first qubit,
corresponding to a final state ofu ē2 ,e1% e2&, can be experi-
mentally achieved by transition-selective@p#x pulses applied
consecutively on two progressively connected transitio
Reversing the order of application of the pulses leads to
final state ue1% e2,ē1& which corresponds to anXNOR

1 logical SWAP1NOT gate, with the output on the secon
qubit.

These gates correspond to the unitary matrices given

UXOR1SWAP1NOT5UNOT
1 USWAPUXOR

1 5F 0 0 0 1

0 1 0 0

1 0 0 0

0 0 1 0

G ,

~3.4!

UXNOR1SWAP1NOT5UNOT
2 USWAPUXNOR

2 5F 0 0 1 0

0 1 0 0

0 0 0 1

1 0 0 0

G .

The experimental implementation of such gates is sho
in Figs. 5~b! and 5~c!. It is interesting to note that thes
operations do not commute, so the order in which the pu
are applied is important and its reversal leads to differ
logical operations.

NOT1 logical SWAP: The NOT gate followed by a logical
SWAP operation on two qubits~or vice versa, since thes
6-4
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IMPLEMENTING QUANTUM-LOGIC OPERATIONS, . . . PHYSICAL REVIEW A 61 042306
operations commute! leads tou ē2 ,ē1& when applied to the
state ue1 ,e2&. This action suffices to determine the unita
matrix for the above operation, given by

UNOT1SWAP5USWAPUNOT5UNOTUSWAP5F 0 0 0 1

0 1 0 0

0 0 1 0

1 0 0 0

G .

~3.5!

The experimental implementation has been achieved
selectively inverting the populations of the double-quant
levels. A cascade of transition-selective@p#x pulses has been
applied on two progressively connected transitions@Fig.
5~d!#.

The implementation of various portmanteau gates o
thermal initial state is shown in Fig. 5 for the two-spin sy
tem of Coumarin. The same pulse schemes are expecte
implement the above logic operations on other initial sta
~for instance, a pseudopure or a coherent superpositio
states! as well. As an illustration, consider the portmante

FIG. 5. The experimental implementation of various portma
teau gates.~a! Reference spectrum of Coumarin at thermal equil
rium. ~b! The implementation of anXOR1SWAP1NOT ~by the pulse
cascade@p#x

A1 followed by @p#x
X2 , whereA1 and X2 refer to pro-

gressively connected transitions of spinsA andX, respectively!. ~c!

The implementation of anXNOR1SWAP1NOT (@p#x
X2 followed by

@p#x
A1). ~d! The implementation of a NOT1SWAP

(@p#x
A1@p#x

X2@p#x
A1). The state of the spin system is read by a sm

(10°) angle pulse in each case.
04230
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gateXOR1SWAP1NOT. The unitary matrix corresponding t
it @Eqn. ~3.4!# can be decomposed into two matrices

UXOR1SWAP1NOT5Upx

X2Upx

A1,

Upx

A15F 1 0 0 0

0 1 0 0

0 0 0 i

0 0 i 0

G , Upx

X25F 0 0 i 0

0 1 0 0

i 0 0 0

0 0 0 1

G .

~3.6!

The matricesUpx

A1 and Upx

X2 correspond to selective@p#x

pulses on theA1 and X2 transitions, respectively. A low-
power, long duration rectangular pulse is applied to achi
the desired selectivity. These transition-selective pulses
be expanded in terms of single-transition operators~the ex-
pansion is independent of the state of the spin sys
@22,24#!. This realization in terms of single transition oper
tors is valid when the power of the rf pulse is low compar
to the theJ coupling and the chemical shift difference b
tween the spins (w1!2pJ!dAX). One is thus able to realize
the unitary transformations required to implement the des
logical operations, without prior knowledge of the state
the system. However as noted recently@25#, a more complete
Hamiltonian description might be required to describe e
lution under selective pulses, in order to fully establish t
generality of the above schemes.

It is to be noted that we have used selective pulses po
ized along thex direction. The phases of the pulses are i
portant, and have been experimentally ensured by appro
ate phase cycling schemes.

IV. IMPLEMENTATION OF THE DEUTSCH-JOZSA
QUANTUM ALGORITHM

Finally, we experimentally implement the Deutsch-Joz
~DJ! algorithm using selective pulses. The DJ algorithm d
termines whether an unknown functionf (x) is constant or
balanced@8#. In the simplest version,f (x) is a mapping from
a single bit to a single bit and the function is constant iff (x)
is independent ofx and it is balanced iff (x) is zero for one
value ofx and unity for the other value. The generalization
N bits is conceptually simple, andf (x) in this case is con-
stant if it is independent ofx and balanced if it is zero for
half the values ofx and unity for the other half. A classica
computer proceeding deterministically would require up
2N2111 function calls to check iff (x) is constant or bal-
anced; even if half the inputs have been evaluated and
outputs have been found to be 0~or 1! one cannot conclude
that the function is constant. The quantum version of
algorithm determines if the function is balanced or const
using only asingle function call. For the one-bit case this
achieved by evaluating the value off (0)% f (1) ~where %

denotes addition modulo 2!. The binary functionf is encoded
in a unitary transformation by the propagatorU f by includ-
ing an extra input qubit such that

-
-

ll
6-5
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ux&uy&→
U f

ux&uy% f ~x!&.

The four possible functions for the single-bit DJ algorith
are categorized as

Const. Bal.
x f1 f 2 f 3 f 4

0 0 1 0 1
1 0 1 1 0

The unitary transformations corresponding to the fo
possible propagatorsU f can be easily constructed:

U15F 1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

G U25F 0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

G ,

~4.1!

U35F 1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

G U45F 0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

G .

FIG. 6. A selective pulse implementation of the DJ quant
algorithm on a two-qubit system 5-nitro furaldehyde, at room te
perature on a 400-MHz spectrometer. The results after applying
unitary transformationsU1 ,U2 ,U3, andU4 on a coherent superpo
sition are shown in traces~1!–~4!, respectively.
04230
r

The algorithm requires one input spin and one work sp
Using the propagatorU f and appropriate input states, on
can proceed with the implementation of the algorithm. P
vious workers in the field@14,17#, used a combination o
spin-selective (p/2) pulses and evolution under the sca
couplingJ, to encode the DJ algorithm on a two-qubit qua
tum computer.

We have implemented the DJ algorithm using spin- a
transition-selectivep pulses. The experiment begins wit
both qubits in a superposition of states, achieved by a n
selective@p/2#y pulse on both spins. After application of th
propagatorsUi , the first qubit~the ‘‘control’’ qubit! remains
in the superposition state while the desired result@ f (0)
% f (1)# is encoded as the appearance or disappearance o
lines of the target qubit. TheU1 transformation correspond
to the unity operation or ‘‘do nothing,’’ while theU2 trans-
form is achieved by a spin-selective@p#x pulse on the con-
trol qubit. TheU3 andU4 transformations are implemente
by selectivep pulses on theu↓↑&→u↓↓& and the u↑↑&
→u↑↓& transitions, respectively.

The implementation of this algorithm does not requ
pure initial states, as similar results can be read out from
spectrum if one starts with thermal initial states instead. I

-
he

FIG. 7. Selective pulse implementation of the DJ algorithm
the three-qubit system of 2,3 dibromopropionic acid. The two c
stant functionsf 1 and f 2 are shown in Eqs.~2.1! and~2.2!, respec-
tively, while the unitary transforms corresponding to the balanc
functions f 3–f 8 are implemented in traces~3!–~8!, respectively.
6-6
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IMPLEMENTING QUANTUM-LOGIC OPERATIONS, . . . PHYSICAL REVIEW A 61 042306
single measurement, one can distinguish between con
and balanced functions on the basis of the disappearanc
the lines of the target qubit in the spectrum. These pre
tions are borne out by the experimental spectra in Fig. 6.
phase of the transition-selective pulse~to implementU3 and
U4) has been stepped through (x,2x,y,2y) to suppress
phase distortions, and leads to the total suppression of
target qubit lines and the retention of only one line of t
control qubit.

The algorithm to distinguish between the two categor
~constant or balanced! of two-bit binary functions is imple-
mented on a three-qubit NMR computer, by evaluat

ux&uy&uz&→
U f

ux&uy&uz% f (x,y)&. The eight possible~two con-
stant and six balanced! two-bit binary functions are catego
rized as

Const. Bal.
x y f1 f 2 f 3 f 4 f 5 f 6 f 7 f 8

0 0 0 1 0 1 1 0 1 0
0 1 0 1 0 1 0 1 0 1
1 0 0 1 1 0 1 0 0 1
1 1 0 1 1 0 0 1 1 0

Previous researchers used shaped pulses generated
rf wave form generator to implement the two-bit DJ alg
rithm using three qubits; the pulse wave forms were tailo
to selectively excite two or more frequencies simultaneou
@19#.

Here we describe a selective pulse implementation of
DJ algorithm using simple rectangular pulses~Fig. 7!. These
low-power, long-duration transition-selective pulses are
plied consecutively, and do not require any special hardw
for their application. The unitary transforms have be
ci
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implemented on a coherent superposition of all three qub
achieved by a nonselectivep/2 pulse on a thermal initia
state. The two constant functionsf 1 and f 2 correspond to the
unity operation and a spin-selective@p#x pulse on the mul-
tiplet of the control qubit, respectively. The unitary transfo
mations encoding the six balanced functionsf 3–f 8 are
implemented by selective pulses on the transitions of
control qubit, taken two at a time, i.e., the pulses can
described by@p,p,0,0#, @p,0,p,0#, @p,0,0,p#, @0,p,p,0#,
@0,p,0,p#, and @0,0,p,p# on the four transitions, where 0
denotes no pulse on that particular transition. The phase
the transition selective pulses have been stepped thro
(x,2x,y,2y) as in the two-qubit case, and a similar log
prevails in explaining the spectral pattern obtained. Unl
the previous implementation of the three-qubit DJ algorith
@19#, the phase cycling here achieves a complete suppres
of the multiplets of both the target spins when the function
balanced (f 3–f 8).

It has been demonstrated that selective pulse techniqu
NMR are a powerful tool to build quantum information pro
cessors. The distilling of a pseudopure state from a ther
state, the simultaneous implementation of different logi
operations to save computational time, and a two- and th
qubit implementation of the DJ quantum algorithm has be
experimentally achieved using such techniques.
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