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Abstract. Cosmological scenarios with massive unstable neutrinos are
discussed. Restrictions on the mass and the lifetime of the unstable neutrino
are derived from (a) age and mass density of the universe and (b) the growth of
primordial fluctuations. It will not be possible to accommodate unstable
neutrinos with masses above ~ 1 ke V in standard cosmology unless they
have exceedingly small lifetime: τ < 5 × 108 s.
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1. Introduction 
 
It is by now quite well established that there exist three species of neutrinos. The 
cosmological implication of massive-ν (mass ~ 10 eV) have been analyzed in the past 
(Gerhstein & Zel'dovich 1966; Cowsik & McClelland 1973; Doroshkevich et al. 1981; 
Bond, Efstathiou & Silk 1980; Sato & Takahara 1981). Experimental evidence 
indicating a small but nonzero mass for the lightest of the neutrino species, ve 
(Lubimov et al, 1980) has generated further interest in the neutrino-dominated 
universe scenarios.Electron neutrino, if it is massive, can play two crucial roles: (i) it can 
provide the 'missing mass' in galaxies and clusters of galaxies and (ii) it may help the 
formation of galaxies and other structures. It is not yet clear as to whether massive  
neutrinos really achieve either (i) or (ii) in a consistent fashion (For difficulties with 'hot' 
dark matter scenario see e.g. White, Frank & Davies 1983; Hut & White 1984).

If the electron neutrino is massive, then there is every likelihood that the other two 
species are massive as well. However, a very massive neutrino cannot be stable over 
cosmological timescales. A stable neutrino with mass of a few ke V would provide the 
universe with density a few hundred times the closure density—which is clearly ruled 
out by observational bounds on decelaration parameter (see e.g. Sandage 1972). So 
massive heavy neutrino must be unstable. We discuss in this paper the bounds that can 
be imposed on the mass and lifetime of such an unstable heavy neutrino. (For previous 
and related work on this subject, see Davis et al. 1981; Turner, Steigman & Krauss 1984; 
Gelmini, Schramm & Vallee 1984; Olive, Seckel & Vishniac 1985; Fukugita & Yanagida 
1984; Dicus,Kolb & Teplitz 1978; Turner 1985.)

It must be emphasized that the present paper is not an attempt at producing a viable 
cosmological scenario using unstable neutrinos. We are only concerned with the 
constraints that cosmology imposes on the parameters of unstable heavy neutrino. This 
approach is motivated by three different considerations. First one was a recent report 
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(Simpson 1985) claiming evidence for a heavy neutrino of about 17keV mass.So far this 
result has not been confirmed by other groups. The cosmological implications of this 17 
keV neutrino (assuming it to be unstable) was discussed by the authors in a previous 
paper (Padmanabhan & Vasanthi 1985). It was shown that such a heavy neutrino 
makes the universe matter dominated (by the decay products of the heavy neutrino) at a 
redshift z    310. Virtually no growth of perturbations occurs in the radiation  
dominated era. Further, the decay of the heavy neutrino is likely to disrupt and 
smoothen out some of the past growth. We thus found that a 17 keV neutrino would be 
a 'burden' to cosmology.In this paper we have extended the analysis and derived bounds 
on the parameters of the heavy neutrino from considerations of galaxy formation.

The second motivation is related to the interactions suggested for neutrinos. It is 
known that the simplest weak interaction models give too large a lifetime for massive 
heavy neutrinos to be cosmologically acceptable. The bounds which we derive on the 
lifetime and mass of the unstable heavy neutrino may help to distinguish cosmologi- 
cally viable particle physics models from others.

Thirdly, the study of the parameters of muon and tau neutrino can have an indirect 
bearing on the lightest stable neutrino. At present, models of galaxy formation 
distinguish between cold and hot dark matter. Cold dark matter seems to be a current 
favourite even though the evidence for such a choice is far from decisive. Any clearcut 
experimental evidence for the mass of any of the neutrinos will upset these scenarios. It 
seems therefore reasonable to analyze the cosmological implications of heavy neutrino  
to the same extent done for the light stable neutrino in the past.

Our basic results are the following: (i) It is extremely difficult to incorporate heavy 
neutrinos of masses greater than about 1 ke V. In order to do that (without violating 
cosmological constraints), the lifetime of the neutrino has to be kept as low as about 
5 × 108 s. This lifetime is much shorter than the value usually obtained (~ 5 × 1013 s) 
in flavour-changing decays, (ii) For a given mass mH (< 1 keV) of the heavy neutrino, 
the lifetime is constrained by τ < 6.13 × 1015 (mH / l keV)-2  h4 s, where
H0 = 100 h0 km s-1 Mpc-1 . (iii) For a very narrow range of parameters, it is possible 
to have a radiation-dominated universe at the present epoch.

The plan of the paper is as follows: In Section 2 we discuss the basic scenario and 
work out the kinematical constraints. In Section 3 we look at the growth of fluctuations 
in the above scenario and consider various situations in which perturbations can grow 
effectively. The conclusions are discussed in Section 4.
 
 

2. Basic scenario and kinematical constraints 
 

2.1 Basic Scenario  
 
In a standard big-bang model, a neutrino with mass ranging from a few tens of eV up to  
a few MeV decouples at t = tDC when the temperature of the universe was about 
3.4 × 1010 Κ (the decoupling temperature of the universe is fairly insensitive to the 
mass; see for e.g. Dicus, Kolb & Teplitz 1978). As the universe cools, the heavy 
neutrino—vH—becomes non-relativistic when the temperature is  

 
TNR = mHc2/k = 1.16 × 107K(mH / l keV) (1)

 
where the mass of the heavy neutrino is scaled to 1 keV for convenience. Henceforth we
 

≲ 
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shall not display the scaling explicitly with the understanding that the heavy neutrino 
mH is in units of keV. A little later, at t = t eq, vH starts dominating the energy density of 
the universe. The temperature Teq and time teq (since big bang) for this epoch is given 
 by,  

Teq = 1.43 × 106 mH K,  (2) 
teq = 9.39 × l07 mH

–2s.                                                   (3)
This is the epoch at which the energy density of the heavy neutrino is equal to that of the 
rest of the (relativistic) matter. As we shall see below the decay products of vH are most 
likely to be highly relativistic. If the lifetime of vH is extremely small (τ = t eq )most of  
the vH will decay before it becomes non-relativistic and starts dominating. If this is the 
case, the decay products of νH as well as rest of the matter will merely continue to evolve 
as a relativistic soup. No essential new feature due to the unstable heavy neutrino will 
remain. The condition for such (an uninteresting) scenario is t   teq, or in other words 
(using Equation 3),  

(4) 
 

This also implies an extremely short lifetime for the massive neutrino and cannot be 
incorporated in Standard particle physics models. Nevertheless, if (4) is satisfied, no 
further constraints can be imposed on the unstable neutrino. We shall now proceed 
assuming (4) is violated. That is, we assume

(5)  
Our constraints in the rest of the paper are for this particular case. In conditions (4) and 
(5) we have scaled the lifetime τ in units of 1010 s. Hereafter we shall not display the 
scaling in τ explicitly. It will be assumed that τ is in units of 1010 s unless otherwise 
stated. For timescales t > τ the decay of vH becomes important. We can take the decay 
to be virtually complete at a time t = tD when p(vH) < ρ (others). The energy density 
due to vH at t is given by
 

(6) 
 
where n H(teq) is the number density of vH at teq and S is the expansion factor. The
energy density of other forms at this time will be
 

(7)
 
where ny (t eq)is the number density of photons at teq.  Comparing (6) and (7) it is easy to 
estimate tD to be  

(8)
 
In other words, vH dominates the dynamics up to t < tD    10.34τ.

How does the universe behave for t > tD? The decay cannot be radiative because this 
channel (vH→vL +photons) is severely constrained by the photon emissivity of the
galaxy (Dicus, Kolb & Teplitz 1977; Cowsik 1977; Gunn et al. 1978; Silk & Stebbins, 
1983). Neither can the decay be due to Standard weak interactions because the lifetime 
for such decays would be exceedingly large (see e.g. de Rujula and Glashow 1980). A 
remaining possibility is the decay of the heavy neutrino into a light neutrino, vL and 
another light particle, e.g. to a Goldstone boson, that couples weakly to a flavour-
changing neutrino current (see Wilczek 1982; Gelmini, Schramm & Valle 1984;  
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Fukugita & Yanagida 1984). Note that the heavy neutrino cannot decay into any 
cosmologically stable particle of masses greater than tens of electron volts. In virtually 
all the particle physics models which have been proposed, the companion particle of vL 
is extremely light (< 1 eV) (see references cited above). In that case the energy mH of the 
heavy neutrino is shared equally between the decay products. For the sake of 
definiteness we shall assume the light neutrino (vL) produced by the vH decay to carry an 
energy   mH. Such a light neutrino would be extremely relativistic (since   mH   mL) at 
the time of decay and the universe again becomes radiation dominated.

When the universe expands further by a factor f = (mH/2mL), these vL will become non-
relativistic. The radiation temperature at the time of decay, Τ(τ) is given by (note 
that for t eq < t< τ, the universe is matter dominated with S  ~ t2/3)  
 

(9)  
Similarly, the radiation temperature at the time (tnr) when the decay product vL 
becomes non-relativistic is given by
 

(10)
 

 
The scenario depends on whether Tnr > T0 or Tnr <T0 where T0 is the present day 

cosmic microwave background radiation (CMBR) temperature. If T nr < T0 we are still 
in a radiation dominated era, dominated by the relativistic decay products of vH. On the 
other hand, if T nr >T0, the decay products would have become non-relativistic by now. 
In this case we are in the familiar matter dominated universe. We shall consider these 
two cases separately.  
 
Case (a): Tnr >T0, matter domination today:
We shall first compute the age of the universe (tu) in the scenario. In the radiation phase, 
τ < t < tnr S ~ t l/2 so that 
 

(11) 
 
while for t nr < t < t u, S~ t2/3, giving  

(12) 
Together,  
 
 
 

(13)

Using Equations (9) and (10) in (13), we get 
(14)

 
For scaling calculations it is proper to take the CMBR temperature to be 1.9 K. The 
enhancement of CMBR temperature to the observed 2.7 Κ is due to the e+ e – 

annihilations. It is not necessary to take into account this completely extraneous effect.
If the minimum age of globular clusters is taken to be 15 billion years, then Equation 

(14) underestimates the age for mL greater than 8 eV. Unfortunately, such a marginal 
contradiction is not of much value. Note that tu was estimated in Equation (13) by 
scaling with respect to teq and by assuming an instantaneous decay of all vH at a fixed

 1-
2

1-
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time τ. Because of these assumptions one cannot entirely rule out a 50 per cent change 
in tu. Equation (14) also implies that h0 < 0.6. 

It is also easy to verify that our overall picture is consistent in the present case. We 
assumed in deriving Equation (13) that tnr < t u or equivalently, T nr >T0 . Using (10) we 
see that this is same as demanding,

 
(15) 

 
In other words, 
 

(16) 
 
which, as we shall see, will be identically satisfied (see Equation 22 below)
 
Case (b):  Tnr < T0, radiation-domination today: This situation turns out to be
somewhat more tricky. To begin with, note that the constraint Tnr <T0 is equivalent to 
the reverse of case (a), i.e.,  
 

(17)
Let us now compute the age in the scenario. Calculations similar to the one above give,
 

(18) 
The constraint tU     1010 yr now implies that  
 (19) 

Thus this scenario can operate only if τ simultaneously satisfies the inequalities, 
 
 
 We shall continuously refer to cases (a) and (b) in what follows.  

 
2.2 Constraints from Energy Density of Decay Products 

 
In both the above cases—(a) and (b)—a further constraint on mH and τ can be obtained 
based on the energy density contributed by the decay products of vH. This energy 
density is easily computed to be (see e.g. Dicus, Kolb & Teplitz 1978),
 
 
 
 
 
 
 (20)

The decay time t is not scaled in this expression; also it is assumed that tDC < T < tu. 
Demanding ρ < Ωm pc, where Ω m is the maximum density parameter contributed by the 

decay product (if Ω b is the baryonic contribution and WL is the contribution from
the primordial light neutrino, then m =  [1 — (  L+  b)], we get (with
H0 = l00 h0 kms  -1 Mpc-1)  

(21) 
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Translation of this constraint in terms of mH and τ is different for the two cases (a) 
and (b). In case (a) tu is given by Equation (14) and combining (14) and (21) we get 
 

(22) 
 
Similarly for case (b) we get [combining (18) and (21)],
 

(23) 
 
which is only marginally different from (19). Since (19) is anyway satisfied in case (b) we 
do not get any new constraint from (23).

All the kinematic constraints are summarized in Fig. 1 where lifetime is plotted
against the mass mH. The vertical line at mH = 10 eV and the horizontal line at 
τ = 4.26 × 1017 seconds limit the region we are considering. Physically this cor-
responds to assuming the vH to be more massive than vL (~ 10 eV) and unstable within 
the age of the universe(i.e. τ < t u). The broken line above this line (τ= 1.73 × 104 m-2)
separates case (a) and case(b). The region above this corresponds to universes which are 
radiation dominated now. In that case, Equation (19) gives the upper bound based on 
the age of the universe. In order for the universe to be radiation dominated today, vH 
has to decay fairly late (i.e. in the recent past). On the other hand, this would lead to a 
rather youngish universe. Hence only a narrow region marked in the figure is allowed 
for case (b).  

We do not get such constraints in case (a). Energy density requirement represented by 
Equation (22) does not lead to any new constraint because case (a) already satisfies the 
stronger constraint via Equation (16). In other words, the constraints are fairly weak for 
case (a).  

Figure 1. The lifetime τ (in units of 1010 s) is plotted against the mass of the heavy neutrino, mH.
 

The broken line separates the two cases (a) and (b) (see text). For the case (a), the regions above the 
horizontal line at τ    101 s are not allowed from the constraint that τ is less than the age of the 
universe. For case (b) this constraint is given by the thick line just above the broken line. In both  
the cases the regions which are not allowed are struck out.

≃ 
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We shall now study the growth of fluctuations in the above scenario, which will lead 
to much stronger constraints.
 

3. Growth of fluctuations 
 
tudies about the growth of density fluctuations in an expanding universe (Peebles 
1979) have led to the following conclusions: (a) The growth is significant only when the 
wavelength of fluctuation is less than the size of the horizon, (b) No fluctuations can 
grow in a universe dominated by relativistic particles (Meszaros 1974). (c) In the matter 
dominated era the density contrast δ = (δρ/ρ) grows as t2/3. In other words 
δ ∝ S(t)   [T(t)]1 .  

Baryonic fluctuations cannot grow until the recombination era (z ~ 103) and hence 

recombination and today. This implies the existence of δB   103
 at z~103. For 

adiabatic fluctuations, (δρ/ρ)Β is directly related to the fluctuations in CMBR 
temperature. A value of δB ~ 10 

3 is entirely ruled out by the observational upper limit 
(Δ T/T <6 × 10-5; see Fixsen, Cheng & Wilksen 1982) on the anisotropy of CMBR. 
One possible solution to this dilemma is to have a scenario in which non-baryonic 
matter can dominate before the recombination era. Their growth of fluctuations can 
create a potential well into which the baryons can fall immediately after they decouple 
from radiation.  

We have seen that the non-relativistic vH starts dominating the energy density from  
Teq until they decay at the temperature Τ (τ). It is possible for perturbations in vH to 
grow during this epoch when the universe is matter dominated. Present day studies of 
galaxy-galaxy correlation functions show that the scales which are entering the 
nonlinear regime today (i.e. δ   1) have sizes L   5h0

-1 Mpc (Davis & Peebles 1983). 
This length scale L would have entered the horizon in the past at t = tL when the 
radiation temperature was, say, TL. We shall now estimate TL. Two scenarios arise 
depending on whether this scale entered before the decay of νH or after (i.e. whether 
TL > Tt or TL < Tt ). We will consider these cases separately.  

If TL <TT then fluctuations enter the horizon in the radiation dominated era. If 
dH(tL) is the horizon size at time tL, then  

 
(24) 

 
The physical wavelength λ of the fluctuations scale with expansion linearly; i.e 
 λ(t)   S(t). Fluctuations with a wavelength L today would have a wavelength λ(t L) at 
time t = tL, where  
 

(25)
 
Therefore the condition dH = λ ('fluctuations entering horizon') implies (compare (24)
and (25))  
 

(26)
 
Our condition TL < Τ (τ) is equivalent to 

 (27)

The fluctuations enter the horizon after the v H decay, in the radiation dominated 
universe; however it cannot grow in this epoch. If Tnr <T0 (case (b) considered in the  

the baryonic density perturbations cannot grow by more than a factor of 103 between

≲ ≃ 

∝
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previous section in which the universe remains radiation dominated from t = τ until 
today) then the fluctuations cannot grow at all. This completely rules out the situation 
corresponding to case (b) if TL <Τ(τ). On the other hand if Tnr >T0 the fluctuations 
can grow after (and only after) the decay products have become non-relativistic. Thus 
the growth occurs from t = tnr till today. The growth factor in this matter-dominated
era is 
 

(28) 
 
It is known that the spectrum of primordial fluctuations has an amplitude (δρ/ρ) 
~ 10-4 when they enter the horizon. To achieve (δρ/ρ) ~ 1 today, the growth factor ε
has to be    104. Using (28) we get 
 

(29) 
 

While the above situation is a theoretical possibility it is of little practical importance. 
Note that the above condition is almost the same as Equation (4). This corresponds to a 
situation consisting of the following ordering of events: vH decays very early (τ ~ t eq) 
leaving a relativistic soup; fluctuations enter the horizon in the relativistic epoch; 
Decay products become non-relativistic at temperatures 104; fluctuations grow in the 
matter-dominated era. Clearly this is indistinguishable from the conventional single 
stable neutrino (with mass ~ 10 eV) scenario. We also note that the above constraint 
demands an extremely short lifetime for the unstable neutrino which is not compatible 
with standard particle physics.

On the other hand, if TL > Τ (τ), fluctuations enter the horizon in the regime when 
the non-relativistic vH dominates the energy density. In this case, Equation (24) is 
replaced by 

(30) 
and since  
 
we get  
 (31)

The assumption TL > Τ(τ) now translates to the inequality,
 

(32) 
 

The growth of fluctuation is again different for case(a) and case(b). In case(a) 
fluctuations can grow during two different matter-dominated epochs: (A) tL < t < τ 
and (B) t nr < t <tu. During the (in between) radiation-dominated phase (τ < t <tnr)
the fluctuations oscillates as an acoustic wave with negligible growth. Let εΑ be the 
growth factor in the vH dominated era (A) and εB be the one that arises after the decayed 
products become non-relativistic (B). Then
 

(33) 

while εΒ is given by Equation (28). The total growth factor is 
 

(34)

⋜ 
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The requirement ε > 104 then implies
 

(35) 
 
i.e., mass of the heavy neutrino must be less than about 0.173 keV.

We note that ε is independent of τ while dependent on mH
-2. These dependences can 

be understood as follows: From Equation (31) note that
 

(36) 
 
and that TL is independent of t (of course, for computational purpose it is convenient to 
scale it with respect to τ). The growth factor
 
 

(37)
which is independent of t (we have used (10) and (36)). Larger mH leads to smaller TL 
(delay in the entry of fluctuations into the horizon) and smaller T nr (longer duration of 
relativistic epoch). Both the effects hinder the growth of fluctuations.

The final scenario that we have to consider corresponds to case(b) with TL > Τ(τ). In 
this situation phase Β does not exist because the universe is still radiation dominated. 
Thus, all the growth must take place during phase A. Using the expression for εΑ (see 
Equation 33) and imposing the condition εΑ > 104 we get  
 

(38) 
 

The constraints from the growth of fluctuations are depicted in Fig. 2. Line marked  
(1) distinguishes case(a) from case(b), while the line marked (2) distinguishes TL < T(τ ) 
from TL > Τ(τ). These two lines divide t-mH plane into four regions. The region which 
is to the right of both (1) and (2) is completely ruled out. For case(a) with TL = Τ(τ) the 
parameters are restricted by Equation (29). If TL > Τ(τ) the only constraint is on the 
mass (mH < 173 eV). We have also marked the vertical line at mH = 10 eV. In case B, 
when TL > Τ(τ) only regions above the line corresponding to Equation (38) are 
allowed. 

Before proceeding further, it is probably worthwhile to consider various assump- 
tions upon which Fig. 2 is based. In arriving at these constraints, we have made (rather 
drastic) simplifications.

(i) We have neglected all the disruptive effects of the decay of v H on the already
formed structures. The decay can effect the structure in two ways. Firstly it can violently
disrupt the condensates. Secondly, free streaming of relativistic decay products can
wipe out smallscale inhomogeneities. Both these effects can change the perturbation 
spectrum at large scales. Hopefully this will not be important at scales of few Mpc and 
will manifest only at supercluster scales. This effect is under investigation.

(ii) We have assumed that there is no growth during the radiation-dominated epoch. 
This is not strictly true because there can be some growth due to the residual velocity 
field of the matter after it crosses the horizon (Primack & Blümenthai 1984). This can 
relax the constraints slightly.

(iii) In one particular case, we have obtained the total growth factor by multiplying 
the growth factors at two different epochs. If too much of structure dissipation occurs 
following the decay, then this calculation may not be strictly correct.
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Figure 2. Lifetime τ is plotted against mass mH. Line (1) distinguishes case (a) from case(b) 
while line (2) separates the region TL > Τ (τ) from TL < Τ(τ). The thick line separates the allowed 
regions  (from growth of fluctuation analysis) from the 'not allowed' regions. For case (a) with TL 
> Τ(τ) the only constraint is that mH < 173 eV, while for TL <Τ(τ) growth is sufficient only for 
regions to the left of the line given by Equation (29) (see text). For case (b), TL < T (t) has no 
provision for growth to occur at any time (region below line). For TL >T(τ) growth is sufficient 
only for regions above the line given by Equation (38).
 

We plan to investigate these dynamical effects in a future publication. At this stage we 
may say that the effect of (i) to (iii) above makes the boundary lines drawn in Fig. 2 (and 
in Fig. 3) less sharp. As long as a particular (m, τ) value falls reasonably within a region 
one can use these constraints with confidence.

 

4. Conclusions 
 
The constraints derived in Section 2 and 3 are combined into Fig. 3. The region 
bordered by the thick line in Fig. 3 gives the allowed domain. Clearly the top region of 
Fig. 2 is severely constrained by the age of the universe as shown in Fig. 1. The allowed 
physics with unstable neutrinos can be understood by considering three typical points 
in regions marked Α, Β and C.

Region A probably holds the least interest. Here the perturbations enter the horizon 
after the decay of unstable neutrinos, in the radiation-dominated era. The growth can 
take place only after the decay products have become non-relativistic. These constraints 
imply that the decay must occur too early (τ = T eq) for any interesting feature of νH to 
remain. Also note that the typical lifetime in this domain is ~ 107 s which is too small 
by conventional particle physics standards for vH.  

In region Β the fluctuations enter the horizon before the decay and hence can grow 
during the first matter-dominated era as well as after the decay products have become 
non-relativistic. A wide range in lifetime is available for B, but the mass of the neutrino
is constrained to be less than about 173 eV.
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Figure 3. The constraints depicted in Figs 1 and 2 are combined in this figure. The regions 
allowed are within the thick lines. 
 

Both regions A and Β correspond to the situation in which the present day universe is 
matter dominated. In contrast, region C corresponds to a universe which is still 
radiation dominated. Clearly parameters in C are most severely restricted.

With no extra input from particle physics it is impossible to constrain the lower 
region of the figure. However, any realistic modelling of neutrino interactions will give a 
lower bound to the lifetime. Given such a constraint (external to cosmology) the 
parameter space will be restricted to a compact simply connected domain in m-τ plane. 
For example, if we make the conservative assumption that the lifetime is definitely 
greater than about 107 s, then the mass of the unstable neutrino cannot be greater than 
about 10 keV. Note that this is a reasonably powerful constraint in the modelling of 
neutrino interactions.
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