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Abstract. We consider the effect of quantizing the homogeneous mode of a
scalar field on inflation. It is shown that any semiclassical description of the
scalar field is bound to lead to density inhomogeneities which are unac-
ceptably large.
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1. Inflationary physics
 
The idea of an inflationary epoch as a cure for various cosmological ‘problems’ has
caught the fancy of the physicists in recent years. As one started looking deeper into
these scenarios new problems seem to surface. To begin with, the most (and only!)
natural scenario suggested by Guth (1981) led to an extremely inhomogeneous universe
(Guth & Weinberg 1983). By adopting a special kind of dynamical symmetry breaking
scheme, ‘new’ inflationary scenario solves this problem (Linde 1982; Albrecht &
Steinhardt 1982). However, quantum fluctuations of the scalar field in this model leads
to large density inhomogeneities. It is necessary to fine tune the parameters in the
potential in a rather arbitrary manner to arrive at ‘correct’ answers. Since the basic
motivation for inflation stems from a desire to avoid fine tuning, it is not entirely clear
whether we are any better of in the end.

More fundamental problems have come up recently regarding the ‘new’ inflation.
Doubts have been cast on the validity of the semiclassical analysis which is resorted to,
and also on the nature of the initial state of the scalar field prior to slow ‘roll over’.
(Evans & McCarthy 1985; Mazenko, Unruh & Wald 1985).

To provide complete answer to these questions, it is necessary to go beyond the
semiclassical approximation. We must construct a quantum theory for the interacting
scalar field in a Robertson-Walker background, and, couple suitable expectation value
of the energy-momentum tensor of the scalar field to the background geometry as a
source term. In this paper, we tackle a much less ambitious project: We treat the
homogeneous mode of the scalar field as a quantum variable and describe the self-
consistent dynamics of the coupled system. The final result is once again negative: any
reasonable description for the initial state of the field leads to too much of
inhomogeneities.

We wish to emphasize that the work described here must be considered as a ‘toy
model’. Taking into account the spatial degrees of freedom may change the nature of
the result. Such a possibility is under investigation.
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2.  Quantum mechanics in de Sitter spacetime
 
Consider the action for a scalar field ϕ with a potential V (   ):
 

(1)
 
We shall take the spacetime to be a k = + 1 universe with the line element:
 

(2)
 
By assuming that ϕ (x, t) = ϕ (t) we shall reduce the quantum field theory problem in
Equation (1) to a quantum mechanical problem. The action in (1) becomes,
 

(3)
 
 (4)

where,
 

(5)
 
Corresponding to the action in Equation (4) we have the Schrödinger equation:
 

(6)
 
(We are using units with c = h = 1 such that, ϕ–1, S, t, Τ–1/2 and |ψ |2 have the
dimensions of length). In a given background geometry, Equation (6) determines the
probability functional ψ [ϕ, t]. To complete the dynamics, we should use the
expectation values of T i as the source of Einstein’s equations. From Equations (l) and
(3) it follows that,
 

(7)
 
 

(8)
 
(We have used the fact that the canonical momentum p corresponding to ϕ is 2π2S3 φ).
The expectation values of T  0 and T 1 in a state ψ (ϕ) are,
 

(9)
 
with,

(10) 
 
and, 
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Einstein’s equation with T i as the source are equivalent to a set of two equations:
 

(12)
 
 

(13)
 
It can be easily verified that Equation (13) is equivalent to the equation of motion for
the scalar field in the classical limit. In writing (12) and (13) we have ignored all other
source terms except the scalar field. This is justifiable because we shall be mainly
concerned with the inflationary phase in which S(t) ∝ exp (Ht); during that epoch,
radiation (S–4) and matter (S–3) terms cease to be relevant. Similarly the S–6 and S–2

terms in Equation (12) can also be ignored.
The complete dynamics is determined by Equations (6), (12) and (13). In order to

produce an analytic solution to these equations, we shall approximate the potential
V(ϕ) by a constant V0 for ϕ < ϕf and by zero for ϕf <ϕ <  ϕb. We assume infinite
potential barrier at ϕ = ϕb. Such an idealization of the Coleman–Weinberg type
potential turns out to be adequate for our purposes.

To solve the Schrödinger equation in this potential, it is necessary to know the initial
wave function, ψ [ϕ, 0]. We shall assume the initial wave function to be a gaussian:
 

(14)
 
We have chosen Equation (14) such that    ϕ   = ϕι , (Δϕ)  = σ2 and
 

(15)
 
represents the ‘rolling down’ velocity along the flat region.

The addition of a pure phase term in (14) which ensures a non-vanishing 〈(dϕ /dΤ)〉, is
absolutely essential. The actual potential has a gentle slope towards larger ϕ thereby
inducing a ‘roll over’ velocity. Since we have idealized the potential by a constant V0, it 
is necessary to put this term by hand.

It should be noted that the choice in Equation (14) is different from the usual choice
made in inflationary models. It is usually assumed that the wave functional ψ[ϕ (x), t]
desribing the state of ϕ (x) is symmetric under (ϕ → – ϕ). (In other words, ϕ is as likely
to ‘roll’ towards the positive side as towards the negative side). Such an assumption,
however, suffers from the following difficulties:

(i) At a very basic level, one simply does not know whether such an assumption was
realized in the early universe or not. Granted this uncertainty, it is worthwhile
examining the sensitivity of the results to changes in this particular assumption. Note
that the symmetry of the hamiltonian under (ϕ → –ϕ) does not guarantee the same
symmetry for the initial state.

(ii) Once we force the initial state to have the symmetry, 〈ϕ 〉 will vanish. This, in
turn, forces us to consider the classical part and the quantum fluctuations in very
different manner. Both in quantum mechanics, as well as in the quantum field theory
based on Schrödinger (functional) equation, it is conventional to identify 〈ϕ 〉 as the
classical limit. Since we can no longer do this, (because 〈ϕ 〉 vanishes, while ϕclass has to
evolve) it is necessary to take ϕclass as the solution to classical equations and quantize
 

〈 〉
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perturbations of ϕ around ϕclass by a suitable procedure. Crudely speaking, the ϕclass 
‘rolls’ down ‘carrying’ with it the fluctuations 〈ϕ 2〉1/2. Such an approach, to say the
least, is unusual. It is definitely worthwhile to see whether an initial state can be chosen
so that 〈ϕ 〉 represents the classical evolution and 〈 [ϕ – 〈ϕ 〉 ]2 〉1/2 characterizes the
fluctuations. 

(iii) As was noted repeatedly in the literature, inflation can proceed from any local
region of space which satisfies the requisite conditions. If the initial state is thermal or
chaotic, there will be a probability distribution for the values taken by ϕ (x, 0). It is
interesting to examine the consequences if inflation proceeds from a region with
nonzero value for L, i.e. a region where ϕ has a preference to roll along a specific
direction.

These are our reasons to deviate from the usual assumptions and take Equation (14)
with L ≠ 0. We shall interpret 〈ϕ 〉 as the classical limit of the field.
The general solution to the Schrödinger equation (6) for constant V can be easily
obtained to be,
 

(16)
 
where the function C (l) has to be determined from the initial condition (14). Calculating
C (l) and substituting in (16) we get the probability distribution to be,
 
 
 

(17)
 
with, 

(18)
 
 
Straightforward use of Equations (16) and (17) will also yield the following expectation
values: 
 
 
 

(20)
 
When V(ϕ) is a constant, p2 commutes with the Hamiltonian. Therefore, 〈p2〉 is
independent of time. Equation (13) is thus identically satisfied. In order to obtain a self-
consistent description we only have to solve (12). Obviously, for (Ht)  1 the
exponential solution 
 

(21)
 
exists, leading to the usual inflationary scenario. As described before, only the b-term
dominates (12) in the limit of (Ht)   1. We shall now consider the various constraints
on this evolution.
 
 

3. Constraints on parameters
 
We shall take for ϕf and V0, values similar to that in Coleman-Weinberg
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potential: 

(22)
leading to

(23)
 
From Equations (19) and (21) it follows that the ‘centre’ of the wave packet has the
trajectory:
 

(24)
 
In other words the expectation value of the scalar field starts ‘rolling over’ with constant
velocity (i.e. for Ht   1,  (  〈ϕ〉  – ϕi) ∝ t, but very soon slows down. It approaches the
asymptotic value of
 

(25)
 
For successful implementation of reheating we need 〈ϕ 〉 to have ‘fallen down’ the well
as Ht → ∞. In other words,
 

(26)
 
Since ϕf     ϕI we may take this condition to be
 

(27)
 
Using Equations (22) and (23) in (27) we get,
 

(28)
 
By taking ϕ f < 〈ϕ 〉∞, one can easily prolong the roll-ver phase as much as one
wants; thus there is no difficulty in achieving sufficient inflation.

The initial state was assumed to be well localized near the origin and definitely far
away from ϕf This implies that, 
 

(28)
 
Equations (28) and (29) constrain the choice of parameters in the initial state.

In order to compute the inhomogeneities produced during the inflation, it is
necessary to discuss the spatial degrees of freedom of ϕ. However, an order of
magnitude estimate can be made along the following lines.

It is known that the value of the density contrast (δρ/ρ) is given by (see e.g
Starobinski 1982; Hawking 1982; Guth & Pi 1982; Bardeen et al. 1983)
 

(30)
 
Here   is a number of the order unity, Δϕ  is the quantum spread in the scalar field, and ϕ
is the roll-over velocity. The right-hand side should be evaluated at the time when
galactic size perturbations ‘freeze out’ of the horizon. Physically one may interpret
 

(31)
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as the time lag between the ‘leading edge’ and ‘trailing edge’ of the wave packet. Because
of this time lag the scalar field ‘falls over’ the potential at different places at different
times, leading to inhomogeneities.

Since we know the evolution of the wave packet the time lag Δτ can be computed 
directly as, 
 

(32)
 
where t± are the roots of the equation,
 

(33)
 
Straightforward  algebra gives (talking ϕ f      ϕ0; σ0   ϕf ),
 

(34)
 
so that,
 

(35)
 
The disturbing exponential factor is due to the fact that 〈ϕ 〉 is much smaller than the
constant velocity assumed in the conventional roll-over, scenario. Note that, 
 

(36)
 
While (dϕ /dΤ) remains constant, (dϕ/dt) keeps on decreasing. Clearly, the exponen-
tial in Equation (35) makes matters much worse than usual. One way to get out of this
trouble will be to assume that the ‘freeze-out time t1’ for the relevant length scale is of
the order of H–1. (Turner has pointed out that galactic size perturbation crosses the
horizon at about 50H–1 before the end of inflation; i.e., t1   10H–1 (Turner 1983).
Taking t1   2H–1, therefore, can be a drastic approximation.) With this understand-
ing, we write,
 

(36)
 
where β is probably a numerical factor of the order of (10–100). On the other hand, we
want ( ρ/ρ) to be about 10–4. Clearly, it is necessary to have L2σ2   1. In this limit, we
get,
 

(37)
 
which gives the further constraint,
 

(38)
 
Altogether we have arrived at the following constraints on the parameters (cf.
Equations (28), (29) and (38)) 
 

(39)
 
If these are the only constraints on the system, then they can be easily satisfied. For
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Example, one can choose (with β    102).
 

(40)
 
Unfortunately, these are not the only accepted constraints. It is usually assumed that a
scalar field in a de Sitter spacetime has fluctuations which are at least of the order of
(Η/2π). This result corresponds to the usual ‘temperature’ (Η/2π) associated with the
de Sitter spacetime. If we assume this result to be valid in an inflationary scenario, then
it is necessary to satisfy the additonal constraint,
 

(41)
 
From the first constraint in (39), it follows that,
 (42)

Combining (42) and (41),
(43)

 
which is grossly inconsistent with (38). In other words, the simplest version of quantum
mechanical inflation leads to density inhomogeneities which are large by a huge factor.
 
 

4. Discussion 
 
Treating the scalar field as a quantum mechanical object does not offer any relief from
the disturbing conclusions already known in literature. The analysis however brings out
two features: (i) The cause of the problems in new inflation is not the semiclassical 
approximation made in the usual analysis, (ii) The condition (41) plays a crucial role in
producing too much of inhomogeneities. But for this constraint, one can arrive at
acceptable values of density inhomogeneities.

It is possible that Equation (41) is not really as sacred as it is taken to be. It has been
argued in literature that thermal effects due to event horizons do not restore a
spontaneously broken symmetry (Hill 1985). Possibly, thermal effects do not
contribute to the dynamics of de Sitter space either. In this connection it should be
remembered that the spacetime is never truly de Sitter; it only approaches the de Sitter
spacetime asymptotically.

The discussion presented in the paper needs to be generalized in three different
aspects: (i) inclusion of spatial dependence, (ii) examination of other initial conditions,
(iii) amore realistic description of the potential V(ϕ). We hope to present such a detailed
analysis in a future paper.
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