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Abstract. The wave equation for a scalar field ¢ and vector potential A# are solved
in the background metric of a gravitational wave. The corresponding solutions when
the metric is generated by a plane electromagnetic wave, is obtained from these solu-
tions. The solution for the scalar wave is discussed in detail. Itis found that because
of the interaction, two new waves arc generated in the lower order approximations.
One of them has the same phase dependence as the original wave while the other
shows a transient character. There is 1o interaction when the waves are along the
same direction.
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1. Introduction

In this paper the scalar and the electromagnetic wave equations, in a spacetime
curved by the presence of a gravitational or electromagnetic wave are solved. From
the solutions one can discuss possible interactions between them. _

Section 2 introduces the metric of the gravitational and electromagnetic waves,
and obtains the necessary formulae needed later. In section 3 the scalar wave
equation in the gravitational wave metric is solved and the solution discussed. Even
though the solution obtained is exact (except for the effect of back reaction on the
metric which can be made arbitrarily small by assuming the second wave to be much
weaker) the discussion is confined to the first two orders of approximation, for the
sake of simplicity. The solution in the metric of electromagnetic wave is obtained
from the other solution and the similarities are pointed out. In section 4 we solve
the vector wave equation for the vector potential of the electromagnetic wave in the
gravitational wave metric and in the metric of electromagnetic wave. A detailed
discussion of this solution will be published later. ' v

Our metric has the signature (+++-) Natural units with G=C=1 is used
except when mentioned otherwise. We take our gravitational and electromagnetic
waves to be propagating along the z-axis and work throughout with. the retarded and
advanced co-ordinates,

y=t—z and y=1+2. ()
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A prime denotes differentiation with respect to u. In order to avoid different

letters, the letters L, g, k, etc. are used in the coming sections to denote two different
entities.

2. Form of the metric
2.1. Metric of the gravitational wave

For the metric of the plane gravitational wave we take the form (given in Misner et al
1973)

ds?=L*(u)[ >’ dx2+e-2# Jy2] —du dv

)
B=P(u) is arbitrary. 3)

The Einstein’s equation reduces to the single equation,
L"+(f"*L=0 4)

which connects the background effect L(u) with the ‘ ripples °, B(w).

To avoid the difficult problems of interpretation arising due to the non-Euclidian

nature of the space time, we concentrate here on a form of B(u) which is confined
spatially. We take it to have the form,

B(u)____ae—kl ul (5)
so that, at any fixed point z, () rises with increasing ¢, till it reaches a maximum
value of a at =0 and thereafter decreases back to zero at f— oo, In other words
this represents an exponentially decreasing wave pulse travelling along, positive

z axis. A more natural choice would have been a Gaussian wave packet. But this
keeps the analysis simple. For this choice €q. (4) becomes,

L 4+ k2q2e-2'u! [ (). (6

The equation can be exactly solved by a series solution. However, a representative
form of the L(u) will be needed later.

For this, the 1st order correction to flat space
value of L=1 can be easily found by approximating,

L)=1+L,()+O0(c)

(M
sothat  L" =—k2g2e-2k1u!
giving  Ly=—Jgte-¥u, (®)
Thus the solution to this order is,
| L)=1—}ae-%" L 0(gh). %

Notice that the deviations from flat space in L(u) comes in the second order in «.
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2.2. Metric of the electromagnetic wave
Consider an electromagnetic wave described by a vector potential
A" =A) for p=x
=0 for p#x. | | : | QO

The spacetime will be curved by the presence of the energy den§ity of this e}ectro-
magnetic field. It can be shown that (Misner et al 1973 op. cit) the metric thus
generated has the form given by

ds?=L2(u)[ dx?--dy*] —dudv (11)

where

1 G nNe ___ i 12
LI Z(AP=0 | (12)

(The G and C factors are introduced here to show the order of magnitude).

Quite clearly, the form of the electromagnetic wave metric is same as that qf
gravitational wave except that §=0. Thus by solving the equations for the gravi-
tational wave with arbitrary L and g and by putting f=0, one can get the solutions
in the metric of electromagnetic wave. This is the procedure for the scalar wave
adopted in this paper. For the vector wave equation, however, there will be a slight
modification. .

For a concrete example we take a pulse of electromagnetic wave with the same
form as eq. (5). Let

A(W)=ae . 3 4 | (13)

Substituting this into eq. (12) and taking a first order approximation, we get the
solution as,

Ga? _oklu | 14)
L(u)=1——261 e l-1—0’((14@). (

Now we will pass on to the solution of the wave equations in this metric.

3. Scalar wave equation
3.1. Scalar wave equation in gravitational wave metric

The scalar wave equation in general relativity has the form.,

. 1 —_— N (15)
= - ?’a),a“"o
: Pia v —g € :
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that s,
(\/:E g” P,p):u =0. (16)

For our case the metric has the components,

Suw=8w=—% gux=L* e*f gyy=L? e~** (17
gl=gh=——2 gx¥=[-2 g-28 gV=L"2 ¢ . (18)
and vV —g=4 2, (19)

A direct calculation substituting these values leads to

a2 0P 4y 09 _ -2 O°p L s g (20)
oudv v ox? o*

This equation, which determines the scalar field can be solved by method of separation.
We assume a solution of the form,

p(X, ¥, u, v) = X(x) Y(3) A(, v). @

Substitution and separation of x and y variables lead to the equations,

2 2
j‘;;}, =—Fk2X g_%’ =— kY 22
y

A AL oA, MLk 2 o2 @
A dupy A4 oy

where k, and k, are the (real) separation constants. Their form is chosen so that in

the absence of gravitational wave, the form of p reduces to a wave solution. Notice
that eq. (23) implies the fact,

I 24 _ o9

=—==0then k,® = k,® = 0 s0 that p = p(u), (24)
ov ov
If Z_A =0 then there is no solution of wave nature, (25)
u

If these cases do not oceur, we can further separate the equation with respect to u
and v variables. Then we get the general solution, in a straightforward manner as,

PO sty v) = CL(u) exp i [k +kyp -+, v+ Iu)e] (26)
where

u
2 ,~28 2 28
I(u):::ll:f (kx e ‘T‘ky e’ )du. (27)

4k, L2
here k, is the final separation constant and C'is the final integration constant.

# St
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Now we discuss the important features of this solution. We begin with the flat
space approximation which can be obtained trivially by putting f=0 and L=1.
We get

. o
o, y,u,vV)=Cexpi [kxx—l—kyy-l—k,,v-}—]f.’%]fi u] (28)

_ k24 2) ( k2 +k 2) } |
= - by —22 T2 k, Y )¢ 2
Cexpi [kxx &—k,,y—{—( i z -+ -+ I ( 9?

which is a plane monochromatic wave before the arrival of gravitational wave, with

2
k, =k, — kxz*,;k” (30)
2 2
w_m+@g@ (31)

Direct computation will show that k* = »? as it should.

The next simplest case is that of linear approximation to the first orderina. Since
L=1+0(c? it does not contribute in this order. So the effects arise only through
I(x) terms. This becomes, to first order in

T) = k. 4+k,,2 n u(k 2k )f B + O(aZ) (32)

So the solution becomes,

k2—k.2
p(x, y, u, v)=Cexp i [kxx+kyy+k,z+wt+—-——”2k z fﬁdu]

u
5__7 2
= PFlat [ 1+ k”2 i f Bdu + O(az)]
o
= @Plat T PNew (33)
where
u
, k2—k?
PNew = PFlat [l ) kaD J- B(“)du] . (34)

Thus we see that because of the interaction a new wave is produced. The direction
of the new wave is the same as that of the original wave. Only that its amplitude is
different, and in fact very small. This effect will persist even after the passage of the
wave (‘the gravitational wave leaves its marks’). If we consider any particular point
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z we know that at 7=—co there was a scalar wave of the form p=C exp (ik, x").

Now if we observe it a long time after at - co we find that the wave there, was
modified to the form

+00
. k2—k2 ‘
PFinal = Plnitial [H"l T f ﬁ(u)du] (35)
2k,
—00
now using (5)
--oo
' [, k2—k2 ~
PFinal = Prnitial | 17 = f a eHH du]
L 2k,
—o
[ . a k2—kp?
= Plnitial _H” 7 > % ] (36)
So that
PFinal — Plnitial —; ( kyz__kxz) a_, ( k,,2~—kx2) o -
PInitial k, k 2k,

Notice that 7=2/k denotes the characteristic time for which the gravitational wave is
nonzero. It is quite reasonable that the change of amplitude is proportional to this
time element; and to the amplitude of the gravitational wave a.

Another interesting feature of this result is that no new wave is generated (to this
order of approximation), when the initial p-wave travels equally inclined to the x
and y axes. That is when k.=k,. Qualitatively speaking, one can say that in the
case gy, and g, terms ‘neutralize’ each other to the order of approximation
considered.

So far the effect of L(u) did not arise. To understand its effects we have to take
one more order into consideration. We write, then

P(x, 3, 1, V)=C (1—} @ M) exp i [k, x4k, y+k, v-+ I(u)u]

=C (1+} a® 24 exp (ik,x") - £ (1). | (3%)

Here we have denoted by S (u), the expression

(39)

: kl2+k2 1)
= I —_—x
7 {exp l[ (0 4k, u] S Corrected

corrected properly up to the required order.

From previous discussion we know
that it will have a form

u

F) =1+1 (.’2%:&2) f B() du - p(u) 9

v
-
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where p denotes corrections of the order of 2 which are pertinent but whose detailed
form does not concern us. Thus the solution becomes

p= (I—H kst ff9tl'u+1!7(u)—i*ifa2 ‘”""')exp(fk x").

We write
P=Pp1a: (1+A4+B) | | CYY)
Where
A) =i (.’Efz_‘l;‘_"f) [ e+ 50 “2)
B(u) =} a? e 2 '*!, ' (43)

Thus the direct effect of the introduction of L into the picture is the generation of
a new ‘ modulated > wave for the form,

o= 1 g2 e—2k1u! P Flat-

Notice that this ¢ modulated’ wave has the properties of both the free scalar wave and
the gravitational wave. It represents a wave propagating with a damped simple
harmonic contour. Of course, if we concentrate on a particular point z, this scattered
term will die out after a long time.

The other contribution arises mainly from B factor (even though there isan L term
in (1) and quite similar to the one analysed previously in linear approximation. The
only difference now is that we calculate it for one higher order by including p. This
will give nonzero contribution when we take the limit #—co, unlike the terms arising
from L factor.

Thus, to this order, the scattered term has two effects it generates a damped
harmonic wave (which is transient at a point) propagating along z axis and the other
- of the same nature of the initial wave with a different amplitude.

It is the L() term that creates modulated waves with an exponential damping which
propagates along z-axis. It can be easily seen that higher order terms in L(u) varies
as e—4kiul g—6kiul etc. Thus after a sufficiently long time the first order result w111
have 1mportance On the contrary the B term ‘leaves the mark on the wave’
Our solution eq. (26) is exact and, in principle can be used with any metric of given B

So far we were discussing the most general solution. However a special case given
by eq. (24) is also of interest. This gives the result that there is absolutely no inter-
action between the two waves when they propagate along the same direction. This
is an exact result and we see that this behaviour is also exhibited in other cases.

3.2. Scalar wave in the metric of electromagnetic wave
The equation for the scalar wave has the same form as eq. (15) even when the

spacetime isnot a vacuum. Thus all our discussion in section (3.1) can be taken over
here by putting 8=0. Thus the solution becomes
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p(x, y, u, V)=CL exp i [k, x-+k, y+k, v+I*(u)u] (45)
U
THu) =1 (’&iﬂ‘f ) du. (46)
u\ 4k, L2

The flat space approximation, of course, is a plane wave. Notice that L=14-0(4%),
so that, to first order in vector potential, there is no interaction. (In contrast, there
was an interaction with gravitational wave to first order in 8). This is to be expected
because it is the gravitational field produced by the electromagnetic wave that canses
the interaction, which is a second order effect. In the second order we have, (G, C
introduced for showing order of magnitude)

G

—1— -2k 1T ul 4
L)=1— 2% 14! 1-0(e) | “n
v 3
1 k}—{—k“‘) f( Ga® o4 .)
I*(u) == 4 1+ — e du
@ u( i, T 3ci
— 0
o (k,2+ky2) L1 (kx2+ky2) (Giz ) ( 1 ) [2—e-2" m] (for u>0)  (48)
\ 4k, u\ 4k, 2C4/ \2k
so that,
Ga® Ga*\( i\ (k2+k,? ok lul
e e+ ) 4] ) )
i [ T thel\w)\ e
exp (ik,x")
(correct to 2nd order in a) (for u >0) (49)
Thus the effect of the interaction arises in two ways. Writing
p=pp, , (1+4+B) (30)
with
Ga? . (k2+k2
A= " eg2ktur [ _ X ¥ (51
py ( l( s )7) (51)
_.Ga (k2+k2 1
=i %5 ( 4@») v vith 7 = L. (52)

We see that 4 will produce a propagating wave with damped harmonic contour
and B generates an oscillatory wave of the same nature as P Elat with a changed

amplitude. However in a fixed point the effect of A is transient and only B ‘leaves
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the mark’. Also there is no interaction between the waves when propagating along
the same direction. The effect will be similar even when the exact case is con-
sidered. There will be two new waves. One will have a modulated time
dependence, while the other will have the same phase as the original wave with
different amplitude.

Before we conclude this section it is to be noticed that eq. (51) can be written as

_ Ga® _ k2+k2\2 1/2 —A _ k2+k2
A“Z?:ze zklul(1+(__§l_c_f_) 72) e ;tan A-—(-—i—la—l)f (53)

v

so that this term adds a constant phase difference to the original wave, in addition to
modulating the amplitude. :

That completes our analysis of the scalar wave.
4. Solution of electromagnetic wave equation

4.1. Electromagnetic wave in gravitational wave metric

The equation to the vector potential 4", which describes Vthc electromagnetic field,
(in Lorentz gauge) satisfies the equation (see Misner et af 1973)

A¥ P+ RA4P =0 (%
which reduces to
Ag® B =0 ' (55)

since for the gravitational wave R,s=0. The Christoffel symbols for our metric are,

L’ ’ L’ !
I\xxu_._rxux_ +B ; yyu_r‘yyu="' —_— ﬂ
o [L' , v — i ' s
ro=ie (£ 4 )i, e (£ 5 ). 56)

Substituting them into eq. (55) leads, after a straightforward but tedious, com-
~ putation to the equations,

2L’

e 2L g g 57)
0 S (
I L oL
oL Lo\ aa(E —p ), —2 42,=0 58
DA+2(L+B)A,x+2(L ﬁ) — (58)
(1245 — (% + 4,9') A%, 2L 2% (% iy ) u =0 (59)
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27— (% ;43') A2, 420228 ({‘E *B’) A4, =0 (60)

Where [12 denotes the generalised D’Alembertian,
N _@_2_2 Ry _3; 61)

and a comma denotes ordinary derivative with respect to the corresponding
co-ordinate

ak, =04

=Y (62)
P axp

The equations can be solved in a step by step manner. We start with eq. (57).

This equation has the same structure as the equation for the scalar field and thus
following the same route, we get the solutions,

A"=f(u) arbitrary (i)
A=CL B0 (5 | (63)
where we have introduced the notations

b=k.x+ky+k,v o (64)

/)
kx2 28 k 2e+2ﬂ
() =f - 41—: IE “ -
—C0 v

Now we substitute these solutions into (59) and (60) and solve for 4¥ and 4*. Then

substituting these into eq. (58) we finally solve for 4°. The solution (63i) leads to no
difficulty and gives the nearly trivial result,

A" = f"(u) for all ks functions arbitrary (66)
indicating once again that a wave travelling along the same direction does not
interact.

The other solution (63ii) leads to a more general set. The procedure can be some-

what simplified by assuming in the very beginning the solutions to be of the form,

A'=py()el? ; $=C, L telG
A'=pfu)eld
A =py(u)eid

A=p,(u)eld (67)

R
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where @, with /=2, 3, 4 has to be determined. Substituting in our equatlons gives
the equation for ¢ as

s Py =0) B ©9)
with
(ke ket 3L
poy=—1(BE TR ) ¢ 2 (©9)

Q)= CI(Zk)L'm Be'G( ’+ﬁ’). | (70)

Thus eq; (68) can be solved by elementary methods to give,

993(u)_—_L'3/2e“BeiG[C2ic [ BLB ( +B’)du+C3] o

where C, is the integration constant.
Similarly we get, for @, the solution (the equations for p; and p, and, hence the

solutions differ only in sign of B(#); and replacement of x by y)

u

p,(1) =L-32*BelG [.92!,? f c (‘z B)du+C4] (72)

Substituting the values for p;, s, ,, in the equation for p,(u) we reduce it to the
form,

@'5(u)+R()py=S() | (73)
where
—2 8 8 ’
RG) = & :in£’2€2 i (74)
k. k, L' -
—_ X ' 75
s@ = 2 (Xp) oot 2 (£ ~F) o4 3)

Solving eq. (73), we get the solution,

L[-36iG

Lte
9’2(“) =
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Fli) = %[kxe-ﬁ (Ii-:" +,3') (51_"_* fl(u)+Cs)

2ky
where
file) = f eL—ﬂ(% +B’) d )
A= | j{;(% —p’) wo (78)

Thus we have solved the equations. Equations (67, 71, 72, 76) express the vector
potential 4" in terms of the metric functions L and B. In the process we h?,ve
introduced four integration constants C; (with i=1, 2, 3, 4). To find their physical

significance we take the flat space limit (initial state at t=—o00) putting L=1, 8=0
which will give,

»
A'=C,erx*; Av—C,elksx", Ax=Cyelkr>* ; A¥=C,elkr**, (79)

Thus the constants have the simple physical interpretation that they are the ampli-
tudes of the vector potential in the flat space limit. Suppose that we want to find the :
effect of the gravitational wave on a vector potential of specified form. We can then
choose the constants C, so that in the flat space limit it corresponds to the wave under
consideration. Then from our general solution, substituting these values for C,,
we can understand the nature and effect of the interaction.

Qualitatively, one expects the solution to behave in a similar fashion to that of a
scalar wave, With two types of newly generated waves one wave with a modula.ted
amplitude and another with same time dependence but different amplitude. But the
main complication arises from the fact that, because of the mixing of the components,
components absent in the initial wave may be generated. This will give rise to the

effects such as rotation of the plane of polarization, bending, etc. A detailed discus-
sion of these effects is postponed to a subsequent paper.

4.2.  Electromagnetic wave in the electromagnetic wave metric

The solution in this situation cannot be obtained directly by putting 8=0 in the pre-

vious solution. This is because, in the presence of the electromagnetic wave, R, is
no longer zero and so one has to deal with the full equation

A5 LRy 4P =0. (80)

However because of the simple form of the metric we are

using the only nonzero
component of R," is,

__4L”

Ri=—-. | (81)
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So that the equations become,

A,*=0 for a=x,y, u (82)
. 4LII
AV = — - A", (83)

From eq. (82) we see that for u, x, y components the solutions obta.iﬁcd in the last
section can be adopted, by just putting 8=0. Thus we get assuming the solutions to
be

A'=p, (W'’
A =py(u)e’
A¥=py(u)e”’
A=p,(u)e* (84)

We can write for @y, @3, P4

oL (8)
[ ke, 1
=L-32¢* | C3—C -’-‘---—] 8
Ps P Y2k, L (%6)
p,=L-3%"" 'c4—cl L. ] &7
i 2k,L
. k24+k2 (du
where a=G (with =0)=2_2 | —. 88
a=G (vith f=0) == [ 2 9)
The equation for 4” now reads
2L 2L 2L 4L"
Ul L i C el RS iy 89
124° + T + T 4T T (39)
2 2
with emd @ 1120 2 & (90)

oudv ox? oy
Substituting ¢, @5, P4 gives,

P2 )+ R@)p,=S) ®n
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with

Ray=Ftk? L

Dx Thy | & (92)
s T3l
k., L' |k, L' 4L’
Sy =22 2o 4 Sy L, 4 | (03
() AL + % I Py + 7P

which leads to the solution of eq. (91) as,

L_1/2ei“ x
pg(u) = % f K(u)du+ CgL-llzet
1L k L’ Cik " X
Ky=—| 2k, [C,— 2% _k(C— 1”)-{—4CL]. (94
® L[L ( 3 2kuL)+L A" %L 1

That solves our problem. Equations (84, 85, 86, 87 and 94) determine the vector
potential 4* in terms of the metric function L(u).

Taking the flat space limit one sees that the constants C; has the same interpreta-

tion as in the gravitational wave case. Detailed discussion of these results, will be
presented in a later paper.

It should be noted that these interactions discussed classically correspond to photon-

graviton and photon-photon (via graviton exchange) interaction in the quantised
level.
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