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Let A be a subset of integers (or a subset of a finite
abelian group); in this communication, we survey
some results related to the properties of the set 4 from
the information on cardinality of 24 or certain addi-
tive representation function associated to it.

Let , denote the set of integers and natural numbers,
respectively. Given a finite set A4, |4| denotes the number
of elements of 4 (also called the cardinality of 4). Given
Aasubsetof andhi e ,we define

hA=4{be :b=a +tay+ - +a;, wherea; e A,
1<i<h}.

For example, if 4 = {1, 2, 3, 4}, then

24=12,3,4,5,6,7,8} and
34=13,4,5,6,7,8,9,10,11, 12}.

If G is an abelian group, written additively and if 4 C G,
he ,we define 44 in the same way.

A direct problem in additive number theory is one in
which we try to determine the structure and the properties
of the A-fold sumset £4, when the set 4 is known. On the
other hand, an inverse problem is one in which we atte-
mpt to deduce the properties of the set 4 from the proper-
ties of the sumset /4.

Here, we will discuss some inverse problems. We will
only consider the case when 4 =2. Next, we will define
for any infinite subset 4 of , certain ‘additive represen-
tation functions’ and discuss some problems where prop-
erties of 4 are determined by some unusual properties of
such functions.

Let 4 be a finite subset of either the natural numbers or
more generally of an abelian group (G, +). Let |4|=k.
Then, |24| can be as large as /2. But suppose |24| is un-
usually small (say |24|<ck, where ¢ is a positive num-
ber), then can one deduce from this any information
about the structure of 4?

We discuss the case when A4 is a subset of and also
the case when A4 is a subset of a finite abelian group. For
further study of the problems discussed here, the reader
may refer to an excellent book by Nathanson'.

Let us consider the inverse problem for subsets of

Theorem 1. Let 4 be a finite subset of natural numbers
of cardinality k. Then |24|> 2k — 1.
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Proof: Say 4= {a; <ay<-— <ag}.

Then the elements a» +ay,
as + ay are distinct (being an increasing sequence) and are
in 24, thus proving the theorem.

aytay,artay, - artag

O
Suppose A is an arithmetic progression of length %, i.e.
A={ay,a1+d, -, a;+ (k- 1d}. Then 24 = {2a,,2a; +d,
2a0+2d,---, 2a,+2k-2)d}, ie. [24|=2k—1. This
shows that result of the previous theorem is best possible.
The following result is the simplest inverse theorem in
additive number theory.

Theorem 2. Let A be a finite subset of natural numbers
of cardinality k. Then |24|=2k —1 implies that 4 is an
arithmetic progression.

Proof: Let 4= {a;<ay<'<a}. To prove that A is
an arithmetic progression what we need to show is that
for 2<i<k-1 we have a;— a;,_1 = a;+1 —a;, which is the
equivalent of showing that 2a; =a; 1 +a;+1. All the terms
of the following sequence are distinct (being increasing)
and belong to 24.

ayta, ey tay,aytax,artas, e,
ai1ta,a;tasaitan, o,
ap1 tag, art ap. M

The length of this sequence is 2k — 1. Then [24|=2k — 1
implies that any element of 24 belongs to the sequence
given in eq. (1). This means that the only element of
24 which belongs to the interval (a; 1 +a;, a;+a;1) is
a;+a;. But a;  +au € (@1 +a;, a;+ai) < (24), so 2a; =
a; 1 +a;q V2<i<k-1,whichproves the theorem.

O

Theorems 1 and 2 characterize those sets A <  having k
elements and |24| < 2k. Freiman proved the following:

Theorem 3. (Freiman). Let 4 be a subset of natural
numbers and |4|=4k. Suppose [24|=2k-1+b<3k-3,
then A4 is a subset of an arithmetic progression of length
k+b.
For proof of the result see ref. 1.

A finite n-dimensional arithmetic progression is a set
of the form

{go tx1g1+ " +x,q,:0<x;<[;fori=1, -, n, where
40,91, " s qn. 11,1, e b

In 1964, Freiman discovered a deep and beautiful fact
about the structure of finite set of integers with small
sumsets.

Theorem 4. (Freiman): Let C>2. If 4 is a finite set of
integers such that |4| =k and |24| < ck, then 4 is a subset
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of an n-dimensional arithmetic progression (), where
|O|<c’k, and n and ¢’ are constants that depend only on
c.

Nothing is known, however, about the structure of the
finite set A, if, for example |4| =k and

4] < 17
for some 8> 0, or even if
24| < ck log k.

Nor is anything known about the structure of 4, if for
some />3,

|hd| < k™",

or even |hA4| < ck?.
Example: Let 4 be a subset of , |4|=k. Then Vhie |,
prove that |hA4| > hk — (h—1).

Now we shall discuss the basic inverse problem when
A is a subset of a finite abelian group G. In this case also
we have results analogous to those of the previous sec-
tion, where 4 was a subset of

Definition: An arithmetic progression in an abelian
group G is a set of the form {a+id:i=0,1,-, k—1}.
The group element d is called the common difference of
the progression, and k is called the length of the progres-
sion. The order of the group element d in G must be at
least k, which is to ensure that all elements of the pro-
gression are distinct.

We shall consider only a finite abelian group G. The
first question we can ask is whether there is a suitable
modification of Theorem 1 when A is a subset of the
finite abelian group G. In this case, we cannot have
|24| > 2|4|— 1, as the case when A= itself provides a
counter example. Also, as 24 C G, so if |4|>(|G]/2), then
also we cannot have |24|> 2|4| - 1.

Theorem 5. Let G be a finite abelian group. If 4,
B c Gsuch that |[4|+ |B|> |G|, then4 + B =G.

Proof: Take any geG. Then consider the set C=g—B=
{g—b: beB}. To prove geA+B, we observe that
the sets 4 and C cannot be disjoint, because otherwise
|4 U C|>|G]|. This gives the result.

U
Even the modified statement, [24|>min {|G|, 2|4|— 1} is
not true in general; for example, when A is a nontrivial
proper subgroup. But in the case when G= /p ,pisa
prime number, we have the following theorem.

Theorem 6. Let p be a prime number and 4, Bc /p
Then |4 + B|>min {p, |4|+ |B|- 1}.
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For the proof of the result see ref. 1.
The following theorem of Freiman—Vosper is analo-
gous to Theorem.

Theorem 7. (Freiman—Vosper): Let p be a prime num-
ber and 4 be a non-empty subset of /p . If A|=k<
(p/35) and |24|=2k — 1+ b <24k, then A4 is a subset of
an arithmetic progression of length k + 5.

The proof uses two fundamental methods in additive
number theory. The first is the estimation of exponential
sums to construct a ‘large’ subset of aset A< /p . The
second is the use of arithmetic arguments to replace the
set A of congruence classes with a set 7 of integers, such
that there is a one-to-one correspondence between the
elements of the subsets 24 and 27. The theorem is an easy
corollary of the following proposition and Theorem 3.

Let 4 be a set as in the statement of
and ve( /p )*

Proposition 1.
Theorem 7. Then, there exist ue /p
satisfying the following:

Given aeAdte
(mod p).

, 0<t<(p-1)/2, such that a=u+vt

We will show how to deduce Theorem 7 from this propo-
sition. For complete details of the proof of Theorem 7,
we refer the reader to ref. 1.

Proof of Theorem 7: To prove Theorem 7, we observe
the following:

@O If C, Dc /p such that C=uy +viD, where u;
/p ,vie( /p )* then C is a subset of an arithmetic
progression of length /, if and only if D is so.
(I} Let C and D be the sets as above and p be a prime
number not equal to 2. Then elements of C, 2C are in
one-one correspondence with D and 2D, respectively. So
we have |C|=|D| and [2D| = 2C|.
() Let B /p of cardinality /, such that b € B im-
plies that b =¢ (modp) for some re , 0<t<(p- 1)2.
Suppose further that |2B|=2/—1+m<3/-3, then B is a
subset of an arithmetic progression of length / + m.

To prove (III), we need Theorem 3. We define
Tp={te O<t<(p-1)2, t=b (mod(p) for some
beB} < . Then to prove (II), it is sufficient to prove

that 73 is a subset of an arithmetic progression of length
[+ m. The fact that Tz [0, (p— 1)/2] implies that ele-
ments of 2B and 273 <  are in one-one correspondence.
Then, using Theorem 3 we get (III). It is straightforward
to verify (I) and (II). Now from Proposition 1 we have
A=u+vB, where ue /p ,ve( /p )* and B satisfies
the hypothesis of (IIT). This gives the result.

U
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Ruzsa’ has proved the following result which is analo-
gous to Theorem 4.

Theorem 8. Let 7>2 be an integer and let G be an abe-
lian group in which the order of every element is at most
r. Let A< G be a finite set, [4|=n. If |4+ A|< om, then
A is contained in a subgroup of G such that

|H| < cn,

where ¢ depends only on r and a and is independent of #.

Now we will discuss some problems where properties
of A are determined by some unusual properties of ‘addi-
tive representation functions’ associated to 4.

For4c ,me ,thesolutions of the equations
ata’=n a,a’ €A

ata’'=n a,a’€da<sd

ata’=n a,a’€da<d

are denoted by ri(4, n), r(4, n), r3(4, n) respectively and
are called additive representation function associated
with 4. In case there is no ambiguity, r(4, n), 4, n),
r3(4,n) are denoted by ri(n), m(n), r(n). For example
when 4= , then the reader can verify that ri(6)=35,
r(6)=3, and r(6)=2. Also, when A={1,3,57,"},
i.e. the set of all odd natural numbers, then 72k — 1)=0
V1<i<3,ke ,andri(6)=3,7(6)=2and r3(6)=1.

Now we will discuss some problems where properties
of A are determined by some properties of () (i may be
1, 2 or 3). For further study of such problems, the readers
may refer to an excellent book by Halberstam and Roth?
and a survey article on this topic by Sarkdzy and Sos”.

Consider the case when r;(n) is monotonic. As r(n) are
always non-negative integers, so if r;(n) is monotonically
decreasing, then it is constant from a certain point on.
Thus it is enough to consider the case when r;(n) is non-
decreasing. Here, monotonic means monotonically non-
decreasing.

In 1941, Erdds and Turan proved that for an infinite set
A<, the representation function »(n) cannot be a con-
stant from a certain point on. Dirac and Newman proved
that the same holds with 7, (n) in place of r1(n).

Theorem 9. (Dirac and Newman; ref. 4). For an infinite
set A< , the representation function r»(n) cannot be a
constant from a certain point on.

Proof: Letf(x)=X,.4x" (for x real, |x| < 1).
Then the reader can easily verify that

S @+ )= Y n.

n=0
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If ro(n) =k for n > m, then

m+l
X

oo
S @+ D= Y = By () ki,
2 ~ 1-x
where P,(x) is a polynomial of degree <m. If x — -1
from the right, then the right-hand-side has a finite limit,
while the left-hand-side tends to +oo. This contradiction
proves the theorem.

O

Erdos er al’ proved the following theorem. The first au-
thor of this article® has provided a different proof of their
result and also improved it.

Theorem 10. (Refs 5 and 6) Let 4 be a subset of
Then we have the following:

M If for some noe , rim+1)>ri(n)Vn=ny, then
either 4 is a finite set or 4° contains all but finitely many
natural numbers.

(Here 4° denotes the set of all natural numbers ¢4.)

I 1If for some noe , rm+1)=rn) Vn=ng, then
for any Ne , the number of natural numbers €4° and
less than N is at most ¢ (In ), where ¢ is a positive abso-
lute constant.

(I) It is possible that 4 has infinitely many elements
and for any Ne , the number of natural numbers €4°
and less than N is at least ¢ N'°, where ¢ is a positive ab-
solute constant and also for some nge , ra(n+1)>r3(n)
Vn >ny.

Remark 1: One of the key steps in the proof of Theo-
rem 10 (I) is an observation by Erdds et al’® on ri(n).
Since in ri(n), the pairs (a;, a;) and (a;, a;) are considered
distinct, it is clear that ri(z) is an even function, except
when #/2 is an integer and (n/2) € 4.

Consequently, if we define

f)y=0if %eA and f(n) = 1if %s&A,
then r(n) = f(n) (mod 2).
Then r(n + 1) — r(n) =f(n + 1) — f(n) (mod 2).
Now recall the assumption of Theorem 10 (I) is that

rin+1)—r(n)=0 for all large n. If fin+ 1)— f(n) is odd,
then we immediately strengthen the given inequality.

1 if either % or ”;1 e 4

Thus, if we define d(n) =
0 else,

we getr(n + 1) — r(n) = o(n).

This strengthening enabled the authors to make strong
conclusions in Theorem 10 (I), and since no such streng-
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thening based on parity is known, it seems difficult to
prove strong results regarding r»(n).

Now can we possibly have a set 4 with r(n)=c for all
large n, and for some c¢>0? If such a set exists, then
Theorem 10 (I) applies and we would have either 4 as
finite or A° as finite. But if 4 is finite, then ¢ =0, and if
A° is finite, then 7(n) — o. We thus conclude that such a
set A does not exist. Now Erdds and Fuchs proved that it
is not even possible to have a set 4, such that the mean
value of r(n) over [1, N] is very close to c.

Theorem 11.
nite subset of

(Erdds and Fuchs; ref. 3). If 4 is an infi-
, then given any ¢ >0 we have

lim Sup M >O_
N—e N1/4(10g N)?

One important problem in number theory is the circle
problem, i.e. the estimate of the number of lattice points
in the circle x* + y* < N. Writing

ANY=[{(x,y):x,y€ ,x"+y" <N}|- 7N,

the problem is to estimate A(NV). If we apply Theorem 11,
when 4 = {12, 22, 32, -1, Le. 4 is the set of squares, then
we have

A(N
lim sup (—)_L >0.
N | NV (log N) 2

This special case is the classical theorem of Hardy and
Landau. (In this special case, as well in the general case,
it is possible to improve the power of (log N). We do not
go into these minor details here, even though these are
the bread and butter for number theorists.)

Consider the case when r;(n) is small. A set A4 is called
a sidon set if 7,(n)< 1 for all n. (Recall r,(n) is the num-
ber of representations of n=a;+a; with a;<a;) Let
A C[1, N] be asidon set. How large can |4]| be?

Clearly the map I: {(a;,a;): a;<a;; a,a;€A4} — [1,N]
defined by Ta;,a)=a;—a; is (1-1). Thus, |{a;a)):
a;<aja,a, €A} <N.

2
This gives A< N, yielding | 4|<+/2N +1.

By an ingenious argument, Erdds and Turan (see ref. 3)
proved that it can be improved to |4|< (1 +¢) «/ﬁ . It was
proved by Bose and Chowla (see ref. 3) that this result is
the best possible. (We warn the readers that we have ig-
nored the lower order terms in these statements). Bose
and Chowla constructed a set 4 < [1, N], such that 4 is a
sidonset and |[A|> 4 N.
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The construction of 4 by Bose and Chowla is as fol-
lows. For any prime p, consider , to denote the finite
field with p2 elements, and let otbe a generator of the cy-
clic group ", . Then for all c e p» we have unique a(c)
such that of ¢ =of and 1< a(cy<p® - 1. Then clearly,
A=Halc) ce p} C[l,pzf 1] is a sidon set having p
elements.

When 7;(n7) > 1, we can ask the following question:
Suppose A is an infinite <  such that r(n)>1 for all
n>ng. Then is it possible that 4 is such that r(n) is
bounded for all n?

Erdds and Turan conjecture that it is not possible. In
this connection, Erdds (see ref. 3) has proved by prob-
abilistic arguments that there exists a set 4 such that
ri(ny=1 for all n>ny and for some c¢>0, ri(n) is less
than ¢ In » for all n. (However no explicit construction is
known.)

But if we want the set 4 to satisfy that mean value of
ri(n) is bounded, then Ruzsa proved that it is possible.
Theorem 12. (Ref. 7). There is an infinite set 4
such that ri(n)=>1 for all n2>ny and there exists ¢ >0
such that

1

%[i 7’12(1’1)]< cVN e

Consider the parity of ,(n). 1If 4 is an infinite subset of

U {0}, then we set
Axy={a<x:a €4}

Nicolas, Ruzsa and Sarkézy asked the following ques-
tion:

Let A be an infinite subset of U {0} such that for
some ng€ , rp(n) is even for all n >ny. Then what can
we say about |4(x)| for sufficiently large x? How small or
large can it be?

Practically nothing is known about this question. Fix-
ing an 7€ {0,1}, it is easy to construct an infinite set
A< U {0} such that for some ny€ , we have r(n)=1
(mod 2) for all # > ng using greedy algorithm.

Algorithm: We construct a set 4 < U {0} recursively
by the following algorithm, such that ry(#)=i (mod2)
for all n > m, where m >3 is a fixed natural number.

(I) TakeanyB<{0,1,2,...,m— 3}, such that0 € B.

(I) Assume that A()=4N1{0,1,2,...,/} has been de-
fined so that rA{/),n)=i (mod2) for m-2<n<L
Then,

I[+1edifand onlyif r(4A(/), ]+ 1)=i— 1 (mod 2).
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Consider the case when r,(#n) is not equal to 1. Since the
question regarding r(n) being even for all n > n( seems dif-
ficult, let us ask (a hopefully simpler) question.

If 4 is a infinite subset of  such that r,(n) is different
from 1 for all n > g, how small can 4 be?

Let us start with an example.

Let A=1{2+2" k, le U{0}}, then ryn) is different
from 1 for all # > 10 and |4(x)| is around % (In x)z.

Nicolas et al.® proved the following theorem.

Theorem 13. If A4 is an infinite subset of  such that
r4d,n)y+ 1 for all sufficiently large natural numbers n,
then

Inln x ]3/2 1

>
Inx

limsup|A(x)|[ Z 50

The authors of this article have proved the following re-
sult.

Theorem 14. (Ref. 9) There exists an absolute constant
¢ >0 with the following property: for any infinite subset
A of  such that r(4,n)#1 for all sufficiently large natu-
ral numbers 7,

2
1
| A(x)|2c i for all x sufficiently large.
Inlnx

This shows that the example which we discussed here is
essentially best possible.
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Fast and efficient algorithms for
solving ordinary differential equations
through computer algebra system
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Ordinary differential equations (ODE) occur in seve-
ral branches of science and technology. One example
may be study of particle interaction in electrorheo-
logical (ER) fluids. These are fluids whose properties
change when they are exposed to an electric field.
These fluids have important applications in many
fields, automotive industries in particular. Calcula-
tions of interactions between particles suspended in
fluid are carried out through the solution of ODE with
regular singular point. Series solutions to such prob-
lems provide highly accurate results if a large number
of terms in the series expansion are included. Based
on this, several routines, to be used as a package in
Computer Algebra System Maple®, are developed to
solve the linear homogeneous ordinary differential
equations with a regular singular point. These fast
and efficient algorithms show significant improve-
ments over existing routines in terms of memory and
computational time requirements. The present algori-
thms provide the correct answer for many differential
equations much more efficiently. Using these tools, a
large number of terms in the series expansions can be
included to get highly accurate solutions of ordinary
differential equations.

COMPUTER Algebra Systems (CAS) are simply the pro-
grams which enable one to manipulate mathematical ex-
pressions symbolically. One of the biggest attractions of
CAS is their ability to manipulate long expressions. For
most computer literates, the word computing means
number crunching or numerical calculations. Manipula-
tion of complex mathematical expressions is considered a
daunting task for computers. Before computers appeared
on the scene, a calculation usually consisted of a mixture
of numerical calculation and calculation by mathematical
formulas or algebraic calculation. All the numerical cal-
culations were preceded by a manipulation of algebraic
formulas, if the work was to be within the bounds of
what is humanly possible. In the 19th century, several
large calculations have a substantial number of formula
manipulations. Among the famous calculations was Le
Verrier’s calculation of the orbit of Neptune, which
started from the disturbances of the orbit of Uranus, and
led to the discovery of Neptune. The most impressive and
probably the largest calculation with pencil and paper is
by the French astronomer Charles Delaunayl. He took 10
years to calculate the orbit of the moon as a function of
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