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AXISYMMETRIC MAGNETIC FIELDS AND FLUID MOTIONS*
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Enrico Fermi Institute, University of Chicago
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ABSTRACT

The equations of hydromagnetics appropriate for an incompressible inviscid fluid of finite electrical
conductivity are considered in case the magnetic fields and the fluid motions have symmetry about an
axis By using a known theorem that a solenoidal vector field can be expressed as a superposition of a
poloidal and a toroidal field, the equations are reduced to four equations for four governing scalars. In the
limiting case of infinite electrical conductivity, a general relation is derived which includes, as special
cases, the known theorems on force-free fields, isorotation, and conditions for hydrostatic equilibrium.
Some integral relations which follow from the four equations are also derived.

1. INTRODUCTION

The equations of hydromagnetics governing the velocity (v) and the magnetic (H)
fields in a fluid conductor present problems of considerable mathematical complexity.
The complexity arises, in part, from the nonlinearity of the equations. The nonlinear
terms are of three kinds: the terms (v-grad)v and H X curl H, representing the inertia
and the electromagnetic forces in the equation for v, and the term curl (v X H), repre-
senting electromagnetic induction in the equation for H. It is on this account that most
of the hydromagnetic problems which have been solved are those which allow a lineariza-
tion of the equations. The large class of stability problems which have been successfully
investigated in recent years is in this category. In these problems one supposes that an
external magnetic field is present, and one examines the behavior of the system in the
neighborhood of a well-defined stationary solution of the equations; this leads one to
characteristic value problems in linear equations (albeit of high orders). Similarly, in
current investigations of the dynamo problem (cf. Bullard and Gellman 1954; Elsasser
1955, 1956) by ignoring the equation for v and assuming v to be given, one reduces the
problem to a linear one for characterizing the magnetic field. While the class of such
linear problems which one might usefully investigate is by no means exhausted (cf. Chan-
drasekhar 1956¢), it would appear that hydromagnetics has now reached a stage of de-
velopment at which further understanding depends on considering the complete set of
equations. In this connection the possibility should not be overlooked that, by not con-
sidering all the equations of a problem, we may miss discovering certain essential novel-
ties which result as a consequence of imposing on a system conformity with two different
sets of laws: such as conformity with the laws of electrodynamics and hydrodynamics.
Thus there is some danger in being too exclusively guided by analogy with the behavior
of the system when it obeys only one or the other set of laws. An example of this has re-
cently been found (Chandrasekhar 19566).

It is the object of this paper to make a systematic beginning in the study of the com-
plete set of equations of hydromagnetics. However, the treatment will be restricted to
the case in which the fluid motions and the magnetic fields have symmetry about an axis.
It should be realized that this restriction to axisymmetry may have far-reaching conse-
quences, such as Cowling’s theorem (Cowling 1934; Backus and Chandrasekhar 1956)
on the impossibility of a self-excited homogeneous dynamo.

In addition to axisymmetry, it will be supposed that the fluid is incompressible and
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FIELDS AND FLUID MOTIONS 233

inviscid. The neglect of viscosity is justifiable in most cases (cf. Bullard 1956); but the
restriction to incompressibility (except in the context of the earth’s core) is not. Never-
theless, the latter assumption is essential if we are not to complicate a problem already
beset with considerable mathematical difficulties.

It will be shown that the equations derived under the restrictions stated enable a
unified treatment of the diverse “laws” (such as the law of isorotation) which have been
discussed in the literature. Also certain general integral relations will be derived which
exhibit the net effects of the interaction between the fluid motions and the magnetic field.

2. THE EQUATIONS OF THE PROBLEM

The equations of hydromagnetics appropriate for an incompressible, inviscid fluid of
finite electrical conductivity (o) are well known. They are (cf. Bullard 1956)

oH 1
——a—t——curl (mCuI'IH—UXH) (1)
and
v 1 _ /4 )
%%+ (v-grad) v — g curl H X H = — grad <;+z; , @
where 8 denotes the gravitational potential, p the density, and p the pressure. Further,
divH=0 and dive=0, (3)
Using the identity
(vegrad) v=curlv Xv-+grad (3 |v]?), @
we can rewrite equation (2) in the form
@—=LcurlHXH—curlva—grad<£+%lvl2+ﬂS). (3)
0t 4mwp p
Instead of H, it is convenient to introduce the variable
H
= (6)
h=T e

which is of the dimensions of a velocity. It is also convenient to make the equations non-
dimensional by measuring length in a certain unit R (appropriate for the problem on
hand),

¢ in the unit 47 oR?

and
h and v in the unit (4woR) 1. n

If we are dealing with the earth’s core, these units have the values (cf. Bullard 1954)
R=347X10¢cm,

47woR?=1.44 X 10% years , ®

and
(4wgR) ~1=7.65X 105 cm/sec .

In the units stated, the equations for h and v can be expressed in the forms

dh
37 = —.curl E ©)
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234 S. CHANDRASEKHAR
and
ov_ ¢ —grad @ (10)
EY; - gra ]
where
E=culh—v Xh, (11)
L=curl AXh—curl v Xv a2
and ‘
~Lryior+s. a3
We can eliminate @ from equation (10) by taking its curl; thus
9 curl v =curl Q. (14)
at

i

3. THE EQUATIONS IN THE AXISYMMETRIC CASE

As Liist and Schliiter (1954; see also Chandrasekhar 1956a) have recently pointed out,
any axisymmetric solenoidal vector field can be expressed as a superposition of a poloidal
and a loroidal field in terms of two scalars. Thus

) P o
h= wa—“z‘lm+wT1¢+5%(wP) 1., (15)
and
Y 1o ~
V= w—a—zlm'{‘lega‘l—aga(w U) 1., (16)

where @, ¢, and z define a system of cylindrical polar co-ordinates (with the axis of sym-
metry in the z-direction), 14, 1,, and 1, are unit vectors along the three principal direc-
tions, and P, T, U, and V are four scalars which are azimuth-independent.

As is evident from equations (15) and (16), the field derived from a poloidal scalar
has nonvanishing components only in the meridional planes, while the field derived from
a toroidal scalar has nonvanishing components only in the transverse ¢-direction. Thus
U defines currents which are entirely meridional, while V' defines motions which are en-
tirely rotational.

When we consider the vorticity of an axisymmetric solenoidal vector field, we find a
certain reciprocity: the poloidal field gives rise to a toroidal vorticity, and, conversely, a
toroidal field gives rise to a poloidal vorticity. Thus the current (which is proportional to
curl H) derived from a poloidal magnetic field is toroidal and conversely. Specifically,
we have

oT 19
Curlh= —w -é—z~ lw'_wA5P1¢+55'zg(w2T) lz (6%))
and
oV 19
curl v = —w*aﬁzlm_wA5U1¢+5%-(w2V) 1., (18)
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FIELDS AND FLUID MOTIONS 235
where
30
A5aw+m%+5? 1)

is the Laplacian operator for axisymmetric functions in five-dimensional Euclidean

space.
We now return to equations (9) and (14), which govern h and v. First, we find from
equations (15), (16), and (17) that

E=culh—vXh

—_ —_ aT__ . 2 . 2
—t-a v L @p) +T @D }1a
_{_g__ A5p+£)_a_( 2U)_a_gi(w2 )% (20)
19, o 9U o 3P
+§5»—(mr)+w1‘ c/g-43}
=Em1w +Etp1¢ +Ezlz (SaY) )
and, in terms of the components of E,
B = =5 1ot (522N 14 2 2 (aBy 1., @
Equation (9) now gives
d P
37 g - Y lat+@ T1¢+———(ZU2P) 1 ;
(22)
_9E, 0Fs c')E 19
—79—-1 oz a%(wEw)lz-
For the defining scalars P and 7T this equation implies
or_ K (29
at o]

and
oT 1 6Ea OE,

= (24)
at 9z o

Now, substituting for the components of E in accordance with equation (20), we find,
after some reductions, that

apP 1 9 (&P, »2U)

T R Y e =
and

aT _ d(V,®P) 3 (T, wU)

F {a(z,w) 3 (2, @) 2 (29
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Next, considering equation (14), we find that
L=curlh X h—curl v Xv

- { —AJ%(G}ZP) —T—(%(WT) +A5U5%(w2U) + 7 a%(mﬁV) §1m

P T D an2 Ve,
= e @) 5 @) + 5 @V) =S L @) {1, @
+i—wr QZ—)AP+G2V———|—w?§—gA5U%1
az i)
= 85}16)+ 2¢1¢+ 8;1; (Say) .
In terms of the components of &, equation (14) gives (cf. egs. [18] and [21])
d v 19
511° g ALt g @)L
(28)
d% 0% 68
= "——‘f m+< 2 G aw(w&c) 1..
From this equation we conclude that
9V _% (29)
0! (0}
and
AU _1/0% 0%,
~a =2 (55~ %) oo

Now, substituting for the components of € in accordance with equation (27), we find,
after some reductions, that

, 0V _ 0 @7T,wP) 9 (@V,wU)

(31)

3t d(s @) d(z,®)
and
QU _3 (AP, a?P) 3 (AsU, @2 U) oT> 9V
B ST (3, @) 3 (z.a) %9z %8s 32

Equations (25), (26), (31), and (32) are the basic equations of the present theory.
We shall rewrite them in the following forms:

9P 9 (P, w2 l)

3 —_—d = N T T
PheP = =y 43
oT _ 3 (T,&U) 9 (V,wP)
e TR Y EA) 3z @) .
L9V _ 3@, aP) _ 3@V, aU) 5
at d(z, @) a(z,@ '

and
oU 0o (AsP, w2P)
a! (2, m)

9 (AsU, w?U) T 6V2

+ =5 — —_— (36)

T 0(2,w) En 03z
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FIELDS AND FLUID MOTIONS 237

4. SOME GENERAL RELATIONS AND CONSEQUENCES

Some general consequences which follow from equations (33)-(36) will now be dis-
cussed. Consider, first, equations (33) and (34), which govern the magnetic field. It is ap-
parent from these equations that the poloidal field is unaffected by the presence of either
toroidal magnetic fields or rotational motions. There is thus, in Elsasser’s terminology,
no “feedback” from the toroidal to the poloidal field. However, there is a feedback from
the poloidal to the toroidal field through a coupling with the rotational motions. It
should be particularly noted in this connection that this coupling between the poloidal
magnetic field and the toroidal motions exists only in case of nonuniform rotation; for,
if V is constant, the Jacobian involving V in equation (34) will vanish and there will be
no coupling.

Thus equations (33) and (34) explicitly reveal what Elsasser (1955) has described as
the “remarkable topological asymmetry”’ in the feedback mechanism between the poloi-
dal and the toroidal fields.

Solutions of equations (33) and (34) in certain special cases are obtained in the paper
following this one (Chandrasekhar 1956¢); they disclose the extent to which internal
motions can influence the free decay of a magnetic field in a fluid conductor. These latter
considerations are relevant to the problem of the origin of the earth’s magnetic field.

a) The Limiting Case of Infinite Electrical Conductivity

We shall now consider the form of the equations in case the electrical conductivity
tends to infinity. In this limiting case the particular units (given in eq. [7]) which have
been used in writing the equations governing h and v in nondimensional variables lose
their meanings. Nevertheless, it is clear that, by introducing the variable h as defined in
equation (6) and continuing to measure the various quantities in their conventional
units, we can still reduce the equations to the forms (33)—(36), with the one difference
that the terms in AsP and AsT in equations (33) and (34) will be absent. Thus the equa-
tions for P and T in this limiting case are

L 9P _ 0 (@P, 1)
a¢ 0(z,)

37

and
or _o(T,=*U) 9 (V,a%P)

— & — = (38)
at d(z, @) d(z,®)

Equations (35) and (36) will continue to be valid.
If, in the limiting case considered, the conditions are further stationary, the relevant
equations are

3 (@P, *U) _

REICE >

(T, =2U) d(V,w"P) ~0, “0)
d(z,@) 0 (3, m)

d (@7, »*P) 93 (a*V, ®:U) ~0, 4
d(z, @) d(z, ®)

and
_a(AsP, @?P) |, 0 (AU, w2U) _ a1 aV?
= ETR

i & — (42)
0(z,w) 0 (z,®) 0z
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238 S. CHANDRASEKHAR
One integral of these equations is obvious: equation (39) implies that
»2P = Function (@2U) . (43)

b) The Law of Isorotation and Its Generalization
An interesting special case of equations (39)—(42) arises when

U=0, (49

i.e., when there are no meridional currents. In this case equation (39) is clearly satisfied,
and equations (40) and (41) would require that

V = Function (@?P) (45)

and
@2T = Function (w@?P) . (46)

Relation (45) is an expression of the law of isorotation of Ferraro (1937) and Alfvén
(1943). Relation (46) was derived earlier by Chandrasekhar and Prendergast (1956) as
one of the conditions for hydrostatic equilibrium of a magnetic star; but we now see that
the relation is more general and requires for its validity only the absence of meridional
motions.

It should be noted here that the law of isorotation would follow from equation (40)
equally if, instead of setting U = 0, we set T = 0. However, in this latter case, equa-
tion (41) will require

®2V = Function (a2 U) (Tr=0); (a7

and the elimination of &*U between equations (43) and (47) will make @*V a function
of @?P, contradicting the law of isorotation. Consequently, in the framework of equations
(39)~(42) we cannot suppose that T = 0 unless U = 0.
Returning to the case U = 0, we have yet to consider equation (42). When U = 0,
this equation is
d (AsP, »*P) or* AV _
“on® % ar % an “
The general solution of this equation can be found as follows:
In view of equations (45) and (46), we can define two functions G(@*P) and g(a*P)
such that

d
opy —=_ %

2G (w2P) 4 (=%P) wiT? (49)
and

2¢g (@?P) = ———(—i——— | & (50)

d (@?P) ’

With these definitions, it can be readily verified that

d (G/&?, wP) _ aT?

IO AT o
and

o(@g,@P)  _ oV? (52)

d(z,® 9z °
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FIELDS AND FLUID MOTIONS 239

" We cah now combine equations (48), (51), and (52) to give

9 (AsP+G/w?+w?g, »2P) _

3 (2. @ 0. (53)

Hence

A5P+&1'5 G (®%P) +2g (mP) = (w?P), (54)

where ® is an arbitrary function of the argument. Using equations (49) and (50), we can
rewrite equation (54) in the form

d av

+ & (&2P), (55)

which makes the dependence of P on T and V explicit.

It may be recalled here that in deriving equation (55) from equations (39)—(42) we
have made only one assumption, namely, that U = 0. Equation (55) therefore represents
the general integral of the equations in case U = 0.

Equation (55) includes as special cases the theorems on force-free fields (Liist and
Schliiter 1954; Chandrasekhar 1956a); Ferraro’s (1954) condition for hydrostatic equi-
librium in case T = V = U = 0; the law of isorotation; and, finally, the theorems of
Chandrasekhar and Prendergast (1956). It therefore represents the complete generaliza-
tion of these different theorems.

¢) A Stationary Solution of Equations (35)—(38)
It is apparent from equations (39)—-(42) that
P=UandT=V (56)

is a solution. It corresponds to a stationary solution of equations (35)-(38).
Equation (56) represents, under conditions of axisymmetry, the special solution

v = 7_({{;’;7 and %-{- 2lv |24 B = Constant S

of the general equations

—}l=curl(v X H) (58)
at
and
v 1 P, 1
—=-———curtl HXH—curl v Xv—grad (=43 |v[?+ B ). (59)
at  4mwp o

It has been shown (Chandrasekhar 1956d) that equation (57) represents a stable solu-
tion of equations (58) and (59). In case the fields and motions are axisymmetric, the pe-
riods of oscillation about the stationary solution (56) can be discussed by linearizing
equations (35)—(38) in the neighborhood of this solution. The analysis reveals some novel
aspects of hydromagnetic oscillations; they will be considered in a separate paper.

5. THE BOUNDARY CONDITIONS

For the sake of definiteness we shall suppose that the fluid is confined in a sphere of
radius R. Let this radius R be the unit of length chosen in § 2. Boundary conditions
are then required on the sphere |r| = 1.
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In spherical polar co-ordinates the expressions for h and v are

— 2) 1/2
he—2 (=P 1,— AT 0 by 1y r (1= w121, (60)
du r ar
and
« — 42) 1/2
v= = (1= U1, LB 0ty e (1= )12V L, D
ou 7 ar

where 1,, 15, and 1, are unit vectors along the arcs dr, rdd, and r sin dde in the three
principal directions. The corresponding expression for the current j is

4mj=curl h
— ,2) 1/2 (62)
=, = AT Oy 1y (1= ) P,
ou r ar
where now
92 49 ,1—pu? 0 4u 9
M=gntr oy T T e v oa (©)

The boundary conditions on the magnetic field are
handj-1, are continuouson r =1 . (64)

If no current flows in the volume exterior to r = 1, the continuity of the normal compo-
nent of j requires

j1,=0forr=1 (j=0forr>1). (65)

According to equation (62), this latter condition implies that

T=0onr=1. (66)

On the other hand, the continuity of h on » = 1 requires
P .
P and Ey to be continuouson 7 = 1. (67)

To apply the boundary conditions (67), we must know the equation governing P out-
side » = 1. On the same assumption as before regarding j (namely, j = 0 outsider = 1),
the equation is

AsP=0. (68)

The resulting conditions on P are explicitly derived in the paper following this one
(Chandrasekhar 1956¢, § 4).

It should be pointed out here that, in many astrophysical connections, the assump-
tion that no current flows in the external regions is not justifiable on physical grounds.
In these latter connections it appears more reasonable to suppose that the field outside
is force-free (cf. Liist and Schliiter 1954); if this assumption is made, it can be shown that
(cf. Chandrasekhar 1956q)

P=T=0onr=1 (force-free case) . (69)
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FIELDS AND FLUID MOTIONS 241

As for the boundary conditions on v, it is clear that we must in all cases require that
its normal component vanish on the boundary. According to equation (61), this re-
quires that

U=0onr=1,. (70)
In the absence of viscosity there are no other conditions on v.

6. INTEGRAL RELATIONS

Letting

_3(g, %) _ 3 0¥ 3¢ oy
OV =5 "9z95 9w dz’ an

we can rewrite equations (33)—(36) more compactly in the forms

@A P — @l %P— [@2P, w2 U] , (72)
AT — @ %l;—- [T, »2U] — |V, »?P], (73)
07 = (@, @P) — [@*V, U], 74
and
a5 07 = (P, @] — (AU, U]+ 0~ O 9

Quite generally, we may supplement these equations by the boundary conditions (cf.
egs. [66], [67], and [70])
T=U=0onr=1. @9

The following integral relations will now be derived from equations (72)-(76):

SJ&?{ (AsP): —TAT} dwd z = —1—” (T2 + V?) dwd 2

2 dt )

+ f e (Uas S04 % ap) dmds,
S [w@? (UAsT + VAsP) dwdz=ffw3<U%+V%> dwd z, (78)

1d
S [&*PAsPdwd 2 = 37 JJo*Prdwd z , (79)
oP
ffw5UA5Pdwdz=ffw5Umdwdz, (80)
and

S [ TAsPdwd z = [ [&b (T— +U —~> dwd z, (81)

where the integrations are over the whole volume.
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First, we state the following elementary lemma:
fff[¢,¢]dwd2=—ff¢[f,t//]dwdz, (82)

provided, at least, that one of the two functions, f or ¢, vanishes on the boundary. This lemma
is needed in the proofs of relations (77)—-(81) given below.

Multiplying equation (73) by ®?7T, integrating over the range of the variables, and
successively transforming the 1ntegrals by making use of the lemma (eq. [82]) and using
one or another of the remaining equations, we find

S [&*TAsTdwd 2 — Jo*T2dwd 2

2 dtf
= [[@T [T, »2U] dodz — [ [@?T [V, &?P] dwd 2
= — [[o?U [T, oT) dwd z+ [ [V [&*T, ?P] dwd z

il

2
—ffwf*U%Tz— dwdz+ffvgas%7‘/+ @V, @ U] }dadz

aT?

= —ffm3U—~d wd 3z —I— ffm3V2dwdz—ffw2U @2V, V] dwd 3

2 dt 83)

= _ffw3U<§_13_aV>d dz +2 dtffw*”Vzdmdz

= —ffw‘*U%wAs—g-— [AsP, @P] + [AsU, w2 U] % dwdz—}— ffw3V2dwdz

2 di

= — [[®@*UAs wadz—ffAsP[WU w?P] dwd 3+ J&3 Vidwd 2

2dtf

=—ffw3UA5aa—[t]dwdz+ffw3A5P(A5P—— )dad +2dtffw3V2dwdz

Rearranging, we have equation (77).
Similarly, multiplying equation (73) by @*U and integrating, we obtain

ffwsvaswadz—ffasvﬂdwdz—ffww{ T, @2U) — [V, a*P] } dwd

@9
=[[V [&U, a*P] dwd z = —ffa3V<A5P—%)> dwdz.

This proves equation (78).
Next, multiplying equation (72) by ®?P and integrating, we obtain

ffw5PA5Pdwdz—-2—?ld— [ [o'Prdwd z = [ [@?P [@?P, w* U] dwdz =10, (85)

which is equation (79). Equation (80) similarly follows from equation (72) after multi-
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plication by @?U and integration. Finally, multiplying equation (72) by @*7 and inte-
grating, we obtain the last of the required relations; thus

S [o*TAsPdwd 2 —ffwf’T%—l; dwd z

= [[@?T [@?P, a2 U] dod 3 = — [ [0?U [&?P, T dwd 3 86)

=ffw2U§w3%Itf+ [0V, & U] %dwdz=ffw5Ua—aIt£dwdz.

Applications of the integral relations derived in this section will be given in a later
paper.
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