Indian J. pure appl. Math., 26(6) : 521-529, June 1995

STATISTICS AND ITS APPLICATIONS TO
AGRICULTURE AND GENETICS

P. NARAIN

Indian Agricultural Research Institute, Pusa, New Delhi 110 012

Statistics has important and interesting intesfaces with agriculture including genetics
and breeding of crop plants and animals. The paper discusses some of them with
concrete applications to problems in agriculture and genetics. In particular, measuring
change in agricultoral surveys, partial diallel crosses useful in plant breeding, stochas-
tic processes in population genetics and statistical prediction in animal breeding are
discussed.

1. INTRODUCTION

The subject of statistics as we know deals with random phenomenon and
uncertainity. Its foundation is based on mathematics and probability and that part of
the subject has acquired the name of ‘mathematical statistics’. As an applied science,
however, it has grown into a body of knowledge which deals with measuring and
minimising uncertainty surrounding the data generated in a given discipline like
biology, agriculture, engineering etc. In fact, it is at the interface of statistical methods
and the discipline of application that statistics really exists in the form of a science
of the meaning and use of data. This makes statistical science as an inter- and
cross-disciplinary research activity. It is this characteristic of the subject of statistics
which Prof. Mahalanobis emphasised way back in thirties and to this end founded
the Indian Statistical Institute, Calcutta where besides statistics divisions, other units
like anthropometry and human genetics, agricultural science and physical and earth
sciences division etc. were set up to provide ways and means of interfacing statistics
with disciplines of application. Prof. Mahalanobis was indeed a visionary who could
foresee that statistics could only flourish if data required for this purpose are
generated in the Institute itself. A developed country like USA has only recently
realised this feature of statistics as can be seen from a report of Olkin and Sacks!4,
Co-chairmen of a Panel of the Institute of Mathematical Statistics and the consequent
setting up of an Institute of Statistical Sciences in North Carolina, USA.

I was fortunate indeed to have worked at the interface of statistics with
agriculture and genetics. At the Indian Agricultural Statistics Research Institute
(IASRI) where I spent almost thirty years of my career and where 1 was Director
for over ten years, I contributed to the development of such an interface. In fact,
right from the very inception of the IASRI in 1930 as well as the Indian Society
of Agricultural Statistics (ISAS) in 1947, both located at New Delhi, this interface
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between statistics and agriculture was emphasised which ultimately led to the
emergence of the discipline of ‘agricultural statistics’. Bearing this in mind I will
briefly discuss some of the ‘concrete’ applications of statistics to agriculture and
genetics.

2. MEASURING CHANGE IN AGRICULTURAL SURVEYS

In any development process, efforts are made to bring about desirable changes
and their measurement is of prime importance. Sample surveys, as an approach to
data collection and for deriving meaningful conclusions within limited resources of
budget and time constraints, are then the obvious choice. An important feature of
the agricultural surveys in India is the availability of hierarchical structure of the
geographical units like villages, households or cultivators within a village and fields
or animals within a household or with a cultivator. This provides natural choices for
sampling units at different stages of selection. Seasonality, as for instance in milk
production, is another significant feature in these surveys which requires estimating
changes over the years as well as changes within years. Repeating the survey on
several occasions is the common approach for estimating these changes. An important
issue in this context is the estimation of changes in populations integrating
simultaneous study of several similar characters on the basis of commoness of
problems and data collection approach. We discuss here briefly one such problem of
estimating the production of various livestock products like milk, eggs, wool and
meat through continuous surveys in which one product is estimated with higher
precision in one year while in other years changes are estimated on the basis of
smaller sample. The details can be seen in Narain et al.l2.

The sampling plan is that of a stratified multistage sampling with geographical
strata consisting of tehsils/talukas, clusters of two adjacent villages as primary
sampling units (psu’s) and households as second stage units (ssu’s). A year consists
of three seasons viz. summer, rainy and winter. With a rotation plan for three years,
successive sampling was used over the nine seasons {occasions) of the three years
in the selection of psu’s. A sample of m psu’s was matched over all the nine seasons
(I set). A sample of (n — m) psu’s was matched over the same seasons in different
years (I set). In a specific year, this sample of n psu’s was supplemented by (n' - n)
psu’s in each season (Il set).

If we take a specific character like milk, the parameters of interest are seasonal
and yearly averages and changes of number of animals in milk/milch animals, total
milk production and average milk yield per day per animal in milk. Let x denote
the character as the number of animals in milk, x;, (t = 1, 2, 3) be the average
number of animals in milk per psu for the #-th set in the jth season of the ith year.
Similarly we can define for number of milch animals and milk production. Further
Eij(1,2+3) denotes the average based on total data pooled over sets I, II and III defined
above.

With milk as the main character, there are years of two types — year I in which
milk is the main character and years II and III in which it is the secondary character
when main character could be eggs/wool/meat. The Minimum Variance Linear
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n

Unbiased Estimator (MVLUE) of x;, the average number of animals in milk per psu
may be obtained as
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)_(ij= E E au(z)(flj(1+2+3)‘)_c1j(x))

j=11=1

3 3
+ 2 2 (X joy = Xi j2) + X 1)
=2 j=1

where ' = 3 fori =1 and ¢ = 2 for i = 2 and 3. Here a’ s may be optimised
by minimising the variance of the estimator. In view of Eckler’s result!, this form
of the linear estimator will lead to MVLUE. This estimator has got 15 coefficients
of a’s and may be written as
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where z's are zero functions with their expectations as zero. This leads to equation
of the form

where P is the variance-covariance matrix of
z2 = (21, - 215)

A is the vector of a’s and B is the vector for covariances between z’s and X,
With these MVLUE estimators of seasonal averages, any linear combinations of these
parameters can be estimated by the same linear function of the corresponding
estimators.

Although this procedure ensures minimum variance linear unbiased estimation of
various seasonal and yearly averages and their changes, the procedure is somewhat
complex, requiring solution of a large number of equations. The simplicity of
recurrence relationships of MVLUE estimators, normally available in successive
sampling under specific correlation models given by Yates!8, Patterson!> and
Tikkiwall?, is not available here in view of the seasonality of the characters. The
correlations between seasons of the same year are expected to decline with time but
those between the same seasons of consecutive years are likely to be high again. A
somewhat approximate approach may be to resort to various difference estimators or
some linear estimators with lesser number of constants. One such estimator for the
average number of animals in milk per psu for the jth season of first year was
considered as

A
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where a, b and ¢ were obtained by minimising the variance of x; and X, denotes
the average based on sets II and III combined. Evidently, this estimator was not
MVLUE but it performed reasonably well.

3. PARTIAL DIALLEL CROSSES BASED ON EXTENDED
TRIANGULAR ASSOCIATION SCHEME

Often a plant breeder is required to evaluate the general combining ability (gca)
and specific combining ability (sca) involving a large number of inbred lines for
choosing the best cross amongst them. Sometimes, he is required to estimate the
genetic components of variance and covariance for various economic characters with
a view to exploiting them by suitable breeding methods. For this purpose ‘diallel
cross’ technique, in which all possible single crosses among a group of inbred lines
are raised, is used. With the exclusion of reciprocal crosses and parental inbreds,
there are N = n(n — 1)/2 possible single crosses among a set of n lines which are
to be tested in a suitably replicated randomised design. This number increases rapidly
with increase in n. With facilities available for testing only a limited number of
crosses, a diallel cross may therefore be possible only when n is relatively small.
However, if a small number of lines only are included, the estimates of the variances
of the gca and sca among the whole population of potentially available lines is
subject to large sampling errors and many potentially high yielding lines may be left
completely untested. It is, therefore, necessary to have a large number of inbred lines
but raise only a sample of all possible crosses amongst them. Such a diallel cross
is known as ‘partial diallel cross’ (PDC). Several workers such as Kempthorne,
Curnow, Narain, Arya and others have discussed various statistical designs for
performing the PDC’s. Often the structure of a partially balanced incomplete block
(PBIB) design is made use of. This is because of the one-to-one correspondence
between the complete diallel cross (CDC) and balanced incomplete block (BIB)
design with 2-plot blocks. Similarly, there is a one-to-one correspondence between
PDC and PBIB designs with two plots per block and two associate classes or three
associate classes or in general m associate classes. In this case, however, the property
of balance possible with CDC is disturbed and we may have different variances for
different comparisons. The efficiency of the PDC then depends on the average of
the variances over all the comparisons. We discuss briefly the PDC based on
extended triangular association scheme (Narain et alll).

Let the number of parents n be of the form p(p — 1) (p ~ 2)/6 where p is an
integer greater than 3. Now denote a parent by a triplet abc, where a takes any
value from 3 to p, b takes values from 2 to (¢ — 1) and c takes values from 1 to
(b — 1). All the parents can then be numbered off into (p — 2) different triangles
Tl’ T2, neey T(p_4), T(p__3) and T(p—Z) of orders (p - 2) x (p - 2), (p - 3) X (p - 3)
.. 2 x 2 and 1 x 1 respectively, the number of parents (triplets) in the ith triangle
T;, therefore being (p ~ i)(p — i — 1)/2. Now three different types of PDCs known
as Extended Triangular Design (ETD) can be constructed :
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Design 1

We sample all the crosses of the type abc x def, where a, b, ¢, d, e and f are
all distinct. The number of times the parent p (p — 1) (p —~ 2) of the triangle T; is
involved in crossing with other parents is then

P-2)
si= Y (-D@E-i-1)/2=(p-3)(p-4) (p-5).
im4

The same is true for every other parent. The resulting sample would then consist
of (ns;)/2 crosses.

This procedure corresponds to picking up the third associates of each treatment
in the extended form of triangular association scheme given by John® and pairing
the treatment with each member of the associate class. The number of third associates
would be s,.

Design 11

We sample all the crosses of the type abc x def where one of the letters is
common resulting in three categories of crosses. The number of times each parent
is involved in crosses with other parents becomes

s; = 3(p - 3) (p - )2

which happens to be the number of second associates of each treatment in the
corresponding design.

Design HI

We sample all the crosses of the type abc x def where two of the letters are
in common leading to three categories of crosses. The number of times each parent
is involved in crosses with other parents then becomes

53 =3(p -3
which happens to be number of first associates of each treatment in the design.

The analysis of PDC constructed above follows the pattern of the analysis of
three-associate PBIB design given in Rao!®.

The average variances of the differences between the gca effects of any two
parents happen to depend on p. It decreases with increase in the value of s; (or
s, or s3). The efficiency of the ETD designs vis-a-vis Circulant Design (CD) of
Kempthome and Curnow®, for the same number of crosses sampled, is always greater
than one. The Design I is found to be much more efficient than either Design II or
Design III.
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4. STOCHASTIC PROCESSES IN POPULATION GENETICS

Perhaps the most important and advanced application of statistical science to
genetics is in relation to the development of mathematical theory of populanon
genetics. Fisher, Haldane and Wright contributed significantly by developing
deterministic and stochastic models in this context. However, application of stochastic
processes, particularly the diffusion process to population genetics, indicating the
effect of finite population was greatly advanced by the works of Kimura of Japan
and Crow of USA. This development initiated vigorous efforts by eminent
mathematicians and statisticians to understand the process of gene substitution not
only in classical terms but also at the molecular level.

When we study genetic differences between individuals in an infinitely large
random mating population, the most important principle is Hardy-Weinberg law on
the constancy of gene and genotypic frequencies in the absence of directed forces
to change the frequencies of genes in a particular direction. Selective processes due
to differential fertility of parent modify the Hardy-Weinberg law. In this connection,
one of the important principles having bearing on natural selection is that of Fisher’s
‘Fundamental Theorem of Natural Selection’ which states that the rate of increase in
the average fitness of the population is equal to the additive genetic variance in
fitness of that population. Random changes in gene frequency due to finite population
size results in random fluctuations of gene frequency in a population over time
because of random sampling of gametes necessary to form a new generation. This
phenomenon has been given the name ‘random genetic drift’.

Mathematically, the stochastic process of gene frequency change can be
approximated as a diffusion process with the random variable x representing the
frequency of a gene A with time parameter (¢) changing continuously. At a particular
given time, we have now a ‘gene frequency distribution’ with density function flx, f).
It is possible to show, by methods often used in physics, that this density function
satisfies Kolmogorov forward equation

U 22 ) fix, 0]~ i) fix, )

with m(x) and v(x) as given instantaneous drift and diffusion coefficients respectively.
These represent respectively the expected mean change as well as the variance of
change in gene frequency. By taking particular values of these various parameters
and solving the resulting partial differential equations, it is possible to arrive at an
analytical solution for the gene frequency distribution under various situations. Be-
sides, one can also determine the ‘probability of fixation’ of a mutant, being favoured
during selection by solving the Kolmogorov backward equation

fg.x0) A9 Pfgxn) mg )Bﬂq,x 3]
ot 2 aq?

where g, the initial gene frequency at time ¢ = 0, is now a random variable with
frequency x as fixed and the process is considered retrospectively by reversing the
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time sequence. When x = 1, fig, 1; £) is denoted by u(q, f), the probability of fixation
of a gene by time t.

In considering the population dynamics of mutant substitution, we need, in
addition to the probability of gene fixation, the ‘average length of time involved for
each gene substitution’. For getting quantitative estimates of time to fixation, a
general theory based on diffusion approximation as well as Markov chain
methodology was developed by Narain”8. This involves conditioning the diffusion
process or the Markov chain for the contingency of eventual fixation of the gene.
In the former case it leads to conditioned forward as well as backward diffusion
equations with modified drift coefficients but with the same diffusion coefficients as
in the case of the unconditional process. Using the backward form of the conditioned
diffusion equation, one can then develop differential equations for obtaining the
various moments of the distribution of time until fixation of a gene. For instance,
in the case of pure random drift m(q) = 0, g) = q(1 - q)/2N, where N, denotes
the ‘effective’ population size which is approximately equal to the number of breeding
individuals in one generation and is usually smaller than N, the population size, due
to the distribution of progeny number per individual deviating from Poisson
distribution with mean 2. Then the average time until fixation is found to be

Mdq)=—4 e“—;i)logeu—q).

5. STATISTICAL PREDICTION IN ANIMAL BREEDING

Statistics is concerned with the development of scientific methods of induction
for prediction from quantitative data. The statistical inference attempts to minimize
the arbitrariness of induction by evoking deductive methods to a large measure. This
is the background to the development of the classical statistical science in terms of
the theories of estimation, testing and decision making by Fisher, Neyman, Pearson
and Wald. In particular, Fisher?, while talking about the estimation stated that the
objective of the statistical method is reduction of data in such a manner that the
whole of the relevant information contained in the data is retrieved while excluding
all the irrelevant information. This led him to the issue of specification which he
dealt with by specifying a distribution of the observed characteristics. For instance,
if we have a sample of yields corresponding to different doses of fertilizer in an
agricultural experiment, we first specify the relationship between the expected yield
Y and the fertilizer x by a model, say,

Y =a(l - exp (- k (x — b))).

Then we take the observed yields as normally distributed about ¥ as mean and
variance o2, We then have the problem of estimating a, k, b and o? in the best
possible manner. In terms of a simple model, we state y = Y + e, where the error
e is assumed to be normally distributed with zero mean and variance o2 But we
never think about estimating e itself, and go to the estimation of the second degree
statistic o2 If we estimate e, we can predict Y for future experiment. It seems
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therefore that a more general approach to the whole issue is to talk about prediction
in the statistical sense. In fact the purpose of any agricultural experiment is prediction
i.e. say, out of the two varieties being compared, which one shall we use in the
future? In recent times therefore efforts have been made to develop procedures of
estimating random effects. One such procedure is Best Linear Unbiased Prediction
(BLUP) which has been extensively used in the field of animal breeding.

It seems the whole issue can be given a unified treatment by developing a
general prediction theory (Harville). We consider predicting the value of an
unobservable random variable x based on the value of a n x 1 observable random
vector y where the joint distribution of x and y has first and second moments denoted
by

ue = E(x), p,=E(®), of = Var(x), oy, =Cov (y,x) and V) =var (y).

We assume that p, belongs to a known vector space and that p, is a known
linear combination of the elements of J,, This means W, = XB and p, =47 P where
B is a px 1 vector of unknown parameters, X is a n x p known matrix of rank p*
and A is a px 1 known vector that is expressible as A = X"k for some vector k. The
quantity o and the elements of o,, and V, are assumed to be known functions

of an unknown parameter vector @ whose value is restricted to a known set

Q and V, is assumed to be non-singular (for all @€ Q). Apart from the linearity of
the mean structure, these assumptions mean that of, o,, and V, are unrelated to

u, and 4, When we take the special case with o’ = 0, x equals A7 B with probability

one. The problem of predicting the value of x is then equivalent to that of inference
about fixed effects x = A7 B in the classical sense.

To give one example of the problem of prediction, the evaluation of the breeding
value of an individual can be regarded as a statistical problem of prediction — to
predict an unobservable random variable (the breeding value) with the help of a set
of observed random variables (the averages of the phenotypic values of the concerned
relatives). We may be interested in predicting the breeding (genetic) value of a bull
with the help of observable records of a given number of progeny of the bull. The
form of the joint distribution of records of progeny and the genetic value of the bull
is not known as well as the first moment of the distribution is also not known. But
only the second central moment is known. In such a case BLUP, introduced for the
first time by Henderson®, can be used. In this method, the linear function of the
records which has the same expectation as the genetic value to be predicted and
which, in the class of such functions minimizes the average of the squared -errors in
prediction, is the desired BLUP. When the joint distribution is taken as bivariate
normal with numerically known values of the first and second moments, the
correlation between the conditional mean of the genetic value, given the records of
progeny and the progeny mean gives the accuracy of the progeny test which is found
to depend on the number of progeny and the heritability of the trait. Introduction of
auxiliary traits in such problems improves the accuracy of the progeny test10:13,
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