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1. Introduction

The phenomenon of nuclear magnetic resonance
(NMR) involves placing magnetically active nuclear
spins embedded in a gas, liquid or solid phase in a
constant, large and uniform magnetic field, causing a
splitting of magnetic energy levels. Energy can be
absorbed by these spins from a resonant radio-
frequency (RF) field causing transitions between
these levels. Immediately following this absorption,
the spins start to exchange this energy among them-
selves and also pass it on to other degrees of freedom,
that is, the spins start to relax. Relaxation is central to
the NMR phenomenon as a necessary prerequisite for
its detection. It is also used as a probe for obtaining
information on the local environment of the spins and
about the dynamics of the molecules in which the
spins are embedded.

One of the most important interactions that couples
nuclear spins to each other and to the environment is
the dipole–dipole interaction between the spins. In
static solids, the dipolar interaction provides only a
static coupling between the spins and causes mutual
exchange of energy within the spin system, but does

not provide any coupling to the outside environment.
In other words, it provides no contact with the lattice
and causes no relaxation. However, if the internal
motions in solids are at rates comparable to the
Larmor frequency, the dipolar interaction becomes
time dependent and couples the spins to the rotational
motion and acts as a mechanism for transferring the
energy from the spin system to the rotational degrees
of freedom and causes spin–lattice relaxation. In
liquids, the intramolecular dipolar interaction,
between the spins of the same rigid molecule,
becomes time dependent due to rapid molecular
reorientations. Intermolecular dipolar interaction
(between the spins of two different molecules)
becomes time dependent additionally due to trans-
lational motion. There are dipolar interactions
between several spins at the same time, many of
which have identical time dependences arising from
the same reorientational or translational motion.

Additionally, there are other sources of relaxation
for the nuclear spins. The electrons surrounding the
nuclei contribute to the magnetic interactions in
several ways. In paramagnetic systems, the electron
spin has a strong coupling with nuclear spins and can
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cause rapid relaxation of nuclear spins, resulting in
very short lifetimes of the excited nuclear magnetic
states giving rise to broad NMR lines. In diamagnetic
systems, this strong interaction is absent as the elec-
tron spins are paired. However, the applied magnetic
field B0 causes an induced precession of the electrons,
which produces a magnetic field at the site of the
nucleus. This induced field which is small compared
to B0 (only parts per million, ppm) and proportional to
the applied field, causes a shift in the resonance
frequency of the nuclear spins known as the chemical
shift. This field, hence the shift, is dependent on the
orientation of the molecule with respect to the applied
magnetic field. In single crystals, the shift has a
definite value for each orientation, giving sharp
shifted resonances; in powders, there are a large
number of orientations, yielding broad powder
patterns; in liquids, it becomes time dependent and
for isotropically reorienting molecules, only the
trace of the shift tensor survives, yielding a chemical
shift for a functional group and different chemical
shifts for different functional groups. However, the
time-dependent part of the chemical shift tensor (if
anisotropic) causes relaxation of the nuclear spins.
The chemical shift anisotropy (CSA) relaxation has
been a well-known source of relaxation of nuclei with
large CSA tensors such as13C, 15N, 19F and 31P.
However, with the use of high magnetic fields for
NMR studies, this mechanism is becoming important
even for smaller CSA tensors of nuclei such as
protons. There are yet other mechanisms of relaxation
of spins such as the spin rotation interaction and scalar
relaxation of first and second kinds [1]. In addition,
nuclei having spin angular momenta greater than (1/2)
have a quadrupole moment. This quadrupolar interac-
tion becomes time dependent due to rapid fluctuations
in electric field gradients at the site of the nucleus and
causes rapid relaxation of such nuclei. Quadrupolar
relaxation of nuclei with spins greater than (1/2)
usually dominates all the other relaxation processes
in diamagnetic systems.

Thus there are several mechanisms acting simulta-
neously by which nuclear spins can relax. The simul-
taneous presence of various mechanisms gives rise to
cross terms between these mechanisms. These cross
terms, known as cross-correlations, are the interfer-
ence effects in relaxation between distinct interactions
with the same tensorial character, have been known

from the early days of NMR [2,3] and repeatedly
rediscovered. In the 1950s, it was observed that the
ESR spectra of various paramagnetic centres in solu-
tion (copper complexes, vanadyl ions, etc.) split into
several lines by hyperfine interactions with nuclear
spins, had different widths for the various lines, a
description of these experiments, along with the refer-
ences to the original articles can be found in
Ayscough [4] and Artherton [5]. The origin of this
effect was traced to an interference between the aniso-
tropic electronicg factor and the electron–nuclear
couplings by McConnell [6], who also gave an
approximate solution of the relaxation equations. An
extensive theory of electron resonance linewidths,
including the effect of quadrupolar interactions and
chemical exchange, was given by Freed and Fraenkel
[7]. In high-resolution liquid state NMR, the effects of
cross-correlations were observed in double resonance
experiments used for studying the relaxation of
coupled spins [8–12].

The mathematical aspects of the theory of cross-
correlations were put into a sound footing by the
works of Schneider [13–16], Blicharski [17–20],
Hubbard [21], Pyper [22,23] and others. Later,
the field of NMR saw the extraction of useful
physiochemical information from these, which was
illustrated by the work from the groups of Vold
[24–29], and Grant [30–33]. In these early works, it
was shown that while cross-correlations lead to differ-
ential line broadening of resolved multiplets, they also
lead to non-exponential spin–lattice relaxation. Many
early observations concentrated on the latter feature,
even though it was well known that there can be
several sources for non-exponential recovery
[34,35]. For example, while non-exponentialT1

behavior of methyl groups in solids due to cross-
correlations was predicted by Hilt and Hubbard [36],
it was pointed out that in powder samples and in single
crystals, the multiple orientations of methyl groups in
a unit cell can also lead to multi-exponential behavior
of spin–lattice relaxation [37]. Careful experiments
on single crystals with a single orientation of methyl
groups established the presence of cross-correlations
in methyl groups. However, unequivocal evidence for
the presence of cross-correlations in spin–lattice
relaxation were obtained by the observation that
different lines of a multiplet are found to relax at
different rates giving rise to a “multiplet effect”
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[38–46]. Currently, the manipulation of multi-spin
order by multi-pulse NMR methodologies leads to
the measurement of cross-correlations systematically,
opening up new areas of interest. Interest in these
cross terms has been further rejuvenated in recent
years due to a rapid development of NMR methodol-
ogy for structure determination of biomolecules using
saturation transfer experiments also known as nuclear
Overhauser effect (NOE).

The development of 2D and multi-dimensional
NMR spectroscopy made it possible to obtain reso-
nance assignments of large number of biomolecules
and to obtain large numbers of internuclear distances
using NOE, resulting in the calculation of 3D struc-
ture of the molecules in solution [47–49]. The infor-
mation on internuclear distances is usually obtained
using qualitative estimates of NOE intensities.
However, attempts are often made to obtain accurate
quantitative distances from the NOE intensities [50].
In all such cases, it becomes necessary to probe the
saturation transfer process in detail. A semi-quanti-
tative estimate is often made by including the simul-
taneous presence of several relaxation mechanisms
and spins but by neglecting the cross terms between
the various relaxation mechanisms. In recent years,
attention has been focused on the contributions of
these cross terms. Several justifications have been
given for their neglect in NOE measurements. One
of the main justifications is that the multiplets of a
spin are often not resolved, canceling out the first-
order differential effect of cross-correlations, or that
a 908 measuring pulse can suppress the multiplet
effect. Since the dimension of the relaxation matrix
to be handled for inclusion of cross-correlations
increases rapidly with the number of interacting
spins, their inclusion requires a very convincing justi-
fication. Several authors, on the other hand, have
pointed out that these cross terms can be put to good
use by obtaining additional and often crucial informa-
tion on the structures of molecules, molecular reor-
ientations and internal motions [51–57]. Furthermore,
in recent years, with the availability of higher
magnetic fields which enhance the contribution of
CSA to relaxation and in particular its cross terms
with other dominant mechanisms, the study of cross-
correlations has become attractive. Significant effects
of CSA–dipole, dipole–dipole and quadrupole–
dipole cross-correlation have been observed in recent

years, especially in transverse relaxation of coupled
spins.

This review is devoted to describing the work that
has been carried out in this field in recent years. There
are already several outstanding reviews on relaxation,
which treat cross-correlations in some detail by,
Werbelow and Grant [58], Vold and Vold [59],
Canet [60] and the recent ones by Bull [61] and
Werbelow [62]. The present review is organized in
the following manner. Section 2 covers the basic
Redfield theory of relaxation, points out the contribu-
tion of cross terms to the relaxation elements and
separates out the longitudinal and transverse relaxa-
tion. Sections 3 and 4, respectively, cover the contri-
bution of cross-correlations to longitudinal and
transverse relaxation and their experimental observa-
tion. Section 5 deals with cross-correlations in the
rotating frame and Section 6 with the dynamic
frequency shift (DFS). Section 7 deals with other
recent experimental observation of cross-correlations
and Section 8 deals with experiments that avoid cross-
correlations.

2. Theory

2.1. Equation of motion

The von Neumann–Liouville equation, which
describes the time evolution of the magnetic reso-
nance phenomenon using spin density matrixs(t)
can be written as [1]:

ds�t�
dt

� 2i�H0 1 H 0�t�;s�t�� �1�

where H0 is the time-independent part of the
Hamiltonian which contains the spin Hamiltonian
andH 0(t) describes the time-dependent part, which
contains the relaxation Hamiltonians. This equation is
solved using second-order time-dependent pertur-
bation theory, by first removing the major time
dependence via transformation to the interaction
representation using the transformation operator:

T � exp�iH0t�; �2�
yielding,

ds p�t�
dt

� 2i�H 0p�t�;s p�t��; �3�
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where

s p�t� � Ts�t�T 21 �4�
and

H 0p�t� � TH 0�t�T21
: �5�

Eq. (3) can be solved by successive approximations as
[1]:

s p�t� � s p�0�2 i
Zt

0
�H 0p�t 0�;s p�0�� dt 0

2
Zt

0
dt 0
Zt 0

0
dt 00�H 0p�t 0�; �H 0p�t 00�;s p�0���:

�6�
Taking the time derivative of this equation, one gets

ds p�t�
dt

� 2i�H 0p�t�;s p�0��

2
Zt

0
dt 0�H 0p�t�; �H 0p�t 0�;s p�0���: �7�

Since H 0(t) is a stationary random function, so is
H 0p�t�: On substitutingt � t 2 t 0; after taking the
ensemble average and making several approximations
[1] namely; (i) H 0p�t� ands p�0� are not correlated
and can be separately averaged; (ii) assuming
H 0p�t� � 0 where the bar indicates an ensemble aver-
age, the first term on the right-hand side (RHS) is
zero; (iii) in the second term on the RHS,s p(0) can
be replaced bys p(t) and all higher order terms are
neglected; (iv)s p(t) is replaced bys p�t�2 s�∞� �
s p�t�2 s0; where the system relaxes towardss0; (v)
the integral on the RHS can be extended to∞ since the
memory betweenH(t) andH�t 2 t� only lasts for a
short time, one obtains:

ds p�t�
dt

� 2
Z∞

0
�H 0p�t�; �H 0p�t 2 t�;s p�t�2 s0�� dt:

�8�
Taking matrix elements of the above equation in the
eigenstatesual; ubl of the unperturbed Hamiltonian
H0 with eigenvaluesva;vb; one obtains [1]:

ds p
aa 0 �t�
dt

�
X
bb 0

exp�i�vaa 0 2 vbb 0 �t�Gaa 0bb 0 �s p�t�2 s0�bb 0

�9�

wherevaa 0 � va 2 va 0 is the frequency of the tran-
sitiona! a 0 andG the relaxation superoperator such
that its elementsGaa 0bb 0 connect the time evolution of
sbb 0 to that ofsaa 0 : Here due to the stationary nature
of H 0(t), elements ofR matrix (coefficientsGaa 0bb 0)
become independent of time and due to the Hermitian
nature ofH 0(t), one obtains the following symmetry
relations:

Gaa 0bb 0 � G p
bb 0aa 0 � G p

a 0ab 0b � Gb 0ba 0a: �10�

Elements ofG are linear combinations of spectral
densities given by:

Gaa 0bb 0 � jaba 0b 0 �vab�1 jaba 0b 0 �vb 0a 0 �

2 dab
X
g

jb 0ga 0g�vb 0g�2 da 0b 0
X
g

jagbg�vgb�

�11�

where the spectral densities are the Fourier transforms
[63] of the correlation function and are defined as:

jaba 0b 0 �v� �
Z∞

0
Gaba 0b 0 �t�e2ivtdt

� 1
2

Z∞

2 ∞
Gaba 0b 0 �t� cos�vt� dt

2 i
Z∞

0
Gaba 0b 0 �t� sin�vt� dt

� Jaba 0b 0 �v�2 iKaba 0b 0 �v�: �12�

HereGaba 0b 0 �t� is the correlation function,Jaba 0b 0 �v�
and Kaba 0b 0 �v�; respectively, are the real and
imaginary parts of the spectral densities. Substituting
Eq. (12) in Eq. (11) one can write:

Gaa 0bb 0 � Raa 0bb 0 2 iLaa 0bb 0 �13�

where

Raa 0bb 0 � Jaba 0b 0 �vab�1 Jaba 0b 0 �vb 0a 0 �

2dab
X
g

Jb 0ga 0g�vb 0g�2da 0b 0
X
g

Jagbg�vgb�

�14�
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and

Laa 0bb 0 �Kaba 0b 0 �vab�1 Kaba 0b 0 �vb 0a 0 �

2 dab
X
g

Kb 0ga 0g�vb 0g�2 da 0b 0
X
g

Kagbg�vgb� �15�

The relaxation matrix (G ) therefore, contains a real
part (R) and an imaginary part (L). The real partR,
which containsJ(v ) contributes to the relaxation. The
imaginary partL, which containsK(v ) can be identi-
fied with a frequency shift, known as the “dynamic
frequency shift” (DFS) [64,65]. The DFS has been
observed in several cases, which will be discussed
separately in Section 6 of this article. The major
emphasis in this article will be on relaxation,
described by the real part of the relaxation matrix. It
may also be noted that while

R�v� � R�2v�; L�v� � 2L�2v�: �16�
The second equation of Eq. (16) states thatL�0� � 0;
sinceL is odd and continuous, that there is no contri-
bution to the DFS from zero-frequency spectral densi-
ties, or in other words, there are no adiabatic
contributions to the DFS. This also means that the
time evolution of populations are unaffected by the
imaginary part of spectral densities. The correlation
functionGaba 0b 0 �t� is given by,

Gaba 0b 0 �t� � auH 0�t�ub
 �
a 0uH 0�t 2 t�ub 0
 �p �17�

where the bar represents an ensemble average. The
relaxation Hamiltonian may contain several terms
and can be written as:

H 0�t� �
X
n

H 0
n�t� �18�

each representing a particular interaction which, for
example, can be dipolar interactions between pairs of
spins or CSA relaxation of a spin. The correlation
function will then contain several auto and cross-
correlation terms given by:

Gaba 0b 0 �t� �
X
n

kauH 0
n�t�ublka 0uH 0

n�t 2 t�ub 0lp

1
X

n,n0;n±n0
kauH 0

n�t�ublka 0uH 0
n0 �t 2 t�ub 0lp: �19�

The first term on the RHS is the auto-correlation term
and the second term is the cross-correlation term. This

article is specifically devoted to the study of the effect
of the cross-correlations on the longitudinal and the
transverse relaxation of coupled spins.

2.1.1. Redfield kite
From Eq. (9), it is seen that the time dependence

of s p
aa 0 is described by the various elements of the

G matrix and the oscillating factor, exp�i�vaa 0 2
vbb 0 �t�: The contribution of the elements ofG to the
time development ofs p for rapidly oscillating terms,
for which �vaa 0 2 vbb 0 � ± 0; are small and their
contributions are therefore neglected. This is known
as the secular approximation [65]. Under this approx-
imation Eq. (9) reduces to:

ds *
aa 0 �t�
dt

�
X
bb 0

0
Gaa 0bb 0 �s p�t�2 s0�bb 0 ; �20�

where the prime on the summation indicates that only
terms for which vaa 0 � vbb 0 are retained. This
approximation decouples the time evolution of the
diagonal elements ofs p from the off-diagonal
elements. However, since for the diagonal elements
there is no oscillatory part, the time evolution of all
the diagonal elements is mutually coupled. The time
evolution of the off-diagonal elements is further
decoupled into various multiple quantum orders
�vaa 0 � vbb 0 � nv0�: Eq. (20) then breaks up into a
block structure as indicated by the dashed lines in Fig.
1. If in addition, all the transitions in each single and
multiple quantum manifold are non-degenerate and
well separated, such thatuvaa 0 2 vbb 0 u q Gaa 0bb 0 ;

then each coherences p
aa 0 evolves independent of all

others and decays exponentially with a time constant,
Raa 0aa 0 ; the real part ofG . The effective Redfield
matrix then looks like a “kite” (Fig. 1) [49].

Eq. (20) is transformed into the laboratory frame as:

dsaa 0 �t�
dt

� 2ivaa 0saa 0 �t�1
X
bb 0

Gaa 0bb 0 �s�t�2 s0�bb 0 :

�21�
The first term on the RHS of Eq. (21) gives the
frequencies of various coherences (fora ± a 0) and
the second term gives their relaxation including the
DFS, if any. For diagonal elements�a � a 0�; the first
term is zero and the time evolution of all diagonal
elements is coupled. All the above discussion is
valid only in the absence of a RF field. In the presence
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of RF fields, the evolution of various elements ofs
become coupled and the above kite structure is modi-
fied. The dynamics ofs in the presence of the RF field
will be treated in Section 5.

2.2. Relaxation Hamiltonians

As mentioned in Section 1, there are several
mechanisms for the relaxation of a spin. The main
ones are (i) dipolar, (ii) CSA, (iii) quadrupolar, (iv)
spin-rotation and (v) scalar relaxation of kind I and II.
Yet another often used mechanism, called “random
field mechanism”, is a model for relaxation in which
it is assumed that a randomly varying time dependent
isotropic field is produced at the site of the spin by
outside sources (the details of which are unspecified),
which causes relaxation of the spin. This field can be
either uncorrelated, partially or fully correlated at two
or more spins. The random field mechanism has been
a convenient tool for describing the relaxation of spins
in magnetic resonance. Conditions under which the
spectral densities of several of the above mechanisms
reduce to those of the random field mechanism have
also been given [66,67].

The various relaxation Hamiltonians can in general
be expressed as products of irreducible tensors of the
type [1,12,66]:

H 0�t� �
X
q

�2� qA�q�F�2q��t� �22�

whereA(q) are spin operators andF(q)(t) are random
functions of lattice variables andq is the rank of the
tensors. The reason for expressing the relaxation
Hamiltonians in this form is that, the time dependence
in these interactions arises due to molecular motions a
description of which requires a series of transforma-
tions which in turn can then be conveniently described
in terms of transformation properties of spherical
harmonics. The Hermiticity ofH 0(t) requires that

A�q�
† � �2�qA�2q� and F�q�

†�t� � �2�qF�2q��t�;
�23�

and the secular approximation mentioned earlier leads
to

kF�q��t�F 0�q�p �t 0�lav � dqq0 kF
�q��t�F�q�p �t 0�lav: �24�

The form of various relaxation Hamiltonians,
discussed extensively in the literature [1,65–70] is
briefly outlined below.

2.2.1. Intramolecular direct dipole–dipole interaction
This is the most significant interaction with which

the nuclear spins exchange their energy with each
other and with other degrees of freedom. This is also
the interaction responsible for transfer of magnetiza-
tion from a spin to its neighbors known as NOE,
which has become a major source of structural infor-
mation for molecules, especially biomolecules. The
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Fig. 1. A pictorial representation of the Redfield relaxation equation. The relaxation matrix is block structured under the secular approximation
shown by dashed lines. If, in addition all the transitions are nondegenerate, the off-diagonal elements between various coherences of same order
can be neglected, or in other words, there is no transverse cross-relaxation process and the Redfield matrix takes the form of a kite known as the
“Redfield kite” [49].



direct dipolar interaction between two spins can be
written as [68,69]:

HD � ~I �i�·Dij ·~I � j�: �25�
The coupling tensorD of rank 2 is traceless and
axially symmetric, which in a molecular fixed princi-
pal axis coordinate system, is given by:

Dij � m0

4p

� �
gigj"

r3
ij

 ! 21 0 0

0 21 0

0 0 2

0BB@
1CCA �26�

with the principal z-axis being given by the inter-
nuclear vector. The significance ofD being traceless
is that for an ensemble of rapidly and isotropically
tumbling molecules in space, there is no net change
of energy and the dipolar interaction does not contri-
bute to the time averaged Hamiltonian of a high-
resolution NMR spectrum. However, it does contri-
bute to the relaxation of various transitions of the
spectrum. Upon transforming to the laboratory fixed
frame withB0 field along thez-axis, the spin operators
of the dipolar interaction are given by [70]:

A^2 � I^i I^j

A^1 � 7�I^i I z
j 1 I z

i I
^
j �

A0 � �4I z
i I

z
j 2 �I1

i I2
j 1 I2

i I1
j ��=

��
6
p

�27�

while the space part is given by

Fq � 2
6p
5

� �1=2

"gigj r
23
ij Yq

2�u;f�: �28�

HereYq
2�u;f� are the spherical harmonics of second

rank with u and f being the polar and azimuthal
angles, between the two frames respectively,rij is
the internuclear distance between spinsi and j and
g i, g j are the gyromagnetic ratios of the concerned
nuclei.

2.2.2. Chemical shift anisotropy
This interaction can be written in the form:

HCSA � ~I·s·~H; �29�
where ~H is the external magnetic field, ands the
chemical shift tensor. In general,s is neither axially
symmetric nor traceless. The isotropic part ofs gives

rise to chemical shift in reorientating molecules and
does not cause relaxation. The anisotropic part causes
relaxation. The spin operators of the CSA interaction
in the molecule fixed (prime) frame are given by [12]:

A0 � �3H 0zI
0
z 2 I 0·H0�

A^1 � 7

��
6
p
2
�H 0zI 0^ 1 I 0zH

0
^�

A^2 �
��
6
p
2
�I 0^H 0^�;

�30�

and the space part is given by:

F0 � 1
2 gs

0
z; F^1 � 0; F^2 � gs 0z

2
��
6
p : �31�

2.2.3. Quadrupolar interaction
The form of the quadrupolar interaction between

the nuclear spinI and the electric field gradient at
the site of the nuclear spin is given by [70]:

HQ � ~I·Q·~I : �32�
whereQ is the quadrupole coupling tensor given by:

Q � eQ
2I �2I 2 1�" V �33�

with V being the electric field gradient tensor. The
quadrupolar interaction comes into play only for
nuclei with spin I . �1=2� where it proves to be a
major relaxation mechanism.

The spin operators of the quadrupolar interaction in
the laboratory frame are given by:

A0 � 3I2
z 2 I �I 1 1�

A^1 � 1
2

��
6
p �IzI^ 1 I^Iz�

A^2 � 1
2

��
6
p

I2
^:

�34�

and the space partF�m��V� is proportional to the
spherical harmonicsY �m�2 �a;b;g� of order two.
Cross-correlation between quadrupolar relaxation of
spin I with its dipolar relaxation to spinS(1/2) is an
important source of relaxation of spinS, and is
discussed in Section 4.5.

2.2.4. Scalar spin–spin coupling
The Hamiltonian for scalar spin–spin coupling can
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be written as:

HJ � I·J·S �35�
whereI andS correspond to the two nuclear spins.J
has two parts, a traceless tensorJ 0 and a diagonal
tensorJ0. For isotropic molecular reorientations,J 0

does not contribute to coherent splitting, but contri-
butes to relaxation, exactly like dipolar relaxation.
Indeed, for all practical purposes, this part can be
combined with dipolar relaxation (some times called
pseudo dipolar) and needs no further elaboration [1].
The diagonal part gives rise to the well-known
coherentJ-coupling. This part can also become time
dependent in two different ways, which are known as
scalar relaxation of the first and second kinds [1]. In
the first kind, theJ-coupling becomes time dependent
due to rapid chemical exchange between coupled and
uncoupled sites. If the exchange rate�1=te�q J; then
the splitting collapses and the coupling becomes a
source of relaxation. In the second kind, one of the
coupled spins has a rapid self relaxation of its own,
either because it is a quadrupolar nucleus having rapid
self-relaxation or due to its coupling with a strong
paramagnetic or quadrupolar center. In such cases,
its spin state becomes time dependent which can
then be lumped with the lattice. The spin operators
for this interaction are given by [1]:

A0 � Iz; A^1 � I^ �36�
and the space part is given by

F0 � JSz; F1 � 1
2 JS2; F21 � 1

2 JS1: �37�

2.2.5. Expressions for the spectral densities
The correlation functionGaba 0b 0 (Eq. (17)), for

isotropic reorientation of rigid molecules is obtained as:

Gaba 0b 0 �t� � kauH 0�t�ublka 0uH 0�t�ub 0lexp�2t=tc�
�38�

where t c is the correlation time for the isotropic
motion. On Fourier transforming the correlation func-
tion, one obtains the various spectral densities. The
expressions for the real parts of the various spectral
densities are given below.

(i) For auto correlated dipolar(ij ) relaxation,

Jijij �v� � 3
10

m0

4p

� �2 g2
i g

2
j "2

r6
ij

tc

1 1 v2t2
c

� �
; �39�

whererij is the distance between the spinsi andj.
(ii) For auto correlated CSA(i) relaxation,

Jii �v� � 1
30

g2
i B2

0�Ds i�2 tc

1 1 v2t2
c

� �
; �40�

whereDs i � �s i
k 2 s i

'� is a measure of the
CSA.

(iii) For auto correlated quadrupolar (QS) relaxa-
tion,

JQS�v� � 3
160

e2qQS

"

 !2
tc

1 1 v2t2
c

� �
; �41�

whereQS is the quadrupolar coupling constant
of the nucleusS.

(iv) For CSA(i)–dipole(ij ) cross-correlation,

Ji;ij �v� � 1
10

m0

4p

� �
g2

i gj"

r3
ij

B0�Ds i�

� 1
2
�3 cos2 ui;ij 2 1� tc

1 1 v2t2
c

� �
;

�42�
whereu i,ij is the angle between the principal
axis of the CSA tensor, assumed to be axially
symmetric and the internuclear vectorrij.

(v) For CSA(i)–CSA(j) cross-correlation,

Jij �v� � 1
30

gigjB
2
0�Ds i��Ds j�

� 1
2
�3 cos2 ui; j 2 1� tc

1 1 v2t2
c

� �
; �43�

where u i, j is the angle between the principal
axis of the two CSA tensors, both of which
are assumed to be axially symmetric.

(vi) For dipole(ij )–dipole(kl) cross-correlation,

Jijkl �v� � 3
10

m0

4p

� �2 gigjgkgl"
2

r3
ij r

3
kl

� 1
2 �3 cos2 uij ;kl 2 1� tc

1 1 v2t2
c

� �
;

�44�
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whereu ij ,kl is the angle between the two dipolar
vectorsrij andrkl.

(vii) For quadrupole(Qs)–CSA(i) cross-correlation,

JQs;CSAi �v� � 1
80
�e2qQs��viDs i�

� �3 cos2 uQs;CSAi
2 1�

� tc

1 1 v2t2
c

� �
; �45�

whereuQs;CSAi
is the angle between the quad-

rupolar and CSA tensors, both of which are
assumed to be axially symmetric.

(viii) For quadrupole(Qs)–dipole(ij ) cross-correla-
tion,

JQs;Dij �v� � 3
80

m0

4p

� �
�e2qQs�

gigj"

r3
ij

 !

� �3 cos2 uQs;Dij
2 1� tc

1 1 v2t2
c

� �
;

�46�
whereuQs;Dij

is the angle between the dipolar
vector ij and the axis of the quadrupolar
tensor, which is assumed to be axially
symmetric.

The expressions for the DFS (K) can be obtained
from the above Eqs. (39)–(46) by converting the
absorptive Lorentzians into dispersive Lorentzians,
by multiplying the numerators on the RHS withvtc:

Cross-correlations which do not contain the
distance between the relevant interactions explicitly,
namely, CSA–CSA cross-correlationsJi; j�v�; Ki; j�v�;
CSA–dipole cross-correlations Ji; jl �v�; Ki; jl �v�;
dipole–dipole cross-correlationsJij ;kl�v�; Kij ;kl�v�;
and those involving quadrupole interaction
JQs; CSAi �v�; KQs;CSAi �v� and JQs;Dij �v�; KQs; Dij �v�
are termed as “remote” in this article.

3. Cross-correlations in longitudinal relaxation

According to the phenomenological Bloch equa-
tions [71–73], the longitudinal magnetization
recovers exponentially to its equilibrium value via
the spin–lattice relaxation time constantT1. This

time constant describes the rate at which the spins
exchange their energy with the lattice. A single time
constant is obtained only for a two-level system.
When there are more than two levels, the relaxation
recovery is complex, described by the relaxation
matrix given in Eq. (9). The longitudinal relaxa-
tion refers to the recovery of the diagonal
elements of the density matrix to their equilibrium
value governed by the first block of the kite in
Fig. 1. In the absence of RF irradiation and under
the “secular approximation”, the time evolution of
the diagonal elements is separated from that of the
off-diagonal elements. It is thus possible to discuss
the time evolution of longitudinal and transverse
magnetization independently. In this section, the
relaxation behavior of the longitudinal magnetization
is discussed. The time evolution of all the diagonal
elements is in general coupled and following Eq. (20),
is given (since there is no contribution from the
imaginary part ofG) by [65]:

dsaa

dt
�
X
b

Raabb�s�t�2 s0�bb: �47�

where

Raabb � 2Jabab�vab�2 2dab
X
g

Jgaga�vga�: �48�

For a � b;

Raaaa � 22
X
g±a

Jgaga�vga� �49�

and fora ± b;

Raabb � 2Jabab�vab� �50�
This means that there is no adiabatic contribution to
longitudinal relaxation. However, the flip–flop term
of dipolar interaction between homonuclear spins,
which does contribute to longitudinal relaxation has
a very low or zero frequency and looks “adiabatic”.

Eq. (47) is identical to the rate equation describing
the recovery of the populations of various energy
levels �Pa � saa� to their equilibrium values�P0

a�
through the transition probability approach, written
as [1,74]:

dPa

dt
�
X
b

Wab�Pb 2 P0
b� �51�
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where Wab � Raabb are the transition probabilities,
andWaa � 2

P
b±a Wab: For a two-spin-(1/2) system

(AX), Eq. (51), when expanded is obtained as:

where the various transition probabilities assuming
CSA and mutual dipolar relaxations, are given by
[45]:

W12

W34

 !
� 1

2

1 4 4

1 4 24

 ! JAXAX�v�
JAA�v�

JA;AX�v�

0BB@
1CCA �53�

and

W2 �W14 � 2JAXAX�2v� W0 �W23 � 1
3 JAXAX�0�:

�54�

The single quantum transition probabilities of the
other spin can be obtained by interchanging the labels.
The two single quantum transition probabilities of
spin A (W12 andW34) differ only due to CSA–dipole

cross-correlation,JA;AX�v�; which gives an equal and
opposite contribution toW12 andW34. At this point, it
may be worth pointing out that while the relaxation of
the various populations is described by the above rate
equations, the result of a measurement is dependent
upon whether all the transitions of a spin are resolved
or not. In the presence ofJ-coupling, one can monitor
differences between the intensities of various transi-
tions yielding a “multiplet” and a “net” effect, while in
its absence, it is not possible to detect the “multiplet”
effect and only the “net” effect is observable. In the
presence of strong coupling, a clean separation of the
multiplet and the net effect is not possible and one has
to calculate the total effect on each transition. The
discussion on longitudinal relaxation is continued in
the next sections along the following lines. First, the
magnetization modes are introduced, and their utility
in cross-correlation studies is pointed out. The multi-
plet and the net effects of cross-correlations are
discussed for various spin systems, followed by a

review of experimental observations. Isolation of
relaxation pathways by pulses is discussed in the
last section.

3.1. Magnetization modes

While Eqs. (47) and (51) are the natural descrip-
tions of longitudinal relaxation, an elegant and much
more informative description, in weakly coupled spin
systems, is through the “magnetization modes”. One
defines single-spin magnetization modes, such asAz,
Mz, Xz,…, two-spin magnetization modes, 2AzMz,
2AzXz, 2MzXz,…, and multi-spin modes up toN
spins. Each mode represents the expectation value
of the products of the corresponding spin operators.
For example Az�t� � kIzAl�t� � Tr{s�t�I zA} and
2AzMz�t� � k2IzAIzMl�t� � Tr{s�t�2I zAIzM} : It is
possible to express the magnetization modes as a
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Fig. 2. Energy level diagram of a weakly coupled three-spin system,
AMX.Herea andb correspond to the eigenstates ofIz for each spin
�a ; mz � �1=2�; b ; mz � 2�1=2�� and their product represents
the various eigenstates of the three-spin system. The dashed lines
represent the four single quantum transitions of theA-spin, the
dotted those of spinM and the dash–dot lines those of spinX.

d
dt
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4

0BBBBBB@

1CCCCCCA;
�52�



linear combination of populations of various levels.
As an example, we will discuss a three spin-(1/2)
system AMX, which can easily be reduced to the
two-spin systemAM or generalized to higher spin
systems without symmetry. Fig. 2 defines the labels
of various states in the three-spin systemAMX. The
relation between populationsPi and magnetization
modes is given by [75–77]:

There are 2N populations and as many magnetization
modes. Eq. (55) can also be written as:

~M � V ~P �56�

where V is the transformation matrix connecting
populations to modes. Similarly inverse transfor-
mation connects modes to populations and is given
by:

~P� V21 ~M: �57�

The equation of motion of the modes from Eqs. (47)
or (51) is obtained as:

d ~M
dt
� Ĝ � ~M�t�2 ~M 0� �58�

where

Ĝ � VWV 21 �59�

and ~M0 represents the equilibrium value of each
mode. For the three-spin systemAMX, the various
transition probabilities of theA spin, for CSA and

dipolar relaxation mechanisms are given by [78]:

W14

W37

W26

W58

0BBBBBB@

1CCCCCCA �
Waa

1A

Wba
1A

Wab
1A

Wbb
1A

0BBBBBB@

1CCCCCCA �
1
2

1 1 4

1 1 4

1 1 4

1 1 4

0BBBBBB@

1CCCCCCA
JAMAM�vA�
JAXAX�vA�
JAA�vA�

0BB@
1CCA

1

1 22 22

21 2 22

21 22 2

1 2 2

0BBBBBB@

1CCCCCCA
JAMAX�vA�
JA;AM�vA�
JA;AX�vA�

0BB@
1CCA

W2AM � 2JAMAM�vA 1 vM�
W0AM � � 1

3 �JAMAM�vA 2 vM� (60)

with similar expressions for theM andX spins with
appropriate change of indices. It may be noted that
while auto-correlations give equal contributions to all
the W1, cross-correlations contribute differentially to
various W1 and make them unequal. Furthermore,
cross-correlations contribute only toW1 and not to
W2 or W0 terms (see Section 3.1.4). The equation of
motion for the magnetization modes (Eq. (58)) in the
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expanded form is obtained as:

Here the variousr terms describe the self-relaxation
of each mode,s , the cross relaxation between
modes of the same order, andd the cross relaxation
between modes of different orders. The expressions
for these elements, for the three spin system, are
obtained as:

rA � �W2AM 1 W0AM�1 �W2AX 1 W0AX�

1 1
2 �Waa

1A 1 Wba
1A 1 Wab

1A 1 Wbb
1A �

rAM � �W2AX 1 W0AX�1 �W2MX 1 W0MX�

1 1
2 ��Waa

1A 1 Wba
1A 1 Wab

1A 1 Wbb
1A �

1 �Waa
1M 1 Wba

1M 1 Wab
1M 1 Wbb

1M��

rAMX � 1
2 ��Waa

1A 1 Wba
1A 1 Wab

1A 1 Wbb
1A �

1 �Waa
1M 1 Wba

1M 1 Wab
1M 1 Wbb

1M�

1 �Waa
1X 1 Wba

1X 1 Wab
1X 1 Wbb

1X �� (62)
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or in terms of the spectral densities as:
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and

sAM �W2AM 2 W0AM

� 2JAMAM�vA 1 vM�2 1
3 JAMAM�vA 2 vM�

dA;AM � 1
2 �2Waa

1A 1 Wba
1A 2 Wab

1A 1 Wbb
1A �

� 4JA;AM�vA�

dA;AX � 1
2 �2Waa

1A 2 Wba
1A 1 Wab

1A 1 Wbb
1A �

� 4JA;AX�vA�

dA � dAMAX � 1
2 �Waa

1A 2 Wba
1A 2 Wab

1A 1 Wbb
1A �

� 2JAMAX�vA�: (64)

It may be noted thatr and s contain exclusively
only auto-correlation spectral densities. Modes of
different orders are coupled exclusively by cross-
correlations (d i,ij and d i). The even order modes
are connected to odd order modes by cross-correla-
tion between CSA and dipolar relaxation (d i,ij

terms); the odd order modes are connected to odd
order modes and even order modes to even order
modes by cross-correlation between different dipolar
interactions of the spin (d i � dij ;ik terms). In the
absence of cross-correlations,Ĝ would be block-
diagonal with off-diagonal elements only within
the modes of the same order. The block connecting
the single-spin modes yields an equation of motion
for the single-spin modes given by:

dI zi�t�
dt

� R�Izi�t�2 Izi�∞��; �65�

whereIzi(t) is the longitudinal magnetization of spin
i at time t, Izi(∞) its equilibrium value andR
connects variousIzi(t). R is a subset of thêG matrix
given for the three spin system by:

R �
rA sAM sAX

sAM rM sMX

sAX sMX rX

0BB@
1CCA: �66�

Eq. (65) is Solomon’s equation [79]. This equation
describes the self-relaxation (r i) of each spin and
cross relaxation (s ij) of the spins with each other
(NOE) in the absence of cross-correlations. This
equation is widely used for the interpretation of
NOE in many systems including biomolecular struc-
tural studies. In such cases, coupled relaxation of a
large number of spins is analyzed by fitting the
calculated NOE to the experimental NOE assuming
a certain geometry for the molecule. When cross-
correlations are present, the higher spin modes come
into play and the longitudinal relaxation as well as
NOE predicted by Eq. (65) are incorrect. It is there-
fore necessary to take the higher spin modes into
account, even whenJ-couplings are absent.

3.1.1. Representation of modes
The advantage of the modes description is that they

represent various observable quantities in a conveni-
ent form. The single-spin modes (Az, Mz, …) represent
the total magnetization of a spin and the higher modes
represent the differences in the intensities of various
transitions of a spin. The intensities of various transi-
tions of a spin are given by:

Iab � u�Ix�abu2�Pa 2 Pb�: �67�
For weakly coupled spins (each of spin 1/2) all
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u(Ix)ab u2 are equal. Therefore the relative intensities of
the various transitions are given by:

Iab � Pa 2 Pb: �68�
For a weakly coupled three-spin system of the type
AMX, the intensities of the various transitions of the
spinA are then obtained (from Eq. (55)) as:

A1 � Paaa 2 Pbaa

� 1
4 �Az 2 2AzMz 2 2AzXz 1 4AzMzXz�

A2 � Paab 2 Pbab

� 1
4 �Az 2 2AzMz 1 2AzXz 2 4AzMzXz�

A3 � Paba 2 Pbba

� 1
4 �Az 1 2AzMz 2 2AzXz 2 4AzMzXz�

A4 � Pabb 2 Pbbb

� 1
4 �Az 1 2AzMz 1 2AzXz 1 4AzMzXz�: (69)

The total intensity of all the four transitions is given
by Az. Any difference in the intensities of these transi-
tions indicates the presence of modes of higher order.
For example, if A1 � A4 ± A2 � A3 and Az ± 0;
single- and three-spin modes are present and two-
spin modes are absent (Fig. 3(a)). On the other
hand, if A1 � A2 ± A3 � A4 or A1 � A3 ± A2 � A4

with Az � 0 indicates the presence of only two-spin
modes and absence of one and three spin modes (Fig.
3(c)). However, ifA1 ± A2 ± A3 ± A4 with Az � 0
indicates the presence of both two- and three-spin
modes. The differences in the intensities of these tran-
sitions can be created either by selective perturbation
of one or more transitions of the spin system or by
cross correlated relaxation of a non-equilibrium state.

Before proceeding further, it may be pointed out
that the inclusion of cross-correlations increases expo-
nentially the dimension of the relaxation matrix to be
handled. For example, Solomon’s equations (Eq. (65))
in which cross-correlations are neglected, consist ofN
simultaneous equations with the dimensions of the
relaxation matrix beingN × N; whereN is the number
of relaxation-coupled spins. Inclusion of cross-corre-
lation requires the use of either Eqs. (47), (51) or (58),
with the relaxation matrix of dimension 2N × 2N

; if all

theN spins are spin 1/2, or of dimension�2I 1 1�N ×
�2I 1 1�N if all the spins are of spinI. Thus for 10
relaxation-coupled spins of spin 1/2, Solomon’s
equations (Eq. (65)), require only a 10× 10 relaxation
matrix, while inclusion of cross-correlations requires
a 1024× 1024 matrix. In biomolecular NMR studies a
100× 100 relaxation matrix for 100 relaxation-
coupled spins is often solved, neglecting cross-corre-
lations, but it will be impossible to include cross-
correlations for all the 100 relaxation-coupled spins.
It is therefore important to study the effect of cross-
correlations in NOE and relaxation measurements. If
it turns out that cross-correlations contribute signifi-
cantly, then one either takes into account the main
cross-correlations or designs experiments inhibiting
the effect of cross-correlations.

3.1.2. Initial rate approximation
The formal solution of Eq. (58) is given by:

~M�t� � exp�2Ĝ t�� ~M�t�2 ~M 0�: �70�
The time evolution of various modes is coupled and a
general solution of Eq. (70) requires diagonalization
of the relaxation matrix,Ĝ : On the other hand, a
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Fig. 3. Schematic representation of the intensities of the four SQCs
of a spin of anAMX spin system, in the presence of (a) single- and
three-spin modes, (b) single- and two-spin modes and (c) only two-
spin modes.



simple solution of Eq. (70) is obtained, in the initial
rate approximation for small values oft as:

~M�t�ut!0 � �1 2 Ĝ t�� ~M�t�2 ~M 0�: �71�
Further, if att � 0 one creates an initial state in which
only one of the modes is selectively disturbed from
equilibrium, then from Eq. (71) it is seen that in the
initial rate approximation, the rate of conversion of
this mode into other modes is directly proportional to
various elements of̂G : For example, in the three-spin
system described by Eq. (61), if att � 0 one inverts
the magnetization of spinA �Az�0� � 2A0

z� and leaves
all the other modes undisturbed�Mz�0�2 M0

z �
Xz�0�2 X0

z � 0 and all the multi-spin modes are
zero] then, in the initial rate approximation the growth
of all the other modes are given by:

Mz�t� � 2sAMtA
0
z; Xz�t� � 2sAXtA

0
z;

2AzMz�t� � 2dA;AMtA
0
z; 2AzXz�t� � 2dA;AXtA

0
z;

4AzMzXz�t� � 2dAtA
0
z; 2MzXz�t� � 0; (72)

and the decay of theAz mode is given by:

Az�t� � 22�1 2 rAt�A0
z: �73�

The initial rate approximation thus provides a direct
measure of the various elements ofĜ :

3.1.3. Magnitude of the cross terms
In this section, the magnitude of cross terms is

compared with the auto terms. For dipole–dipole
interactions, cross-correlation terms depend both on
the distances between the interacting spins and their
geometric disposition, while the auto-correlation
terms depend only on the distances between the
spins. The ratio of the geometric factors of cross
versus auto terms in the three-spin system (AMX),
for dipole–dipole cross-correlation is given (using
Eqs. (39) and (44)) by:

dAMMX

sAM
� 1

2
rAM

rMX

� �3

�3cos2uAMMX 2 1� �74�

whereuAMMX is the angle between theAM and MX
dipolar vectors andrAM and rMX, respectively, their
lengths. ForrAM � rMX; this ratio is2(1/8), 2(1/2),
(1/2) and 1, respectively, foru � 60; 90, 145 and

1808. Dipole–dipole cross-correlations are thus most
significant for linear geometry and are zero for magic
angles 548440 and 1258160 [75,76]. The cross terms
between CSA and dipolar interaction depend both on
the values of these interactions as well as their
geometric disposition. The magnitude of CSA for
several nuclei such as13C, 15N and 19F is large and
at high fields the CSA contribution becomes a major
source of relaxation for these spins [80–86]. On the
other hand, the CSA for protons is small and hence
usually the relaxation resulting from auto-correlation
terms is negligible. While the CSA auto-correlation
terms may be negligible, the cross terms with dipolar
interaction can be quite significant. For example, if
the dipolar interaction is 10 times the CSA, then the
contribution to relaxation of the spin by CSA auto-
correlation terms is 1/100th of its relaxation by dipolar
auto-correlation terms, whereas that of the cross terms
will be 1/10th of dipolar auto-correlation terms. Thus,
although the auto-correlation contribution of CSA
may be negligible, its cross term with large dipolar
interaction will not be. The magnitude of the cross
terms additionally depends on the angleu between
the dipolar vector and the principal axis of an axially
symmetric CSA tensor via a multiplicative factor
�1=2��3 cos2 u 2 1� for isotropically reorienting mole-
cules (see Eq. (42)).

3.1.4. Cross-correlations contribute only to W1

It was pointed out in Section 3.1 that in weakly
coupled spins, in the absence of RF fields, cross-corre-
lations contribute to longitudinal relaxation only
through spectral densities at the Larmor frequency,
that is only toW1 and not toW0 and W2 (Eq. (60)).
This can also be explained via the following argu-
ment. Longitudinal relaxation is governed by the
first block of the Redfield matrix (Fig. 1), which
connects the various diagonal elements ofs through
elements such as:

Raabb � Jabab / kauH 0�t�ublkauH 0�t 1 t�ubl �75�
with

Raaaa � 2
X
b±a

Raabb: �76�

Longitudinal relaxation thus requires spectral density
elementsJabab for whicha ± b: Diagonal operators
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Iiz andIizIjz of H 0 therefore do not contribute to long-
itudinal relaxation of weakly coupled spins while the
operatorIi^Ij7 contributes toW0, operatorsIi^ and
IizIj^ to W1 andIi^Ij^ to W2. Cross-correlations require
that two different interactions connect the same pair of
states. This is possible only by spin operators in which
the flipping (active) spin is common and non-flipping
(passive) spin is different. Two different operators
such asIi^Ijz and Ii^Ikz can connect the same pair of
spin states. For example, in the three-spin system,
statesaaa and baa can be connected by dipolar
interaction between spins 1 and 2 as well as between
1 and 3, respectively, by terms,I1^I2z andI1^I3z where
the active spin is 1 and the passive spins are 2 and 3.
Thus, in weakly coupled spins cross-correlations can
only contribute to values ofW1, while auto-correla-
tions contribute to the spectral densities at all the three
frequencies. The auto-correlation terms contribute
equal rates to variousW1 terms of a spin and cross-
correlations make the variousW1 terms of a spin
unequal. For example, in the weakly coupled three
spin system the presence of dipole–dipole cross-
correlation makes theWA

1 of outer and inner transi-
tions unequal such thatWA1

1 �WA4
1 ± WA2

1 �WA3
1 ;

while the cross-correlations between CSA and dipolar
interaction makesWA1

1 �WA2
1 ± WA3

1 �WA4
1 : The

dipole–dipole cross-correlation between the spin
pairs 1, 2 and 1, 3 yields:

WA1
1 / kaaauI11I2zubaalkaaauI11I3zubaal

WA2
1 / kaabuI11I2zubablkaabuI11I3zubabl � 2WA1

1

WA3
1 / kabauI11I2zubbalkabauI11I3zubbal � 2WA1

1

WA4
1 / kaabuI11I2zubbblkabbuI11I3zubbbl �WA1

1 ;

�77�
and the CSA–dipole cross-correlation on the other
hand yields:

WA1
1 / kaaauICSA

11 ubaalkaaajI11I2zjbaal

WA2
1 / kaabuICSA

11 ubablkaabuI11I2zubabl �WA1
1

WA3
1 / kabbuICSA

11 ubbalkabauI11I2zubbal � 2WA1
1

WA4
1 / kabbuICSA

11 ubbblkabbuI11I2zubbbl � 2WA1
1 :

�78�

Cross-correlations thus contribute a purely differential
effect to the transition probabilities.

The contribution of cross-correlations is also sensi-
tive to the parametervt c. Asvt c increases beyond 1,
the contributions ofW1 andW2 decrease compared to
W0. This has several consequences. The magnitude of
the NOE increases and tends towards its maximum
value of 21, while the effect of cross-correlations
on NOE decreases. WhileW0 distributes magnetiza-
tion between the spins, the energy from the spin
system to the lattice can only be carried away through
W1 andW2. Thus longitudinal relaxation via intramo-
lecular dipolar interaction becomes weaker. The spins
in the rigid part of the molecule in such a case have
weaker longitudinal relaxation which is either domi-
nated by processes other than the dipolar interactions
or by migration of magnetization (through strongW0)
to other parts of the molecule, where they encounter
spins undergoing internal motion through which the
energy is finally exchanged with the lattice. Thus in
the rigid part of the molecule forvtc . 1; the influ-
ence ofW1 andW2 and hence the longitudinal relaxa-
tion and the effect of cross-correlations become
weaker. Strong coupling mixes eigenstates, which
makes allW0, W1 and W2 depend on cross-correla-
tions. Furthermore, in the presence of RF field (in
the so called “rotating frame experiments”) cross-
correlations come into play inW0 and W2 as well.
This is again due to the mixing of states by the RF
field. While strong coupling mixes states within the
sameFz��

P
i Izi� manifold of states, the RF field

mixes states which differ in theirFz values by^1.
The following section discusses the multiplet and
net effect of cross-correlation in relaxation of weakly
coupled spins, in the absence of RF fields.

3.2. Multiplet and net effect of cross-correlations

The effects of cross-correlation can be classified
into two types. A multiplet effect is a case in which
various transitions of a spin have different intensities.
This is obtained by the creation of multi-spin orders
from single-spin orders by cross-correlations and is a
first-order process in time. A second-order effect, the
net effect, which is a two-step process, involves
creation of multi-spin order from single-spin order
and reconversion of multi-spin order into single-spin
order, both by cross-correlations. Observation of the
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multiplet effect requires that the various transitions of
the spin are resolved via theJ-couplings. If theJ-
couplings are either not resolved or absent, the created
multi-spin orders are not observable. Even when theJ-
couplings are resolved, observation of the multi-spin
order (or multiplet effect) requires the use of either a
selective measuring pulse on one of the spins or a small
angle non-selective pulse on more than one spin. A
non-selective 908 measuring pulse converts the
multi-spin longitudinal order into undetectable multi-
ple quantum coherences and thus suppresses the multi-
plet effect. However, the net effect is always present
and not easily suppressed. There are several experi-
ments, which are used for the detection of the multiplet
and net effect of cross-correlations. Single-spin order
can be created by selective inversion of a spin, or non-
selective inversion of all coupled spins. The inverted
spins exchange magnetization via thes terms (NOE)
and recover non-exponentially due to the presence of
several cross-relaxation terms containing auto and
cross-correlations, giving rise to multiplet and net
effects. The selective inversion experiments are
equivalent to various cross-sections of a 2D
NOESY experiment. Each cross-section of the
2D NOESY experiment using ana 8 measuring pulse
(908–t1–908–tm–a8–t2 experiment) is equivalent
[except for a factor of (1/2)] [72,73] to a 1D transient
NOE experiment in which the whole multiplet of a
spin is selectively inverted attm � 0 and the state of
the spin system aftertm is detected by ana 8 pulse
[87,88]. The multiplet [87–91] and the net effects
[92–95] due to dipole–dipole cross-correlations have
been studied in detail by several investigators and are
described in detail in the following sections. The main
emphasis in these studies is to describe the effect of
dipole–dipole cross-correlations on NOE. A particu-
larly illustrative example is the weakly coupled three-
spin system, which will be described here in some
detail. Dipole–dipole cross-correlations, which couple
only odd orders (single and triple) and even orders
(zero and double) among themselves will be consid-
ered. It will be further assumed that the initial pertur-
bation creates only single-spin order.

3.2.1. Multiplet effect in three spin system AMX
The multiplet effect of dipole–dipole cross-correla-

tion, in a weakly coupled three-spin system has been
described in the literature in detail [87–91]. Fig. 4

shows an example of the calculated NOE on spinsA
andX, with and without cross-correlation for selective
inversion of spinM attm � 0 in anAMXspin system.
The NOE is larger at spinX than spinA, but the effect
of cross-correlations in the form of the multiplet effect
is identical. This is due to the creation of a single
three-spin-order term by cross-correlations. Since
CSA–dipole cross-correlations have not been consid-
ered in this study, the two-spin orders are not created.
The effect of variation of the angle,b � /MAX;
keeping the distances,rAX � 4:5 �A and rAM � 2:5 �A;

constant is shown in Fig. 5. The total NOE on spinA
remains practically unaffected but on spinX decreases
monotonically, since asb increasesrMX increases. The
multiplet effect is however sensitive tob and is maxi-
mum forb � 08:
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Fig. 4. Calculated transient NOE spectra of theA andX parts of the
linear AMX spin system, for selective inversion of theM spin at
tm � 0: (a) Normal spectrum; (b) and (c) are the transient difference
NOE spectra calculated with and without cross-correlations; (d) is
the difference between (b) and (c). The parameters used to calculate
the spectra areJAM=dAM � 0:05; JAM � 12 Hz; JAX � 9 Hz and
JMX � 6 Hz; rAM � 2:5 �A and rMX � 2:0 �A, tm � 2 s; vtc � 0:1
andv=�2p� � 270 MHz: [Reproduced with permission from V.V.
Krishnan, Anil Kumar, J. Magn. Reson. 92 (1991) 293.]



The time evolution of cross-correlations as a func-
tion of mixing time is given in Fig. 6 for theb � 08
case. The dashed curves show the NOE on each tran-
sition in the absence of cross-correlations, for three
motional regimes namely,vtc � 0:1; 1.118 and 10
corresponding to short, critical and long correlation
times, respectively. In the absence of cross-correla-
tions, the NOE on all transitions of a spin is equal.
The difference between the NOE calculated with and
without cross-correlations is shown with solid curves.
In the case of weakly coupled spins, considering only
dipole–dipole cross-correlations, the intensities of
inner as well as the two outer transitions of each
spin are equal, that is,A1 � A4 ± A2 � A3 andX1 �
X4 ± X2 � X3: Therefore only two transitions of each
spin are shown. Furthermore, since in a three-spin
system, there is only one three-spin order term namely
4AzMzXz, its contribution to all the three spins is
identical, yieldingA1 2 A2 � M1 2 M2 � X1 2 X2 �
4AzMzXz: These curves show that there is a very large
multiplet effect of cross-correlations in all motional
regimes, which starts from zero, builds up to a maxi-
mum value and decreases to zero, in a manner similar
to the transient NOE (single-spin order). The multiplet

effect atvtc � 1:118 is particularly interesting since
at this correlation time, the NOE without cross-corre-
lations is zero. Forvtc � 10; the magnitude of cross-
correlation rate is small. But for thisvt c value, the
leakage term in the self-relaxation rates is also small,
the magnetization remains within the spin system for
long times, building-up the NOE and the three-spin
order term, yielding significant effect of cross-
correlation.

3.2.2. The net effect
The net effect of cross-correlations is the difference

in single-spin orders in the presence and absence of
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Fig. 5. Calculated transient NOE spectra of theA andX parts of the
AMX spin system with dipole–dipole cross-correlations for various
geometric disposition of the three spins, obtained by changing
/MAX� b from 0 to 908. The remaining parameters and condi-
tions used for this simulation are the same as Fig. 4. [Reproduced
with permission from V.V. Krishnan, Anil Kumar, J. Magn. Reson.
92 (1991) 293.]

Fig. 6. Difference between the calculated transient NOE for anAMX
spin system with and without cross-correlations�hW 2 hW0

� in
percentage (continuous curves) and the NOE without cross-correla-
tions,hW0

in percentage (dashed curves), for theA andX multiplets,
when theM spin transitions are nonselectively inverted attm � 0;
plotted as a function of the mixing timetm for (a) vtc � 0:1; (b)
vtc � 1:118 and (c)vtc � 10: The remaining parameters and
conditions used for this simulation are the same as in Fig. 4.
[Reproduced with permission from V.V. Krishnan, Anil Kumar,
J. Magn. Reson. 92 (1991) 293.]



cross-correlations. This effect has been discussed in
detail by several workers [92–95]. The presence of
the net effect on NOE is also noticeable in the curves
of Fig. 6, a careful examination of which shows that
the multiplet effect on various transitions, though
opposite in sign, is not completely identical in magni-
tude. This net effect arises from second-order
processes in time. If attm � 0; one creates a single-
spin mode (sayMz), then as a function oftm, it is
converted into the three-spin mode 4AzMzXz and
back to single-spin modeMz by the cross-correlation
ratedAMMX. The single-spin modeMz thus created is
converted by cross-relaxation ratessAM andsAX into
Az andXz, respectively, changing the net NOE on spins
A and X and self relaxation of spinM (Fig. 7). The
magnitude of the calculated net effect in the three spin
system,AMX, after selective inversion of spinM for
linear, right isosceles and equilateral triangle geome-
tries, forvtc � 0:1; 1.118 and 10, are shown in Fig.
8(a)–(c) [93]. In these diagrams, the NOE on spinsA
andX are identical due to symmetry. For these geome-
tries, for isotropic reorientations, the ratio of
dAMMX=sAM � 1; 0.5 and 0.125, respectively. It is
clearly seen that the effect of cross-correlations is
large for the linear case, and small for the remaining
geometries for all correlation times. Furthermore, for
vtc � 1:118; the total NOE on spinsA andX builds
via cross-correlations, since all terms are zero for this
correlation time. A common feature of net NOE for all

correlation times is that for short mixing times, the net
effect is small and builds-up slowly to its maximum
value at fairly large mixing times, indicative of the
second-order process in time as well as magnitude.
Forvtc � 10; there is little leakage and the magneti-
zation remains within the spin system for a very long
time, building up the net effect of cross-correlations
similar to the multiplet effect. From the above curves,
it seems that the net effect on NOE builds up to a
significant value for large mixing times. However,
these curves do not represent all correlation times
properly. In order to investigate the net effect on
NOE due to cross-correlations for different correlation
times, the net effect is plotted in Fig. 9 for the linear
case, at fixed mixing times of 100, 200 and 400 ms as
a function ofvt c [93]. This figure shows that even at
tm � 400 ms; there is a significant net effect atvtc ,
1:6; and that there is significant effect forvtc � 2–5:
This shows that the error arising from the neglect of
cross-correlations for a given mixing time, although
small, is not negligible. The error reaches its maxi-
mum value of approximately 1, 2 and 7% of the total
magnetization for mixing times of 100, 200 and
400 ms, respectively, forvt c between 1.2 and 1.6.
It may be noted that the net NOE atvtc � 1:6 with
cross-correlations, for the above mixing times, is 6, 11
and 16% of the total magnetization, respectively.
Thus the error is about 16, 18 and 44% of the net
NOE at these mixing times.

A. Kumar et al. / Progress in Nuclear Magnetic Resonance Spectroscopy 37 (2000) 191–319 211

Fig. 7. Pictorial representation of the magnetization evolution, in a linear three-spinAMXsystem, after selective inversion ofM spin attm � 0
for the long correlation time limit�vtc q 1�: In this situation, the NOE on spinA andX builds up quickly via thes terms. At the same time, the
three-spin order term 4AZMZXZ is created via the cross-correlationdAMMX. As a second-order process in time, the three-spin order term is
reconverted toMZ via dAMMX, which on further evolution is converted back toAZ andMZ. A three-spin-order term is also created fromAZ, MZ and
converted back toAZ, MZ via the smaller cross-correlations (in the linear spin system) namely,dAMAX anddAXMX. These pathways are shown by
the dashed lines.



Since there are many biomolecules which fall in the
regionvtc � 2–5 for which Fig. 9 predicts a signifi-
cant effect of cross-correlations, the net effect of
cross-correlations is analyzed in the three-spin system
assuming a linear configuration forvtc � 2–5; given
in Fig. 10. It is seen that the net effect of NOE is quite
large especially if it is monitored as a percentage of
the total NOE. The curves show that at intermediate

mixing times such as 400 ms, the NOE with cross-
correlations is 24, 35 and 48% of the total magnetiza-
tion and the error is 7, 5 and 3% of the total magne-
tization, atvtc � 2; 3 and 5, respectively [93]. Hence
the error is a significant fraction of the net NOE given
by 28, 15 and 6%, respectively, for the three
correlation times. At these correlation times, cross-
correlations thus have significant influence on net

A. Kumar et al. / Progress in Nuclear Magnetic Resonance Spectroscopy 37 (2000) 191–319212

Fig. 8. (a) Calculated net NOE for theAMX spin system in percentage (h) on the spinA andX (equal because of symmetry), after selective
inversion of the spinM, attm � 0; is shown as a function oftm on a logarithmic scale for a linear configuration of the three spinsA, M andX,
with inter-spin distance of 2 A˚ . In the left-hand diagrams, the dashed curves represent the calculated net NOE without cross-correlations and the
solid curves with cross-correlations. In the right-hand diagrams, the difference�h 0� between these two calculated NOEs are shown by solid
curves. The top, middle and bottom traces correspond tovtc � 0:1; 1.118 and 10, respectively, forv=2p � 300 MHz: The three-spin system is
shown at the top, with the arrow representing the selective inversion of spinM, at tm � 0: (b) Same as (a), except that a right isosceles
configuration is assumed for the three spinsA, M andX. (c) Same as (a), except that an equilateral configuration is assumed for the three spinsA,
M andX. [Reproduced with permission from P.K. Madhu, Anil Kumar, Conc. Magn. Reson. 8 (1996) 139.]



NOE. The maximum error on net NOE, however, is
much larger and appears at very long mixing times,
reaching a value of 22, 23 and 24% of the total magne-
tization at mixing times of 1.8, 2.6 and 3.9 s, respec-
tively, for the three correlation times [93].

3.2.3. Spin diffusion
The above analysis of three-spin system highlights

the effect of cross-correlations in a closed system. As
mentioned earlier, forvtc q 1; there is little leakage
of magnetization from the spin system and the magne-
tization remains within the spin system for a long
time, building up the net effect of cross-correlations.
However, unless special experiments involving spin-
locking a selected number of spins are performed,

there are always additional relaxation-coupled spins
present. These additional spins while on the one hand
carry away the magnetization from the spins of inter-
est reducing the NOE and the effect of cross-correla-
tions, on the other hand, act as sources for additional
cross-correlations. In order to investigate the effect of
spin diffusion on the net effect of cross-correlations,
the addition of fourth and fifth spins in a linear config-
uration has been carried out forvtc � 3: Figs. 11 and
12 represent the effect of spin-diffusion and cross-
correlation on four- (AMKP) and five- (AMKPX)
spin systems in a linear configuration [95].

3.2.3.1. Four-spin system.For the linear configuration
of spins, it is found that the addition of the fourth spin,
while inverting the second spin, reduces the net NOE,
with and without cross-correlations, on the third spin,
while the net NOE without cross-correlations on the
first spin (A) remains relatively unaffected. For
example, on selective inversion of spinM, the NOE
attm � 400 ms; on the spinK is reduced to 18, 26 and
33% of the total magnetization, while the errors due to
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Fig. 8. (continued)

Fig. 9. The difference in net NOE on spinA for anAMXspin system
(after selective inversion of spinM at tm � 0 for a linear arrange-
ment of the spinsA, M and X having inter-spin distance of 2 A˚ ),
calculated with and without cross-correlations in percentage and is
plotted as a function oft c for mixing times shown on the curves for
v=2p � 300 MHz: h 0A is defined ash 0A � �Az�tm�=A0�% whileh 0A �
�hA�w 2 �hA�w0

where �hA�w is the NOE calculated with cross-
correlations and�hA�w0

is the NOE calculated without cross-corre-
lations. Identical curves are obtained for the spinX in this case.
[Reproduced with permission from P.K. Madhu, Anil Kumar,
Conc. Magn. Reson. 8 (1996) 139.]



neglect of cross-correlation as a percentage of the
total magnetization, remain unchanged given by 6, 5
and 3% forvtc � 2; 3 and 5, respectively. It may be
noted that the error as a fraction of the total NOE has
actually increased in this case. On the other hand, at
longer mixing times, the net NOE on the spinK as
well as the maximum error on both spinsK andA is
significantly reduced for allvt c. The maximum error
for vtc � 5 decreases more dramatically than that for
vtc � 2; since in the case ofvtc � 2 and for the short
correlation limit, there is already significant leakage
in the relaxation process of the three-spin system, and
the addition of the fourth spin adds only an additional

leakage pathway for the magnetization. On the other
hand, forvtc $ 5; there is little leakage in the three-
spin system, resulting in a significant effect of cross-
correlation as seen from Fig. 10, which is attenuated
when the fourth spin is added (Fig. 11). It may also be
noted that though both the net NOE and the maximum
errors are reduced, the errors as a percentage of net
NOE are still quite significant [95].

3.2.3.2. Five-spin system.The effect of cross-
correlations on the net NOE on various spins has
been analyzed for a linear configuration of an
equidistant five-spin system, when the second spin is
inverted attm � 0 (Fig. 12). It can be seen that the

A. Kumar et al. / Progress in Nuclear Magnetic Resonance Spectroscopy 37 (2000) 191–319214

Fig. 10. Calculated net NOE for anAMX spin system in percentage
(h ) on the spinsA andX after selective inversion of spinM at tm �
0; is shown as a function oftm for a linear arrangement of the spins
A, M and X having inter-spin distance of 2 A˚ . In the left-hand
diagrams, the dashed curves represent the calculated net NOE with-
out cross-correlations and the solid-curves with cross-correlations.
In the right-hand diagrams, the difference (h 0) between these two
calculated NOEs are shown by solid curves. The top, middle and
bottom traces correspond tovtc � 2; 3 and 5, respectively, for
v=2p � 300 MHz: Identical curves are obtained for the spinX in
this case as well. [Reproduced with permission from P.K. Madhu,
Anil Kumar, Conc. Magn. Reson. 8 (1996) 139.]

Fig. 11. Calculated net NOE in percentage (h) on the spinsA, K and
P in a linear four-spin system (AMKP) after selective inversion of
the spinM attm � 0; for vtc � 2; 3 and 5 forv=2p � 300 MHz: In
the left-hand diagrams, the dashed curves represent the calculated
net NOE without cross-correlations and the solid curves with cross-
correlations. In the right-hand diagrams, the difference (h 0) between
the NOEs calculated with and without cross-correlations is shown
for each spin. The interproton distance in the linear configuration is
taken as 2.0 A˚ . [Reproduced with permission from P.K. Madhu,
Anil Kumar, J. Magn. Reson. A 127 (1997) 168.]



maximum errors are small in all cases and are less
than those in the four-spin case and that the errors
are significantly reduced even at intermediate
mixing times such astm � 400 ms: It can be seen
from these curves that while the calculated net NOE
without cross-correlations on spinsA andK changes
little when the fifth spin is added, the effect of cross-
correlations decreases significantly. On the other
hand, with the addition of the fifth spin, the net
NOE calculated with and without cross-correlations
on the fourth spin (P) decreases significantly. These
calculations indicate that as magnetization migrates
along the chain, the NOE and the effect of cross-
correlations decrease. However, the effect of cross-
correlations as a percentage of NOE still continues
to be significant [95].

In order to verify whether spin diffusion and cross-
correlation can be mimicked by a leakage process,
the four- and five-spin calculations with cross-

correlations have been compared with the three-spin
calculation excluding cross-correlation, but with leak-
age terms added to the diagonal elements of the
relaxation matrix. If this leads to an acceptable result,
it will establish whether one can use Solomon’s equa-
tions, (Eq. (65) contains evolution of only single-spin
modes) and neglect all cross-correlations, with leak-
age terms added to the diagonal elements. Fig. 13
shows the calculated transient NOE as a function of
mixing time, on the spinK in the linearAMK spin
system, on inversion of the spinM at tm � 0; calcu-
lated without cross-correlations but with different
amounts of leakage added to all the diagonal elements
of Solomon’s equations, forvtc � 3 [95]. Curvea is
without any leakage and curvesb–f are with leakage
amounting to 5, 10, 20 and 30%. The same figure
also shows the calculated transient NOE on spinK
in the linearAMKP and AMKPX spin systems with
spin M being inverted attm � 0; calculated with
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Fig. 12. Same as Fig. 11 except that a linear arrangement of five
spinsA, M, K, P andX is considered, with theX spin being added at
2.0 Å from spinP. [Reproduced with permission from P.K. Madhu,
Anil Kumar, J. Magn. Reson. A 127 (1997) 168.]

Fig. 13. Net NOE (curve a) in percentage on the spinK in a linear
AMK spin system calculated without cross-correlations after selec-
tive inversion of the spinM attm � 0: Curves b–e correspond to the
above situation, with the addition of non-selective leakage terms
corresponding to 5, 10, 20 and 30% of the average relaxation rates
of single-spin-orders,�1=3��rA 1 rM 1 rK �; respectively, to each of
the diagonal elements of the rate matrix. Dashed curves f and g
correspond to the net NOE calculated on the spinK in a linear
arrangement of four (AMKP) and five (AMKPX) spins, respec-
tively, without any leakage but with cross-correlations, after selec-
tive inversion of the spinM attm � 0: In all the above calculations,
the inter-spin distance is taken as 2 A˚ , vtc � 3 and v=2p �
300 MHz: [Reproduced with permission from P.K. Madhu, Anil
Kumar, J. Magn. Reson.A 127 (1997) 168.]



cross-correlations (dashed curves) forvtc � 3: It is
seen from these curves that for short mixing times the
four-spin net NOE including cross-correlations
matches the three-spin net NOE calculation without
cross-correlations but with 20% leakage. For longer
mixing times, the amount of leakage must be reduced,
and at very long mixing times beyond 1 s, the three-
spin NOE without cross-correlations becomes smaller
than the four-spin NOE with cross-correlations. Leak-
age then cannot account for the spin diffusion. The
five-spin NOE matches the three-spin NOE with 30%
leakage for short mixing times and the reduced leak-
age for long mixing times with the three spin NOE
without leakage becoming smaller than the five-spin
case aftertm � 3 s: These results indicate that in the
presence of significant spin diffusion, the effect of
cross-correlations on the net NOE becomes small
and leakage can account for cross-correlations only
for short mixing times [95].

The conclusion of this section is that there is a
significant effect of cross-correlations on net NOE
especially in the regionvtc � 1–3 and unless cross-
correlations are explicitly taken into account, the
distances obtained from NOE should be treated as
estimates rather than accurate measurements, espe-
cially for analyses, which go beyond initial rate
approximations.

3.3. Effect of cross-correlations in equivalent and
strongly coupled spins

In the three-spin analysis given above, the recov-
ery of the second inverted spin has also been calcu-
lated with and without dipolar cross-correlations. It
is found that there is a significant effect of cross-
correlations in the recovery of the inverted spin and
that it is highly non-exponential (Fig. 14) [93]. The
origin of this non-exponentiality is well understood
in the context of the above discussion. The recovery
is non-exponential in the presence of cross-correla-
tions (a sum of seven exponentials for a three-spin
system, Eq. (61)), as well as in the absence of cross-
correlation (a sum of three exponentials for three
relaxation-coupled spins, Eq. (65)). This behavior
is independent ofJ-coupling, when the recovery of
net magnetization of a spin is monitored. However,
the situation requires that all the relaxation-coupled
spins have resolved chemical shifts. In case of over-

lapping chemical shifts, only the sum mode of the
degenerate spins can be monitored and the modes
defined above have to be transformed into a symme-
trized basis [58,96–101]. The cases involvingA2,
A3, AX2 and AX3 as well as strongly coupledAB
and ABX spins are discussed in the following
sections.

3.3.1. A2 spin system
For equivalent spins, the rate equation (Eq. (58))

should be transformed into a basis set, which corre-
sponds to the irreducible representation of the symme-
try point group of the spin system. The simplest spin
system of this kind consisting of two relaxation-
coupled spin-(1/2) nuclei, which are magnetically
and chemically equivalent, have been studied by
several workers [17,58,101]. Here it is assumed that
the dipolar relaxation between the two spins is the
major source of relaxation. One must define three
normal modes to describe the longitudinal spin evolu-
tion. These modes are defined in the following way
[58]:

o
anA2

1 � Tr{ �IA
z 1 IA0

z �s}

u
snA2

2 �
1��
3
p Tr{ �3IA

z IA0
z 2 IA

:IA0 �s}

u
snA2

3 �
2��
6
p Tr{ �IA

:IA0 �s}

�79�

where the antisymmetric modeo
anA2

1 is the only obser-
vable mode. In the absence of CSA–dipole cross-
correlations, only the observable modeo

anA2
1 is created

and it relaxes monoexponentially through the auto-
correlated dipolar relaxation. In the presence of a
random field mechanism, the modes have coupled
evolution [58].

3.3.2. A3 spin system
The effect of multi-spin dipole–dipole cross-corre-

lations in systems with three identical spin-(1/2)
nuclei (A3) is discussed here. Only three irreducible
modes are coupled by dipole–dipole cross-correla-
tions. Their definitions and the rate equations are
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given by [58]:
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The various elements of the relaxation matrix in Eq.
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Fig. 14. Calculated net magnetization in percentage of spinM as a function oftm, after selective inversion of spinM, attm � 0; for the linear
geometry of three spinsAMX for three different values ofvtc: In the left-hand diagrams, the dashed curves represent the calculated
magnetization without cross-correlations and the solid curves with cross-correlations. In the right-hand diagrams, the differences between
these two calculated magnetizations are shown by solid curves. [Reproduced with permission from P.K. Madhu, R.C.R. Grace, Anil Kumar,
Bull. Magn. Reson. 16 (1994) 115.]



(81) are given by [58]:
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HereJa�v� � Jijij �v� andJc�v� � Jijik �v�: The indices
i, j and k are dropped since we are dealing with

equivalent spins. It is interesting to note thatJc(0)
and Jc(2v ) contribute in the case of equivalent
spins, unlike the weakly coupled case. It turns out,
as will be discussed in a later section, that cross-corre-
lations from spectral densities at zero and 2v contri-
bute to relaxation in the strong coupling situations
[75,102] as well; equivalent spins being extreme
examples of strongly coupled spins.

Out of the three modes in Eq. (80), only the mode

o
anA3

1 is observable and is coupled to the unobserv-
able modesu

snA3
2 and u

snA3
3 via the cross-correlation

terms. On the other hand, the unobservable modes
are coupled to each other by auto- and cross-corre-
lation terms. In an experiment, it is possible to
excite and observe only theo

anA3
1 mode, which in

the absence of cross-correlation relaxes with a single
exponential. In the presence of cross-correlations,
this modeo

anA3
1 converts to the unobservable modes

u
snA3

2 and u
snA3

3 and back to the modeo
anA3

1 ; giving rise
to multi-exponential relaxation (Fig. 15) [103–108].
This is the source of non-exponential methyl relaxa-
tion mentioned in many earlier analyses of cross-
correlations, along with solid-state NMR studies of
methyl and ammonium group reorientations
[36,109–118].
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Fig. 15. Intensity profile for the ring proton (fH) and the methyl proton in an inversion recovery experiment, carried out on 0.1 M acerizonate
dissolved in D2O, phosphate–KCl buffer, ionic strengthm � 0:2; pH� 7:0 at 328C. The points represent the experimental data and the lines
show the theoretical fit to the experimental data. The relaxation of the methyl protons is non-exponential. [Reproduced with permission from
J.F.R. Miranda, C.W. Hilbers, J. Magn. Reson. 19 (1975) 11.]



3.3.3. AX2 spin system
Several workers have studied theAX2 spin system,

theoretically as well as experimentally [58,119–140].
For such a system, in the presence of only dipole–
dipole cross-correlations, three antisymmetric
physically observable normal modes namely,IZ

A,

�I X
Z 1 I X 0

Z �=
��
2
p

and 4I A
Z I X

Z I X 0
Z are needed. One also

needs a fourth non-measurable mode,
��
2
p ��I X

1 I X 0
2 1

I X
2 I X 0

1 �I A
Z �; which is coupled to the first two modes

via dipole–dipole cross-correlations and to the third
mode via both auto and cross-correlations. The relaxa-
tion matrix elements for such a system are given by
[58]:
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1 4JXX0XX0 �2vX�

aĜ 23 �
��
8
p

JAXXX0 �vX�
aĜ 24 � 2JAXAX0 �vA 2 vX�2 �1=3�JAXAX0 �vA 2 vX�

2 2JAXXX0 �vX�
aĜ 33 � 2JAXAX�vA�2 2JAXAX�vX�1 2JXX�vX�
aĜ 34 � 4

3 �JAXAX�0�2 JAXAX0 �0��1 1
3 JAXAX�vA 2 vX�

1 JAXAX�vX�1 2JAXAX�vA 1 vX�1 JXX�vX�
�83�

While the relaxation matrix elementsaĜ 11;
aĜ 12,

aĜ 22;
aĜ 33 depend only on auto-correlations,aĜ 13;

aĜ 14;
aĜ 23 and aĜ 24 only on cross-correlations.

aĜ 34 depends on both auto and cross-correlations.

Thus in the presence of dipole–dipole cross-correla-
tions, there is differential relaxation between the outer
and the inner transitions of theA spin multiplet, but
the transitions of theX-spin doublet relax identically.
However, if one considers the CSA of spinsA andX,
several two-spin modes coupled by CSA–dipole
cross-correlations have to be considered, the expres-
sions of Eq. (83) become fairly complicated and lead
to differential relaxation of theX-spin doublet as well
[134].

3.3.4. AX3 spin system
The methyl group13CH3 belongs to this type of

four-spin case and is encountered in several systems.
The dipolar interactions among the various protons
and carbon-protons have been considered by several
authors [135–175]. The antisymmetric modes for the
AX3 system consist of three measurable modes
namely: n1, the totalA-spin magnetization�IA

Z �; n2;

the total X-spin magnetization�IX
Z 1 IX 0

Z 1 IX 00
Z � and

n3, the weighted sum of the outer components
minus the central components of theA-spin

quartet �I A
Z �I X

Z I X 0
Z 1 I X

Z I X 00
Z 1 I X 0

Z I X 00
Z ��: Coupled to

these three measurable modes are three non-measur-
able modes:n4, the quartet minus the doublet contri-
butions to the central lines in theA-spin quartet
�I X

Z I X 0
Z I X 00

Z � andn5 andn6, two combinations of forbid-
den transitions in theX-spin manifold�I X

Z �I X 0
1 I X 00

2 1

I X 0
2 I X 00

1 � 1 I X 0
Z �I X

1 I X 00
2 1 I X

2 I X 00
1 �1 I X 00

Z �I X
1 I X 0

2 1 I X
2 I X 0

1 �
and I A

Z �I X
1 I X 0

2 1 I X
2 I X 0

1 1 I X
1 I X 00

2 1 I X
2 I X 00

1 1 I X 0
1 I X 00

2 1

I X 0
2 I X 00

1 ��: The relaxation matrix elements for this
system in the presence of dipole–dipole cross-corre-
lations are given in Ref. [58] and for CSA–dipole
cross-correlations are given in Refs. [134,176,177].
In the absence of cross-correlations, modesn1 to n4

have the same relaxation rates. In the presence of
dipole–dipole cross-correlations, the outer lines
relax at a different rate compared to the inner
lines which has been observed experimentally
[89,150,157].

3.3.5. AB spin system
The simplest case of a strongly coupled spin system

is the two-spin system (AB). The rate equation
for such a system is given by Eq. (52). If one considers
the CSA of both spins as well as the dipolar inter-
action between the two spins, the single quantum
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transition probabilities (numbering the states as,u1l �
uaal; u2l� cosuuabl 1 sinuubal; u3l�2sinuuabl 1
cosuubal and u4l � ubbl� are given by [178,179]:

In the presence of cross-correlations and strong
coupling, all the four W1 terms are unequal.
The contribution of CSA–CSA cross-correlation
[JA,B(v )] becomes observable as a differential effect
between the inner and the outer transitions of theAB
multiplet.

For equivalent spin systems, where the sum mode is
the only physical observable, the contribution of this
remote term to longitudinal relaxation cancels out.

The double and zero quantum transition probabil-
ities are given by [178,179]:

As can be seen from this equation, the double
quantum transition probability is independent of
strong coupling as well as cross-correlations. On
the other hand, the zero quantum transition
probability has contributions from all auto and

cross-correlation spectral densities, including the
remote termJA,B(0).

3.3.6. ABX spin system
The effect of strong coupling and cross-correlations

on longitudinal relaxation has been investigated theo-
retically, forABXspin systems [74,76,178–180]. It is
found that while the effects of cross-correlation in
weakly coupled spins are limited to spectral densities
at the Larmor frequency (W1 terms), which decrease
in magnitude asvt c increases beyond 1, strong
coupling mixes states and therefore cross-correlations
affect spectral densities at zero and 2v .

Table 1 contains the contribution of dipole–dipole

cross-correlations to various transition probabilities in
the presence and absence of strong coupling. It is seen
that under strong coupling dipolar cross-correlations
contribute to transition probabilities at zero, and twice
the Larmor frequency as well.
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NOEs onA and B spins have been calculated for
non-selective irradiation/inversion of all transitions of
X spin. While in a transient experiment, the effect of
cross-correlations is significant in both weak and
strong coupling situations, it is found that for a
steady-state experiment, the effect of cross-correlation
is absent for the weakly coupled case and small for the
strongly coupled case [75,76]. The absence of the
effect of cross-correlations for a steady state experi-
ment in the weakly coupled case is because, irradia-
tion of a spin saturates the single-spin mode
(magnetization of the spin) as well as all modes
containing that spin. If theX spin is saturated, then

modes,Xz, 2AzXz, 2BzXz and 4AzBzXz become zero.
The three-spin calculation then reduces to a pseudo-
two-spin system [75,178]. Since in a weakly coupled
case, the dipole–dipole cross-correlations connect
single-spin orders only to three-spin order, the effect
of dipolar cross-correlation becomes analytically
zero. If CSA–dipole cross-correlations were included,
they would affect the steady-state NOE. In a weakly
coupled four-spin system, saturation of the fourth
spin, reduces the relaxation dynamics to a psuedo-
three-spin system and the dipole–dipole cross-corre-
lation also affects the NOE to the remaining three
spins.
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Table 1
Difference between the transition probabilities with and without dipole-dipole cross-correlations

Wab Strong couplinga Weak coupling

Zero quantum transition probabilities(W0)
W23 2�JAXBX�0�c1s1�=3 0
W24 22�JAXBX�0�c1s1�=3 0
W34 4��JABAX�0�2 JABBX�0���c3

1s1 2 c1s3
1�2 2JAXBX�0�c2

1s2
1�=3 0

W56 24��JABAX�0�2 JABBX�0���c3
2s2 2 c2s3

2�1 2JAXBX�0�c2
2s2

2�=3 0
W57 2�JAXBX�0�c2s2�=3 0
W67 22�JAXBX�0�c2s2�=3 0

Double quantum transition probabilities(W2)
W15 4�JAXBX�2v�c2s2� 0
W16 24�JAXBX�2v�c2s2� 0
W17 0 0
W28 0 0
W38 4�JAXBX�2v�c1s1� 0
W48 24�JAXBX�2v�c1s1� 0

Single quantum transition probabilities(W1)
W12 JAXBX�v� JAXBX�v�
W13 �JABBX�v��c2

1 1 c1s1�1 JABAX�v��s2
1 1 c1s1�1 JAXBX�v�c1s1� JABBX�v�

W14 �JABBX�v��s2
1 2 c1s1�1 JABAX�v��c2

1 2 c1s1�2 JAXBX�v�c1s1� JABAX�v�
W25 2�JABBX�v��c2

2 1 c2s2�1 JABAX�v��s2
2 2 c2s2�2 JAXBX�v�c2s2� 2JABBX�v�

W26 2�JABBX�v��s2
2 2 c2s2�1 JABAX�v��c2

2 2 c2s2�1 JAXBX�v�c2s2� 2JABAX�v�
W35 2�JAXBX�v��c1c2 2 s1s2�2� JAXBX�v�
W36 2�JAXBX�v��c1s2 1 s1c2�2� 0
W37 2�JABBX�v��s2

1 1 c1s1�1 JABAX�v��c2
1 1 c1s1�2 JAXBX�v�c1s1� 2JABAX�v�

W45 �W36 0
W46 �W35 JAXBX�v�
W47 2�JABBX�v��c2

1 2 c1s1�1 JABAX�v��s2
1 2 c1s1�1 JAXBX�v�c1s1� 2JABBX�v�

W58 �JABBX�v��s2
1 1 c2s2�1 JABAX�v��c2

2 1 c2s2�1 JAXBX�v�c2s2� JABAX�v�
W68 �JABBX�v��c2

2 2 c2s2�1 JABAX�v��s2
2 2 c2s2�2 JAXBX�v�c2s2� JABBX�v�

W78 JAXBX�v� JAXBX�v�
a c1 � cos�u1�; s1 � sin�u1�; c2 � cos�u2�; s2 � sin�u2�:



Recently, the effect of CSA along with dipolar
contribution has been calculated for anABX spin
system [178,179]. While the dipolar contribution to
relaxation is given in Table 1, the remote CSA–dipole
and CSA–CSA cross-correlation contributions are
given here. For the single quantum transition prob-
abilities of theABspins, the remote cross-correlations
contribute in the following manner [178]:

W13
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W26

W37

W47

W58

W68

0BBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCA

�

sin 2u1 sin 2u1 22 sin 2u1

sin 2u1 sin 2u1 22 sin 2u1

sin 2u2 sin 2u2 2 sin 2u2

2sin 2u2 2sin 2u2 22 sin 2u2

sin 2u1 sin 2u1 22 sin 2u1

sin 2u1 sin 2u1 22 sin 2u1

sin 2u2 sin2u2 2 sin 2u2

2sin 2u2 2sin 2u2 22 sin 2u2

0BBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCA

�
JA;BX�v�
JB;AX�v�
JA;B�v�

0BB@
1CCA: �86�

It may be noted that the remote CSA–dipole cross-
correlation termsJA,BX andJB,AX and CSA–CSA term
JA,B also contribute to the variousW1’s. These
contributions vanish in the weak coupling approxi-
mation. The single quantum transition probabilities
of the X spin are unaffected by these remote cross-
correlations. These remote terms however, affect the
zero quantum transition probabilities between the
mixed states 3! 4 and 5! 6 in the following
manner [178,179]:

These terms which have contribution at zero
frequency drop out in the weak coupling approxima-
tion. All the other zero- and double-quantum transi-
tion probabilities are unaffected by these remote
cross-correlation terms.

3.4. Experimental observation of longitudinal cross-
correlations

There are many experiments in which the presence
and the utility of cross terms have been demonstrated.
We classify them into the following types: (i) non-
exponential recovery in longitudinal relaxation; (ii)
direct detection of multi-spin order as a multiplet
effect in inversion recovery and NOE experiments
with or without multiple-quantum filters; (iii) multi-
plet effect in 2D NMR experiments (mainly NOESY);
(iv) creation of multi-spin order and its recovery and
conversion to single-spin order.

3.4.1. Non-exponential recovery in longitudinal
relaxation

One of the early observations of cross-correlations
originating from cross terms between proton–proton
dipolar interactions is the non-exponential recovery of
methyl magnetization in solids as predicted by
Hubbard [105,106] and observed by Hilt and Hubbard
[36], Anil Kumar and Johnson [118], van Putte and
others [157,158] and Buchner et al. [159–164]. There
have been several observations of non-exponential
relaxation during the early 1960s and 1970s, which
have been attributed to cross-correlations. As briefly
indicated in Section 3.3.1, non-exponential proton
spin–lattice relaxation, which is a signature of
cross-correlations, was observed in powder samples
containing CH3 groups [109–118]. It has been pointed
out that, in powder samples, the methyl relaxation can
be non-exponential due to several reasons, namely
cross-correlations, anisotropic reorientations and
overlap of multiple sites [37]. One of the unequivocal
experiment, for the observation of non-exponential
relaxation due to cross-correlations was performed

by Mehring and Raber by studying the relaxation
behavior of 19F in a CF3COOAg single crystal,
where the three-fold axes of all the molecules in the
unit cell are collinear [37]. The experimental results
agree well with the prediction of the Hubbard–Hilt
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theory and is a definitive experimental confirmation of
the same. In a series of articles published between
1967 and 1972, Blicharski and coworkers made an
extensive theoretical analysis of interference between
dipolar, quadrupolar and CSA interactions in systems
of 2–4, like or unlike spins along with an experimen-
tal study of the non-exponential longitudinal relaxa-
tion of 19F in C2F2Cl2 and BF3 [17–20].

From a spectroscopist’s viewpoint, the utility of
cross-correlations in yielding finer details of molecu-
lar structure and dynamics than conventional relaxa-
tion parameters was noted in the early years itself and
the inclusion of cross-correlation spectral densities
was attempted to exploit nuclear spin relaxation to
its maximum. For example, in a series of papers,
Vold et al. clearly demonstrate the usefulness of
cross-correlations in the study of planar molecules
[24–29]. Alternatively, the exploitation of non-axially
symmetric interactions proved useful as elegantly illu-
strated by the pioneering work of Huntress [181], and
Dolle and Bluhm [182]. While auto-correlation is
responsible in thermalization and/or dissipative
processes, and can be associated with the measure-
ments ofT1, T2, T1, or cross relaxation, cross-correla-
tion initiates polarization and coherence transfer and
is manifested in higher forms of transient spin orders
[183,184].

3.4.2. Non-exponential13C relaxation
There have been several studies involving non-

exponential recovery of13C magnetization due to
cross-correlations in the presence of proton
decoupling. Notable among these studies are those
by Buchner et al. [159–164], Werbelow and Marshall
[165], and Brown et al. [166]. Buchner and Emmerich
in 1971 observed a multiplet effect in the dynamic
nuclear polarization of13C nuclei in the methyl groups
of toluene and similar compounds. A difference in
relaxation times of13C depending on whether the
protons are in a quartet or in a doublet state has
been found to be the reason for the observed multiplet
effect [159]. This difference in13C relaxation times is
shown to give rise to non-exponential longitudinal
relaxation of the methyl group13C line in proton-
decoupled spectra [160]. Further, it has been
theoretically shown that cross-correlations between
spin rotation interactions in methyl groups can give
rise to non-exponential13C relaxation [160]. Proton

decoupled13C relaxation was investigated in detail in
13CH2 and 13CH3 systems by Werbelow and
coworkers [138,165]. They obtained in these systems
a biexponential recovery of magnetization, the reason
for which was attributed to cross-correlations. It may
be noted that cross-correlation effects play a minimal
role in CH3 where the effects are masked by motional
criteria that are rather unlikely to be satisfied except in
unusual cases [153]. However, variability in the
motional geometries, disappearances of proton–
proton influence, and the possibility of zero eigen-
values in the relaxation equations are realistic
problems in the CH2 case where cross-correlations
are more significant [167–171]. An observation of
non-exponentiality in1H-coupled13C-methyl relaxa-
tion was reported by Brown et al. in enriched
13CH3HgO2CH3 in D2O [166]. Contribution of CSA
to 13C relaxation in this system was ruled out by lack
of asymmetry in the relaxation of the fully coupled
quartet and by observing the same NOE values in two
different magnetic fields.

3.4.3. Multiplet effect in inversion recovery and NOE
experiments

There have been many investigations involving
recovery of 13C magnetization in the presence of
proton couplings. In this case, the cross-correlations
show up as differential relaxation of the lines of the
multiplets, yielding direct evidence of the presence of
cross-correlations. Notable among the early studies
are by Daragan et al. [39–41], Vold et al. [24–29],
Fuson and Prestegard [124–127], Nery et al.
[185,186] and Grant et al. [187,188]. One of the
earliest observations of multiplet effect was reported
in 1966 by Mackor and Maclean, where they have
observed differential relaxation of19F and its dipolar
relaxation with the attached proton [189]. Another
clear experimental evidence of cross-correlations is
the observation of differential NOE on the13C triplet
of 13CH2I2 in benzene-d6, on inversion of protons by
Mayne et al. [190] (Fig. 16). The intensities of the
carbon-13 triplet deviates from 1:2:1 ratio as a func-
tion of the recovery time, except at very short and very
long times, clearly establishing the creation of multi-
spin order in thisAX2 spin system.

Fuson and Prestegard observed differential relax-
ation in polyethylene glycol by using the pulse
sequence 180(13C,1H)–t–90(13C)-Acquisition [125]
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(Fig. 17). With the help of this sequence, the magne-
tization mode, which is the difference in the intensities
of the outer and inner lines of the triplet of CH2

carbons, could be observed. The differences in inten-
sities arise due to CH–CH0 and CH–HH0 dipole–
dipole cross-correlations. An interesting study is the
unequal recovery of the proton doublet in an15N-
enriched sample of a substituted uridine (Fig. 18) by
Guéron et al. [191]. They observed that the proton
doublet exhibited differential relaxation behavior
after selective inversion. This was explained as due
to cross-correlation between the CSA of H and H–N
dipolar relaxation. This study marks the beginning of
several observations of CSA and dipolar cross-
correlations through unequal multiplet relaxation as
direct evidence of cross-correlations.

Another important development in the observation
of CSA–dipole cross-correlations in coupled protons
was published by Dalvit and Bodenhausen [45] in a
system having two ortho aromatic protons mutuallyJ-
and relaxation-coupled. Selective inversion of each
doublet followed by a small angle (208) measuring
pulse, showed differential recovery of the two lines
of the doublet, indicating the creation of two-spin-
order terms during the recovery period (Fig. 19). An
interesting remark by the authors of this paper is, “the
use of 908 measuring pulse is the reason for the non-
detection of cross-correlations in 20 years of inversion
recoveryT1 measurements in homonuclear coupled

spin systems”. Following this work, Dalvit [192] did
selective inversion-recovery experiments [using a
small-angle (308) observation pulse] on amide protons
of the undecapeptide cyclosporine-A, that areJ
coupled to their respectivea-protons (Fig. 20). The
observed differential relaxation of each amide doublet
was attributed to the cross-correlation term between
the CSA of the amide proton and the HN–Ha dipole–
dipole interaction [192].

Similar experiments have been performed in
heteronuclear spin systems of13C, 19F and31P [193–
202]. Unlike the homonuclear spin systems, there is
no need for a small angle measuring pulse in the
heteronuclear case. Heteronuclear dipolar cross-
correlation was observed by Daragan and Mayo in
13C relaxation measurements in the form of unequal
relaxation of individual multiplet lines [51,203]. Typi-
cal examples for13C are given in Fig. 21 [89],19F in
Fig. 22 [197] and31P in Fig. 23 [198]. Several groups
have conclusively shown that the analysis of cross-
correlation spectral density terms obtained from the
relaxation of13C multiplet of CH2 and CH3 groups can
give additional information for molecular rotational
motions. Fuson and Prestegard have used this metho-
dology to analyze motions executed by a fatty acyl
chain in phospholipid vesicles [127]. This was
followed by Daragan and Mayo where they showed
that the differential relaxation of13C multiplet in a
peptide [51,203] can be correlated to the order
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Fig. 16.13C NMR time resolved spectra of13C-enriched methylene iodide obtained at various timest, shown in the figure, subsequent to the
complete inversion of the proton doublet. [Reproduced with permission from C.L. Mayne, D.M. Grant, D.W. Alderman, J. Chem. Phys. 65
(1976) 1684.]
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Fig. 17. (i) Inversion recovery spectra for a 20% polyethylene glycol sample at 258C. Spectra were recorded on a Bruker CXP200 spectrometer
using a phase-alternating pulse sequence with a repetition rate of 3 s. Each spectrum is the average of 120 scans. Pulse sequence used was
180(13C, 1H)–t–90(13C)–acq. (ii) The 0.2 s spectrum of (i) is reproduced in B. A is the 0.2 s delay spectrum obtained with the addition of a 908

proton pulse along with the13C-908 observation pulse. The two 908 pulses suppress the two-spin order term giving rise to spectrum A containing
only single-spin13C order. C is the difference between A and B, containing exclusively the two-spin order terms. [Reproduced with permission
from M.M. Fuson, J.H. Prestegard, J. Magn. Reson. 41 (1980) 179.]



parameter or local correlation time along a hydro-
carbon chain.

Keeler and Ferrando have shown that the presence
of CSA–dipole cross-correlations can give rise to
different NOE enhancements for the different lines
of a weakly coupled multiplet [42]. In some special
cases, the effect is sufficiently large that some lines of
the multiplet can show positive enhancements and
some negative. Similar effects can also occur due to
cross-correlations between separate dipolar relaxation
pathways [42]. An earlier study by Nery et al.
also considered the effect of CSA–dipole cross-
correlations on the NOE [102,185,186].

Cross-correlation effects have also been observed
in nucleotides. It has been observed that cross-corre-
lation between31P CSA and31P–31P dipolar relaxa-
tion gives rise to differential longitudinal relaxation in
adenosine triphosphate (ATP) and diphosphate (ADP)
[204]. Batta et al. [205] have recently measured
13C–1H dipolar and 13C CSA cross-correlation
contributions to longitudinal relaxation in13CHCl3,

triphenylsilane and trehalose using initial rate 1D
and 2D experiments, in which the two-spin full
relaxation matrix�3 × 3� has been analyzed. Attention
was paid to careful experimentation, in terms of
normalization of 2D experiments to zero mixing
time and to the influence of insufficient relaxation
delay in such studies. The various rates have been
measured to a high accuracy.

3.4.4. Multiplet effect in NOESY experiments
A widely used method for the observation of cross-

correlations is the conversion of multi-spin longi-
tudinal order created by cross-correlations into multi-
ple quantum coherences, which in turn, are detected
via multiple quantum-filtered NOESY. Dalvit and
Bodenhausen have combined the principle of double
quantum filtration with 2D spectroscopy for the study
of homonuclear spin systems [45]. This experiment is
referred to as DQF NOESY, which is employed to
measure the build up of longitudinal two-spin order
[45]. This also provides unequivocal evidence for the
presence of the cross terms between CSA of proton
and the proton–proton dipolar interactions particu-
larly for the aromatic protons. In this experiment,
the initial longitudinal single-spin order attm � 0 is
converted duringtm into two-spin longitudinal order
by CSA–dipole cross-correlations, which in turn gets
converted into two-spin transverse coherence contain-
ing both double- and zero-quantum coherences of
which only double-quantum coherence is detected
by the double-quantum filter. The diagonal and the
cross peaks in this experiment imply the presence of
CSA–dipole cross-correlation terms (Fig. 24). This
experiment is similar to the triple-quantum filtered
NOESY [206,207], which monitors the build-up of
the longitudinal three-spin order created from
the longitudinal single-spin order by dipolar cross-
correlations in three-spin systems (Fig. 25).

Oschkinat et al. have used a small angle NOESY
experiment (908–a–b with a � b � 208), which
allows observation of the multi-spin order created
from single-spin order via cross-correlations during
the mixing time of NOESY [87]. A modification of
this experiment has been suggested by Grace and
Kumar in which the second pulse is 908 and the
third is a small angle pulse or vice versa [208]. This
suppresses the direct pumping effects and renders the
differences in the intensities of various lines of a
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Fig. 18. Inversion-recovery proton NMR spectra for the two compo-
nents of the imino doublet of 3-15N-substituted 20, 30, 50-tri-O-
benzoyluridine. The difference in the relaxation rates is ascribed
to CSA–dipole cross-correlations. The relative differential in the
relaxation rate is�11^ 2�%: A value of 5.7 ppm is derived for
the proton chemical shift anisotropy. [Reproduced with permission
from M. Guéron, J.L. Leroy, R.H. Griffey, J. Am. Chem. Soc. 105
(1983) 7262.]



multiplet as entirely due to cross-correlations. Since
resolution alongv2 is usually better than that along
v1, the NOESY 908–908–a experiment is preferred.
Hence, these flip-angle-dependent NOESY experi-

ments, where the various multiplets of a spin are
well resolved yield direct evidence for cross-
correlations.

Several sensitive pulse sequences have been
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Fig. 19. Selective inversion-recovery spectra, at 500 MHz corresponding to each doublet of the two-spin system of ring protons of Adlone
recorded with a 208 measuring pulse. The differential relaxation of the doublets of each proton arises from creation of the two-spin-order term
during the recovery period by the cross terms between CSA of the aromatic proton and its dipolar coupling with the other aromatic proton.
[Reproduced with permission from C. Dalvit, G. Bodenhausen, Chem. Phys. Lett. 161 (1989) 554.]



developed to monitor the CSA–dipole cross-
correlations such as polarization transfer [183,184],
2D Soft NOESY [209], Ortho ROESY [210],
SLOESY [211] and Overbodenhausen [212]
experiments.

3.4.5. Observation of antiphase magnetization
Jaccard et al. have shown that in heteronuclear spin

systems one can selectively observe the conversion of

single-spin order to two-spin longitudinal order term
via the cross-correlation between CSA and dipolar
interactions by converting it into antiphase magneti-
zation by a small angle pulse acting on both spins or
by a selective 908 acting on one of them [213]. The
antiphase term could also be detected by suppressing
the single-spin order term. The growth and decay of
antiphase 13C magnetization was observed as a
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Fig. 20. Selective inversion-recovery spectra of the amide proton
region of cyclosporine A (30 mg in 0.6 ml CDCl3) recorded at
300 K with a 308 detection pulse. The spectra were recorded on a
Bruker AM-500 spectrometer. The two doublets correspond to the
NH proton resonances for the residues Val-5 (left) and Ala-8 (right).
The time indicated on the left of each spectrum is the interval
between the 1808 pulse and the detection pulse. [Reproduced with
permission from C. Dalvit, J. Magn. Reson. 95 (1991) 410.]

Fig. 21. Proton-coupled13C inversion-recovery spectra showing
relaxation in the multiplets of13C spins in a peptide and in a
small molecule. (A) Measurements of selectively enriched Ca of
Gly-10 in the hexadecapeptide GVKGDKGNPGWPGAPY
recorded at 283 K at the carbon resonance frequency of 150 MHz.
Time intervals are 2, 0.025, 0.05, 0.075, 0.1, 0.15, 0.2, 0.25, 0.3,
0.35 and 0.4 s. (B) and (C) give comparative data, respectively, for
methylene and methyl carbons of ethanol, recorded at 299 K. Time
intervals are 20, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 5 and 6 s. For the
glycine, the inner line relaxes faster than the outer lines (A); for
the CH2 group of ethanol, the outer lines relax faster than the inner
line (B). For the ethanolic methyl carbon, the inner lines relax faster
than the outer lines (C). All these differential relaxations demon-
strate the presence of cross-correlation between the CSA of carbon
and its dipolar relaxation with the attached protons. [Reproduced
with permission from V.A. Daragan, K.H. Mayo, Chem. Phys. Lett.
206 (1993) 393.]



function of recovery time (Fig. 26) [213] in a sample
of methyl formate, where there is cross-correlation
between the carboxylic13C CSA and the13C–1H
dipolar interaction. The experiment used the pulse
sequence 180S–t–90S

y�90I
x90I

^x�; and the difference
of the spectra gives the magnitude of the two-spin
order 2IzSz. By this difference method, it is possible
to detect very small two spin orders of the order of
0.1%.

3.5. Isolation of longitudinal relaxation pathways
using RF pulses

Levitt and Di Bari [214,215] recently demon-
strated a remarkable experiment in which multi-
spin longitudinal orders, created by cross-correla-
tions, are “spin-locked” for very long times (steady
state). This is obtained by isolating the relaxation
pathways by the use of a series of selective and
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Fig. 22. (a) 19F inversion-recovery spectra of 1-fluoro-2,4-dinitrobenzene using Bruker AMX-400 spectrometer and the pulse sequence
1808–t–908–Acquire, recorded for recovery times indicated in the spectra. The differential relaxation of the19F multiplet reveals the
creation of a two-spin order term,k2AZSZl; which reaches a maximum value of about 12% of the single-spin19F order and is created by
the cross-correlation between the CSA of19F and its dipolar relaxation with the proton ortho to it. (b) Normalized build-up of the two-spin
order k2AZSZl=kS0

Zl derived from experiment (a). [Reproduced with permission from R.C.R. Grace, Anil Kumar, J. Magn. Reson. A 115
(1995) 87.]
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Fig. 23. (a) Schematic diagram of the hypophosphite (HP) ion showing the relative orientation of the chemical shielding tensor with respect to
the molecular frame. The subscript m, denotes the molecular frame. (b) NormalizedkIZSZl�t�=I0

Z; two-spin order relaxation profiles of HP, at
various temperatures (filled circles—276 K, filled triangles—294 K and open diamonds—329 K), obtained by inversion recovery of the31P
nuclei. The solid curves were calculated at the respective temperatures withtc � 13:9; 7.6 and 3.1 ps. The two-spin order is created by the
cross-correlation between the CSA of31P and its dipolar interaction with the protons coupled to it. (c) NormalizedkIZS0ZS00Z�t�l=I0

Z; three-spin
orders, for various temperatures (same as (b)), obtained with the inversion of both31P and1H nuclei. The three-spin order is created due to the
dipole–dipole cross-correlations. Theoretical calculations used the same parameters as that of (b). [Reproduced with permission from C.L.
Tsai, W.S. Price, Y.C. Chang, B.C. Perng, L.P. Hwang, J. Phys. Chem. 95 (1991) 7546.]



non-selective 1808 pulses. They also demonstrated
that this method can be used for the detection of
very small cross-correlations. The explanation of
the experiment is through the Homogeneous-
Master-Equation (HME) approach which is outlined
in the following.

3.5.1. The Homogeneous-Master-Equation (HME)
approach

The equation of motion of the density matrix (Eq. (21)):

ds
dt
� 2i�Hcoh;s�1 G�s 2 seq�; �88�
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Fig. 24. Double-quantum filtered NOESY proton spectrum at 500 MHz of Adlone recorded with the pulse sequence 900
f1–t1–900

f2–�tm 1

mt1�–900
f3–D–900

f4–t2 with a mixing time of 2.6 s andm � �1=3�: The spectrum contains four multiplets (peaks inside the circles) at�vA;vA�;
�vA;vX�; �vX;vA� and�vX;vX� because of longitudinal two-spin order. These multiplets have pure absorptive phase in both dimensions and
are in-phase inv1 and antiphase inv2, with respect toJAX. The remaining eight multiplets arise from zero-quantum terms and can be identified
because of their displacement inv1. The zero-quantum multiplets are antiphase in both dimensions; they have pure absorptive phase inv2, but
they feature a mixture of absorptive and dispersive phase inv1 which depends on the duration of the mixing time. [Reproduced with permission
from C. Dalvit, G. Bodenhausen, Chem. Phys. Lett. 161 (1989) 554.]



is an inhomogeneous differential equation, in which
the inhomogeneous termseq has been added in an
adhoc manner to conform to the equilibrium mag-
netization (M0) in the presence ofB0

~k field. Here
Hcoh represents the coherent part andG the relaxation
part of the Hamiltonian. The equilibrium density
matrix is given by:

seq� Z21 exp�2Hcohtu� �89�
whereZ is the partition function. The temperature (T)
of the lattice is introduced through a time constant:

tu � "

kT
�90�

Using the high temperature approximation
uHcohtuu p 1; seq reduces to:

seq ù
1
n
�1 2 Hcohtu� �91�

wheren is the number of states of each individual spin
system. SinceHcoh commutes withseq, the master
equation leads to the correct convergence ofs to
seq at long times.

The master equation (88) has a peculiar asymmetric
form in which the coherence part applies to the full
density matrix and the relaxation part only to the
deviation from equilibrium. It is possible to isolate
the various relaxation pathways of a spin system by
applying radio frequency pulses, but theoretically one
runs into difficulty, because of the inhomogeneous
nature of Eq. (88). Levitt and Di Bari have solved
this problem by homogenizing the master equation
[214,215]. Following Jeener [216], they showed that
instead of adding aseq term, the relaxation super-
operatorG can be “improved” such that, in Liouville
space the new master-equation has the form:

ds
dt
� �2iĤ 1 Ŷ �s � 2i�Hcoh;s�1 Ŷ s �92�

where

Ŷ � Ĝ 1 Q̂ : �93�
An expression forQ̂ can be derived by the following
argument. The matrix elements ofĜ �kPr uĜ uPsl� are
the transition probabilities,Wrs. For a lattice at
temperatureT, Wrs differs from Wsr by a small factor
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Fig. 25. Parts of triple-quantum filtered (A) NOESY and (B) COSY proton spectra of thea–b region of the cyclic undecapeptide cyclosporin-A
in CDCl3, recorded at 400 MHz. The zero-quantum peaks in (A) have been shifted using the mixing time astm 1 kt1 with k � �1=3� and have
been identified. In COSY, peaks are doubly antiphase in bothv1 andv2 dimensions. In NOESY, the peaks arise due to cross-correlations and
are antiphase inv2, but in-phase inv1. A large number of such peaks are present indicating the presence of significant dipole–dipole cross-
correlations in several residues. Circled peaks are strong in one spectrum and weak in the other. The peaks missing in NOESY and present in
COSY are due to spins which have resolvedJ-couplings but weak cross-correlations. On the other hand, peaks present in NOESY and absent in
COSY are due to spin systems which have no resolvedJ-couplings, but show cross-correlations. Weak alanine peaks (circled) in COSY are due
to violation of coherence transfer selection rules. Negative contours have been filled in for clarity. [Reproduced with permission from C. Dalvit,
G. Bodenhausen, J. Am. Chem. Soc. 110 (1988) 7924.]



given by exp��vr 2 vs�tu� where tu � "=kT: This
suggests the following form for the adjusted
relaxation superoperator

Ŷ�Ĝ exp{v̂tu} �94�

wherev̂ � P
r vr P̂r : Assuming the high-temperature

approximation, the thermal correction term iŝQ �
Ĝ vtu: The effect of adding this correction term is to
expand the equation of motion of various longitudinal
magnetization modes by adding the normalized unit
operator 1

2 1: For example, for a two spin systemIS,
the equation of motion in the absence of RF is given
by:

d
dt

k 1
2 1l

kIZl

kSZl

k2IZSZl

0BBBBBB@

1CCCCCCA �
0 0 0 0

uI 2rI 2s IS 2dI

uS 2sIS 2rS 2dS

uIS 2dI 2dS 2rIS

0BBBBBB@

1CCCCCCA
k 1

2 1l

kIZl

kSZl

k2IZSZl

0BBBBBB@

1CCCCCCA:
�95�

The three new elements of the relaxation matrix are:

uI � 2 1
2 �rIv

0
I 1 sISv

0
S�tu

uS� 2 1
2 �s ISv

0
I 1 rSv

0
S�tu

uIS � 2 1
2 �dIv

0
I 1 dSv

0
S�tu

�96�

wherev0
I andv0

S are the Larmor frequencies of the
two species. The zeroes in the top row indicate that the
expectation value ofk 1

2 1l; which represents the
amount of spin disorder, does not change with time.

A pictorial representation of the dynamics of Eq.
(95) is shown in Fig. 27. The relaxation dynamics
appears as a unidirectional flow from left to right in
the picture. The physical significance of this “flow” is
as follows. The “reservoirs” enclosed by the dotted
line contains “spin-order”, which can be redistributed
internally bys and d terms. The object on the left
contains the largek 1

2 1l term, that is the disorder of the
spin system. The three arrows labeledu I, uS andu IS

indicate conversion of spin disorder into spin order,
that is a decrease in spin-entropy due to the polarizing
influence of the finite temperature molecular environ-
ment. These three terms therefore take into account
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Fig. 26. Intensity of the longitudinal, two-spin order
�2k2IZSZl=DSZ� as a function of the recovery delayt for an experi-
ment on the13C-enriched carboxylic carbon of methyl formate,
where two spectra withf � ^x were recorded and stored sepa-
rately for each value of the delayt in the sequence
1800S–t–900S

y �900I
x 900I

f �–Acquire. The difference of the spectra
gives the two-spin-order term, 2IZSZ. This difference method
allowed detection of very small two-spin orders (0.1%). The insert
shows the difference spectrum observed after a relaxation delay of
6 s. The spectra were recorded at 100 MHz carbon frequency.
[Reproduced with permission from G. Jaccard, S. Wimperis, G.
Bodenhausen, Chem. Phys. Lett. 138 (1987) 601.]

Fig. 27. Physical interpretation of the Homogeneous Master equa-
tion (Eq. (95)) for the two-spin system. The expectation values of
the four spin-operators (1/2)1,IZ, SZ and 2IZSZ constitute reservoirs.
The three termsu I, uS andu IS represent the creation of spin order by
polarization from the environment. Ther terms represent the self
relaxation rate of each mode,s the cross-relaxation andd the cross-
correlation rates, respectively. [Reproduced with permission from
M.H. Levitt, L. Di Bari, Bull. Magn. Reson. 16 (1994) 94.]



the spin-bath correlations. The three wiggly arrows
marked r I, rS and r IS indicate dissipation of spin
order, that is creation of spin entropy. These arrows
do not need to “go anywhere” since the destruction of
order is an irreversible process. Thermal equilibrium
is established when the expectation valueskI Zl; kSZl
and k2IZSZl reach steady-state values such that as
much spin energy is created as is destroyed.

3.5.2. Isolation of coupling networks by application of
RF pulses

The advantage of the above picture becomes clear
whenp pulses are applied rapidly to the system. If
evenly spaced strongp pulses are applied rapidly (in
times shorter than the relaxation time of the various
spin orders), Levitt and Di Bari have shown that the
spin operators transform under these pulses, yielding,
for example, forp pulses only onI spins, the follow-
ing transformations [214,215],12 1! 1

2 1; IZ ! 2IZ;

SZ ! SZ; 2IZSZ ! 2IZSZ: These operators are then
separated out into two subspaces,geradesubspace
(operators which do not change sign) andungerade
subspace (which change sign). For rapid pulsing

t

4
2 pI 2

t

2
2 pI 2

t

4

� �
n

with interval t p T1; these two subspaces evolve

independently of each other breaking the links
between them. For example as shown in Fig. 28,
under rapidp pulses onI spin, thegeradesubspace
contains only the termsk 1

2 1l and kSZl; which are
coupled to each other byuS and ungeradesubspace
kIZl andk2IZSZl; which are coupled to each other byd I

and not connected to thegerade subspace. The
dynamics in thegeradespace is thatkSZl gets polar-
ized at the rateuS and dissipates at the raterS. The
dynamics of theungeradespace is thatkIZl and
k2IZSZl are coupled byd I and dissipate viar I and
r IS, respectively. The evolution of the two-spin
order k2IZSZl has been measured by two seperate
experiments: (i) in which there are nop pulses onI
spin during relaxation and two pathways namely,

kIZl!s IS kSZl!dS k2IZSZl and kIZl!dI k2IZSZl contribute
[Fig. 29(a)]; (ii) in which only the later pathway
contributes as theungeradespace is isolated by a
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Fig. 28. Relaxation dynamics in the presence of rapidp pulses on
the I-spins. The effective relaxation superoperator is factored into a
gerade subspace {k 1

2 1l; kSZl} and an ungerade subspace
{ kIZl; k2IZSZl} : [Reproduced with permission from M.H. Levitt,
L. Di Bari, Bull. Magn. Reson. 16 (1994) 94.]

Fig. 29. Experimental results for13C-labeled chloroform at a proton
frequency of 200 MHz. (a) The experiment uses two phase-cycled
p /2 pulses on theI spins: These select the contribution from initial
kIZl polarization at the beginning of the mixing periodt . A p /2
pulse on theS-spins at the end of thet period allows the detection of
kSZl andk2IZSZl: As there is a singlep pulse on theI spin, there is
no manipulation of the relaxation network. (b) TwoI-spinp pulses
are added att /4 and 3t /4, which isolates theungeradespace with
kIZl andk2IZSZl: [Reproduced with permission from M.H. Levitt, L.
Di Bari, Bull. Magn. Reson. 16 (1994) 94.]



series of p pulses on I spin during relaxation
[Fig. 29(b)]. The observed maximum magnitude and
the rates of build-up ofk2IZSZl in the two experiments
are clearly different.

The case whenp pulses are applied to both the
spins, thegerade space containsk 1

2 1l and k2IZSZl
and theungeradespace containskIZl and kSZl: The
dynamics of theungeradespace is purely dissipative.
Order is transferred fromkIZl to kSZl with the cross-
relaxation rates IS accompanied by dissipation of both
the Zeeman orders by rate constantsr I and rS

(Fig. 30). This describes a normal transient nuclear
Overhauser experiment, with the difference that
cross-correlation is eliminated in the dynamics of
the ungeradespace. This experiment thus can be
used for monitoring NOE, without cross-correlations
in two-spin systems.

The dynamics of thegeradesubspace is also quite
interesting. The two spin orderk2I ZSZl instead of
building up and decreasing, is created and spin locked
to a steady-state value (Fig. 31), governed by the input
rateu IS and dissipation rater IS, yielding:

k2IZSZlSS� uIS

2rIS
: �97�
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Fig. 30. Experimental results for13C-labeled chloroform at a proton
frequency of 200 MHz, on rapid application of simultaneousp
pulses on both proton (I) and 13C (S) spins. Theungeradespace
consists ofkIZl and kSZl; which are coupled bys IS. kI Zl and kSZl
saturate from their equilibrium value to zero, withkSZl showing
NOE transfer at intermediate times. Thegeradespace consists of
k�1=2�1l andk2IZSZl; which are coupled byu I. The two-spin order
gets polarized fromk�1=2�1l and decays byr IS reaching a steady
state value. [Reproduced with permission from M.H. Levitt, L. Di
Bari, Phys. Rev. Lett. 69 (1992) 3124.]

Fig. 31. Experimental1H spectra for exifone at a frequency of 300 MHz, when thep pulses are applied to all the protons with a cycle period of
t � 50 ms: The normal1H spectrum (lowest plot) shows a four-lineAX pattern from the ortho and meta protons on one of the aromatic rings
and a strong singlet from the two equivalent ortho protons on the other ring. The topmost spectrum is in the steady state, after the application of
many hundreds ofp pulses. The two-spin order due to CSA–dipole cross-correlation is small, but not negligible. [Reproduced with permission
from M.H. Levitt, L. Di Bari, Bull. Magn. Reson. 16 (1994) 94.]



Using u IS from Eq. (96) and the fact thatkSZleq�
2�1=4�v0

stu; one obtains:

k2IZSZlSS

kSZleq � dIv
0
I 1 dSv

0
S

rISv
0
S

: �98�

Such steady-state two-spin orders have also been
observed in a three- [178] and four-spin systems
[197] and are shown in Figs. 32 and 33, respectively.
In some cases (for example, Figs. 31 and 32), very
small cross-correlations have been detected by this
method [178,214].

In this section, we have discussed the effect of
cross-correlations on longitudinal relaxation. Cross-
correlations have a first-order multiplet effect on long-
itudinal relaxation, such that different lines of a
resolved multiplet have differential relaxation as
well as NOE. Cross-correlations also have a second
order (both in time and magnitude) net effect, which
exists even for unresolved multiplets (or non-J-
coupled spins) and which cannot be suppressed easily.
The net effect of cross-correlations, in general, leads
to non-exponential or multi-exponential longitudinal
relaxation. The net effect on NOE has been analyzed
in detail. It is also found that cross-correlations contri-
bute to longitudinal relaxation of weakly coupled
spins, in the absence of RF fields, via the spectral
densities only at Larmor frequency. Therefore, for
biomolecules for whichvt c tends to be greater than
one, the effects of cross-correlations decrease progres-
sively. For this reason, experiments have been
designed to monitor relaxation in presence of RF
fields which will be discussed in Section 5. Alterna-
tively, attention is being focused on effects of cross-
correlations in transverse relaxation, where cross-
correlations also contribute via spectral densities at
zero frequency, which become significant forvtc q

1: In the next section, we discuss the effect of cross-
correlations on transverse relaxation.

4. Cross-correlations in transverse relaxation

It has been known from the early days of NMR that
cross-correlations affect longitudinal as well as trans-
verse relaxation [106,121,217,218]. In this section,
the effects of cross-correlation on the transverse
relaxation of single-quantum coherence (SQC) and
multiple-quantum coherence of coupled spin systems

are discussed in detail. Differential line broadening
(DLB) is the earliest signature of the effects of
cross-correlations on transverse relaxation [217–
221]. From the “kite” structure of the Redfield relaxa-
tion matrix (Fig. 1), as stated in Section 2.1.1, the time
evolution of the diagonal and off-diagonal elements of
the density matrix are completely decoupled in the
absence of RF fields. Each single- or multiple-quan-
tum order of the off-diagonal elements also evolves
independent of the other orders. In general, the time
evolution of the off-diagonal elements can be written,
neglecting the dynamic frequency shift as:

ds�t�
dt

� �2iH 1 R�s�t� �99�
wheres(t) is a vector for the off-diagonal elements of
the density matrix, H the time-independent
Hamiltonian andR the relaxation superoperator. The
formal solution of Eq. (99) is given by:

s�t� � e�2iH1R�ts�0�: �100�
However, the solution is not straight forward ifH and
R do not commute since it requires diagonalization of
non-Hermitian complex matrices. Eq. (100) simplifies
under the condition that the differences in the diagonal
elements ofH are large compared to the off-diagonal
elements ofR. Under the secular approximation, theR
matrix, becomes block diagonal, as represented by the
dashed lines in Fig. 1, such that the time evolution of
all coherences of same order are coupled within them-
selves, but decoupled from coherences of different
order. Further simplification is obtained when all
coherences within the same order are also well
resolved such that:

u�Haa 2 Ha 0a 0 �2 �Hbb 2 Hb 0b 0 �u
� uvaa 0 2 vbb 0 u q Raa 0bb 0 �101�

In such cases,Raa 0bb 0 can be neglected and one obtains
single- exponential decay rate for each coherence of
frequency vaa 0 ; given by the diagonal elements
Raa 0aa 0 : This is known as the simple-line approxima-
tion. Transverse relaxation thus strongly depends on
whether the simple-line approximation holds or not.
When it does not hold, the evolution of various coher-
ences of the same order remain coupled and leads to
multi-exponential transverse relaxation. In the case of
partially resolved multiplets, the situation is complex.
In Section 4.2, we will be discussing the linewidths of
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Fig. 32. (a) Experimental1H spectra at 400 MHz for 1,2-dichloro,4-fluoro,5-nitrobenzene dissolved in CDCl3, recorded whenp pulses are
applied on both19F and1H nuclei with at delay of 500 ms between the pulses. The last trace shows the steady state spectrum. The two-spin
order for theM-spin is large whereas that of theX-spin is small, due to the weak dipolar interaction betweenA andX spins. (b) Normalized
buildup of the two-spin orderk2AZMZl for theM-spin. (c) Same as (b) for theX-spin. The steady state value of this two-spin order is small, but
not negligible. [Reproduced with permission from Kavita Dorai, Anil Kumar (unpublished results).]
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Fig. 33. (a) ExperimentalA-spin part of the1H spectrum at 400 MHz of 1-fluoro, 2,4-dinitrobenzene (Fig. 22) in CDCl3, recorded withp pulses
on 19F and 1H spins, with pulse duration of 200 ms between the pulses. Some of the spectra are multiplied by a factor 2 as indicated. (b)
Normalized decay and buildup of the singlekAZl (open circles) and two-spin orderk2AZSZl (filled circles) for theA-spin. The insert shows the
plots on an expanded scale. [Reproduced with permission from R.C.R. Grace, Anil Kumar, J. Magn. Reson. A 115 (1995) 87.]



various coherences of several spin systems under the
“simple-line approximation”. However, before
discussing these linewidths, a brief description of
transverse relaxation in the absence of the simple-
line approximation is given in the following section.

4.1. Time evolution of transverse coherence in the
absence of simple-line approximation

For a two-spin systemAX, the time evolution of the
four SQCs from Eq. (99) is given by:

d
dt

0BBBBBBB@
s12�t�
s34�t�
s13�t�
s24�t�

1CCCCCCCA �
266666664 2 i
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s12�t�
s34�t�
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s24�t�

1CCCCCCCA:

�102�
Herev12 � VA 1 1

2 J; v34 � VA 2 1
2 J; v13 � VX 1

1
2 J andv24 � VX 2 1

2 J and in general the evolution
of each coherence is multi-exponential. However, if
uVA 2 VXu q R12ij ;R34ij ; for i; j � 1; 3 and 2,4, then
the above equation takes the block structure forA and
X parts by neglecting the off-diagonal elements ofR
between theA andX parts, namelyR1213, R1224, R1334

andR2434. The time evolution of theA part, for exam-
ple, can then be written as [222,223]:

d
dt
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�103�

with a similar equation for theX part. HereD1 �
R1212; D2 � R3434 and C � R1234: Eq. (103) can be
further transformed into normal modes of spinA
using the transformation

U � 1��
2
p 1 21

1 1

 !
; �104�

yielding the time evolution of the sum modes12 1
s34 � A1 and the difference modes12 2 s34 �
2A1Xz as:

d
dt
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The time evolution of this equation can be examined
under the following conditions.

• Case (i)J � 0: In this case, the twoA spin coher-
ences are degenerate and only the sum modes can
be excited by a RF pulse applied to the system in
equilibrium. If in addition cross-correlations are
absent thenD1 � D2 and the sum mode cannot
be converted into the difference mode and decays
with a single time constant given by12 �D1 1 D2�1
C: If however,D1 ± D2; the difference mode can
be created and both the sum and the difference
modes remain coupled, with their relaxation
being biexponential. Since the difference mode
2A1Xz; is a “A spin coherence antiphase with
respect to spinX”, a 908 pulse onA and X can
convert it into 2AzX1; which is a “X-spin coherence
antiphase with respect to spinA”. Such coherence
transfers have been observed and given the name
“relaxation allowed coherence transfers (RACT)”
[222,223]. These will be further discussed for the
AX case in Section 4.2.1.1.

• Case (ii)J q uD1 2 D2u: In this case, while the sum
mode can be created by a selective pulse on one of
the spins, the difference mode can be created by
either a selective pulse on one of the transitions or
by time evolution of the sum mode. Even when one
of the modes is created, both the sum and differ-
ence modes oscillate rapidly between each other
due to largeJ and decay with an average time
constant, given by the average of the diagonal
elements of Eq. (105), that is by�D1 1 D2� and
the termC can be neglected. Going back to Eq.
(103), it is seen that in such a case (in whichC
can be neglected) each off-diagonal element ofs
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decays exponentially with a single time constant.
This is the justification for the simple-line approx-
imation mentioned earlier. In this case, the Redfield
matrix has a ‘kite’ structure with each off-diagonal
element of saa 0 evolving independently of all
others with a single time constantRaa 0aa 0 ; which
has contributions also from cross-correlations.
However, the sum and difference modes will
relax biexponentially like case (i) above, ifJ-
coupling to the other spin is removed by decou-
pling.

• Case (iii) J < uD1 2 D2u: This is the case of
partially resolved multiplets. In such cases Eqs.
(103) and (105) do not simplify and have to be
solved numerically with the effects of cross-corre-
lations as an integral part of the solution [223].

4.2. Time evolution of transverse coherence under the
simple-line approximation

In the following sections, the linewidths of SQC
and multiple-quantum coherences of various spin
systems under the simple-line approximation in the
presence of cross-correlations are outlined. The spin
systems considered are: (i) heteronuclearAX
[196,217,219,224–229]; (ii) homonuclearAB
[129,230]; (iii) heteronuclearAMX [230,231]; (iv)
homonuclearABX [232–234]; (v) heteronuclearAX2

[121,128], and (vi) heteronuclearAX3 [121,129]. The
cross-correlations, which are considered are CSA–
dipole and CSA–CSA for two-spin systems and
additionally dipole–dipole cross-correlations for
three- and higher-order spin systems.

4.2.1. Cross-correlations in the heteronuclear AX spin
system

The linewidths of various coherences of a hetero-
nuclear two-spin system under the simple-line
approximation [196,217,219,224–229] in which all
the coherences (single- and multiple-quantum)
are well resolved, can be written in a compact
notation developed by Kumar and Kumar [232,233]
as:

2~R�
X2
n�0

{ a�nv�Ja�nv�1 c�nv�Jc�nv�} �106�

where ~R is a column vector representing the line-
widths of various coherences,Ja�nv� are column
vectors of auto-correlation spectral densities at
various frequencies (n� 0 for zero frequency and
difference between two Larmor frequencies,n� 1
for Larmor andn� 2 for sum of two Larmor frequen-
cies), andJc�nv� are the column vectors of cross-
correlation spectral densities. The matricesa(nv )
andc(nv ) connect the spectral densities to the various
linewidths. For the heteronuclearAX system, consid-
ering CSA and dipolar interactions as the relaxation
mechanisms, the linewidths of the twoA spin
SQCs (R1212� Ra

A and R3434� Rb
A), the AX zero

(R2323� RZQ
AX) and the DQC (R1414� RDQ

AX ) are given
in the notation of Eq. (106) by2 [232]:
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0BB@
1CCA 1

8
3

21 0 0

1 0 0

0 0 22

0 0 2

0BBBBBB@

1CCCCCCA
JA;AX�0�
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JA;X�0�

0BB@
1CCA1 2

21 0 0

1 0 0

0 0 0

0 0 0

0BBBBBB@

1CCCCCCA
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JX;AX�vX�
JA;X�vA�

0BB@
1CCA �107�

2 Negative sign on transverse relaxation rates indicate decay rates.
In this review, this sign has been shifted to the left-hand side in all
equations.



The auto-correlation spectral densities (first three
terms on the right-hand side) contribute equal widths
to all the SQCs, but contribute unequal widths to the
zero-quantum coherence (ZQC) and double-quantum
coherence (DQC) via JAXAX�vA ^ vX�: While
JAXAX�vA 2 vX� contributes to zero- and not to
double-quantum linewidths,JAXAX�vA 1 vX� contri-
butes to double- and not to zero-quantum linewidths.
While JAA(0) contributes equally to all SQC and MQC,
JXX(0) contributes toAX ZQC and DQC but not toA
spin SQC. CSA(A)–dipole(AX) cross-correlations,
JA;AX�0� andJA;AX�vA� contribute equal and opposite
differential effects toA spin SQC. On the other hand,
the CSA(A)–CSA(X) cross-correlationJA,X(0) does not
contribute to the time evolution of SQC but contributes
a differential effect to the ZQ and DQ coherences
[235]. It may be noted that there is no adiabatic dipolar
contribution to ZQC and DQC, asJA,AX(0) andJX,AX(0)
do not contribute to ZQC and DQC.JX;AX�0;vX� does
not affect theA spin SQC as well as ZQC and DQC. It
will however affect theX-spin SQC. Furthermore, the
linewidths of the twoXspin SQC can be obtained from
the above equation, by interchanging the spin labelsA
andX in the spectral densities.

It may be mentioned here that while the cross-
correlations add to the linewidth of one of the compo-
nents of theA doublet, they subtract from the other,
decreasing its linewidth. Thus in an isolatedAX spin
system in large molecules, where only the spectral
densities at zero frequency contribute (for example,
in 15N–1HN pairs, with complete deuteration of all
non-labile protons in large proteins), if the cross-
correlation contribution�8=3�JA;AX�0� is nearly equal
to the auto-correlation contribution��5=6�JAXAX�0�1
�8=3�JAA�0��; the narrow component will become
extremely sharp. This extremely interesting line-
narrowing feature of cross-correlations is present in
all the spin systems to be discussed in later sections
and has recently been exploited by Wu¨thrich et al.
[369] to detect exclusively the narrow components
in large proteins, via an experiment named TROSY,
which will be discussed in detail in Section 7.6.

Under the break down of the simple-line approxi-
mation, there are two situations to be considered. Case
(i) uVA 2 VXu q R andJ � 0; in this case, theA and
X spins are two singlets, respectively, atVA andVX.
Case (ii)VA � VX; in this case, theAX spin system
reduces toA2. In both these cases, the above analyses

are not valid. In case (i), Eq. (102) is factored into two
2 × 2 blocks, one for eachA and X spin (see Eq.
(103)). The various relaxation elements for theA
spin are obtained as:

1
2 �D1 1 D2� � D � 1

2 �R1212 1 R3434� � �Ra
A 1 Rb

A�=2

� 2 1
2 � 4

3 JAXAX�0�1 1
3 JAXAX�vA 2 vX�1 16

3 JAA�0�

1 JAXAX�vA�1 JAXAX�vX�1 4JAA�vA�

1 4JXX�vX�1 2JAXAX�vA 1 vX��
1
2 �D1 2 D2� � 1

2 � 16
3 JA;AX�0�1 4JA;AX�vA��

C � R1234� 2 1
2 JAXAX�vA�1 2JAA�vA� (108)

In case (ii) where theAX spin system collapses toA2,
only the sum modeAX 1 XX can be created and
observed. One has to retain all the terms in Eq.
(102) and transform the equation to sum and differ-
ence modes and the sum mode decays multi-exponen-
tially in the presence of cross-correlations [236].

4.2.1.1. Coherence transfer via cross-correlations.As
stated earlier, cross-correlations can lead to coherence
transfer from one spin to another. In order to examine
the coherence transfer from spinA to spinX either by
J-coupling or by cross-correlations, it is best to recast
the density matrix analysis into “Product–Operator”
form. One can define product operators such asAX,
AY, 2AXXZ and 2AYXZ, which are related in a
straightforward manner toA1, A2 and 2A^XZ: If one
createsAX magnetization att � 0; it evolves under the
chemical shiftVA and theJ coupling and decays due
to transverse relaxation. Assuming the simple-line
approximation (neglectingC in Eq. (103)) AX

evolves into [222,223]:

s�t� �AX
1
2 �exp{D1t} 1 exp{D2t} �cos�pJAXt�cos�VAt�

1 2AYXZ
1
2 �exp{D1t} 1 exp{D2t} �sin�pJAXt�cos�VAt�

1 2AXXZ
1
2 �exp{D1t} 2 exp{D2t} �cos�pJAXt�cos�VAt�

1 AY
1
2 �exp{D1t} 2 exp{D2t} �sin�pJAXt�cos�VAt�

1 sin modulated terms; (109)
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whereD1, D2 are defined by Eq. (108). This shows that
AX will evolve into 2AYXZ; the well known antiphase
term created byJ-coupling, as well as into 2AXXZ,
arising from cross-correlations and intoAY by the
combined effect of the two. The interesting part is
that cross-correlations also contribute to antiphase
terms (which can give rise to coherence transfer).
The antiphase term created by cross-correlations is
908 out-of-phase with that created byJ-coupling.

In the absence ofJ-coupling and the presence of
cross-correlations, the above analysis is not valid and
one has to retain the off-diagonal terms in Eq. (103).
The result is obtained as [223]:

s�t� � AX
1
2 ��1 1 sinaA�exp{lAt}

1 �1 2 sinaA�exp{mAt} �cos�VAt�
1 2AXXZ

1
2 cosaA�exp{lAt}

2 exp{mAt} �cos�VAt�
1 sin modulated terms; (110)

where

lA � D 1 1
2 �D1 2 D2�cosaA 1 C sinaA

mA � D 2 1
2 �D1 2 D2�cosaA 2 C sinaA

tanaA � 2C=�D1 2 D2� (111)

This shows that the antiphase term can be created
even in the absence ofJ-coupling, but in the presence
of cross-correlations. An antiphase term easily leads
to coherence transfer by the use of appropriately
phased non-selective 908 pulses on both spins. Such
coherence transfers have been observed experi-
mentally using 2D NMR and have been termed as
relaxation allowed coherence transfer (RACT)
[222,223,237]. They point out that one could observe
a cross-peak in a COSY experiment arising from
cross-correlations even in the absence ofJ-coupling.
The antiphase term can also lead to multiple-quantum
excitation and gives rise to relaxation allowed multi-
ple-quantum coherences in the absence ofJ-coupling
[237]. Such peaks have also been experimentally
observed and exploited, the details of which will be
outlined in Section 4.3.4.

4.2.1.2. Operator method for description of
relaxation. The case of cross-correlations in a
heteronuclear two-spin system (with special
emphasis to15N–1H spin system) has been treated in
detail by Goldman [238], who has shown by explicit
calculations that the doublet components of each spin
relax differentially due to cross-correlation between
CSA of 15N spins and the dipolar relaxation with
the protons attached to it. Goldman has utilized the
elegant “operator” method of Abragam [1] for
calculating the expectation values of various
operators and in turn the linewidths of various
transitions or time evolution of transverse modes
and the longitudinal relaxation of various transitions
or longitudinal modes. This method has been utilized
by several workers to measure the CSA of amide
nitrogen-15 [239], amide proton [240,241] and13Ca-
carbon [242], in enriched proteins, as well as to study
local anisotropic motions involving nuclei of peptide
backbone [243–245]. These and many other studies
utilizing the Goldman operator method form a
significant use of cross-correlations in labeled
biomolecules and will be reviewed in Section 7.2.
The operator method, which is applicable not only
for heteronuclear systems, but also for weakly
coupled homonuclear systems, is discussed briefly in
Appendix A.

4.2.2. Cross-correlations in strongly coupled two-spin
system AB

The effect of cross-correlations in the presence of
strong coupling has been investigated for a homonuc-
lear two spin-(1/2) system (AB) [234]. There are four
SQCs, one DQC and one ZQC, in this spin system.
The linewidths of the two “A” spin SQCs�RSQ

1313;;

RSQ
2424� and the ZQC and DQCs�RZQ

2323; RDQ
1414� under

the simple-line approximation (all coherences are
well resolved, dAB; JAB q R� can be written in a
compact notation as [234]:

2~R�
X2
n�0

{ �a�nv�1 a0�nv��~Ja�nv�

1 �c�nv�1 c0�nv��~Jc�nv�} �112�
The vector ~R represents the linewidths of various
non-degenerate SQCs as well as the ZQC and
DQC and the right-hand side contains the auto
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[Ja(nv )] and cross [Jc(nv )] correlation spectral
densities for two relaxation mechanisms namely
mutual dipolar interactions between the two spins
and the CSA relaxation. The coefficient matrices
a, a0, c, and c0 connect the spectral densities to
the linewidths. a and c contain, respectively, the
auto- and cross-correlation coefficients under weak
coupling anda0 and c0 contain additional contribu-
tions to these coefficients arising exclusively from
strong coupling. Thus under weak coupling�u � 0�
all elements ofa0 andc0 are zero. This notation thus
clearly separates out the contributions of auto- and
cross-correlation spectral densities at each frequency
and that of the strong couplings to the linewidths of
various coherences of the spin system. The result is
obtained as [234]:

From the above equation the following conclusions
are derived:

(i) The DQC, which is the highest quantum
coherence in a two-spin system is not influenced
by strong coupling.
(ii) Weak coupling without cross-correlations
(only first three terms contribute).
The two SQCs of spinA have equal linewidths
while ZQC and DQC have unequal widths from
the spectral densitiesJABAB(0) and JABAB(2v ).
JABAB(0) contributes to ZQC but not to DQC
whereasJABAB(2v ) does not contribute to ZQC
but contributes to DQC (in conformity withAX
analysis given by Eq. (107)) [224–229].
(iii) Weak coupling with cross-correlations (only
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the first three terms and the sixth and seventh
terms contribute).
In this case, the two SQC of spinA have unequal
linewidths due to the equal and opposite contribu-
tion of cross-correlation spectral densitiesJA,AB(0)
andJA,AB(v ) which do not contribute to DQC and
ZQC. Cross-correlation spectral density between
the two CSA,JA,B(0) contributes equal and oppo-
site (differential) linewidth to ZQC and DQC
without contributing to SQC (as inAX case as
well; Eq. (107)).
(iv) Strong coupling without cross-correlations
(only the first five terms contribute).
Strong coupling brings additional linewidths to
the various coherences.JABAB(0) and JABAB(v )
give differential linewidths to the two SQC
while JAA(0) and JBB(0) cause equal broadening.
Only spectral densities at zero frequency give
additional contribution to zero-quantum linewidth.
(v) Strong coupling with cross-correlations (all
terms contribute).
SQC have additional unequal contribution to the
linewidth from all cross-correlation spectral
densities at zero andv frequencies except

JA,B(0). ZQC has contributions from all zero-
frequency cross-correlation spectral densities.

From the above, it may be concluded that either
strong coupling or cross-correlation makes the line-
widths of the SQC unequal. This is shown schema-
tically in Fig. 34. The linewidths of the other two
SQC (R1212 and R3434) which may be termed as spin
‘B’ coherences are obtained by interchanging the
labels of spinA and B as well as the sign of the
u terms in Eq. (113). It is noticed that the cross-
correlation between the CSA of the two spinsJA,B

makes a differential contribution under the weak
coupling approximation to ZQC and DQC, and
under strong coupling to the two SQCs. This
cross-correlation term is independent of the distance
between the two spins and therefore has been
termed as a “remote” and is discussed in detail in
Section 4.4.1 [234].

4.2.3. Cross-correlations in heteronuclear three-spin
system (AMX)

The presence of dipole–dipole cross-correlations
requires a minimum of three coupled spins and its
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Fig. 34. Schematic diagram showing the differential line broadening in a homonuclearAB spin system. Linewidths ofB1 and B2 can be
obtained by interchanging the labelsA, B. aA andcA are the contributions from auto and cross-correlations, respectively, in the weak coupling
limit. a0A andc0A are the contributions from auto and cross-correlations, respectively, exclusively from strong coupling. In the weak coupling
limit, the primed quantities (a0A andc0A) do not contribute to the linewidths [234].



effect on the decay rates (linewidths) of SQC and
multiple-quantum coherence has been investigated
by several workers [222,228–230]. In the following
section, the results for dipole–dipole, CSA–dipole
and CSA–CSA cross-correlations are summarized
using a weakly coupled heteronuclear three-spin
systemAMX [each spin-(1/2)]. The labeling of the
states and the coherences is given in Fig. 2. The

SQC and multiple-quantum coherences are treated
in two subsections.

4.2.3.1. Single-quantum coherences.The linewidths
or the decay rates of the four ‘A’ spin SQCs of the
AMX spin system under the simple-line
approximation are obtained in the notation of Eq.
(107) as [234]:
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The first three terms represent, respectively, the
zero, single- and double-quantum dipole–dipole
auto-correlation spectral densities. The next two
terms represent zero- and single-quantum CSA
auto-correlation spectral densities, respectively.
These terms are followed by the zero- and single-
quantum dipolar cross-correlation spectral densities.
The last two terms represent the zero- and single-
quantum CSA–dipole cross-correlation spectral
densities. CSA–CSA cross-correlations do not
contribute to the linewidths of the SQC of weakly
coupled spins. The linewidths ofM andX SQCs can
be obtained by symmetry, by interchanging the
labels. From Eq. (114), the following results can
be summarized.

1. Auto-correlation contributions: All the four A
spin SQCs have equal contributions from auto-corre-
lation spectral densities, except the remote zero
�JMXMX�vM 2 vX�� and the double�JMXMX�vM 1
vX�� quantum spectral densities, which contribute
different linewidths to the inner and the outer
SQCs, retaining pairwise symmetry in the line-
widths. Zero frequency remote auto-correlations
[namely JMXMX(0), JMM(0) and JXX(0)] do not
contribute to the decay ofA-spin SQCs. On the
other hand, remote single-quantum auto-correlation
spectral densities atv [JMXMX(vM), JMXMX(vX),
JMM(vM) and JXX(vX)] contribute equal widths to
all the linewidths of the SQCs. These remote auto-
correlations are present only in the presence of
J-coupling and the secular approximation. IfJ-
couplings are absent, the transitions become degen-
erate and the secular approximation is no longer
valid. In such situations, only the sum mode can
be excited, the time evolution of which is free of

remote auto-correlations. If one of the couplings is
zero (say,JAX � 0), then one of the remote CSA
auto-correlation term [JXX(vX)] drops out.

2. Cross-correlation contributions: Cross-correla-
tions contribute only differential linewidths (equal
and opposite) to the SQCs with no net contribu-
tion. While dipolar cross-correlations maintain
symmetry between outer and inner coherences,
each CSA–dipole cross-correlation has pairwise
symmetry for different pairs. Thus in the presence
of several cross-correlations, all the four coher-
ences may have different linewidths. Dipole–
dipole cross-correlations in whichA is the common
spin, only contribute to the linewidths ofA spin SQC
in the three-spin system. CSA–dipole cross-correla-
tions at zero frequency only have contributions invol-
ving the CSA of spinA and dipolar of AM and
AX. Four out of the possible six single-quantum
CSA–dipole cross-correlations contribute equal but
opposite linewidths to the variousA spin coherences.
The last two cross-correlation spectral densities
namely JM,MX(vM) and JX,MX(vX) can be termed as
“remote” and have a first-order contribution to the
resolvedA spin multiplet. There is no contribution
of cross-correlation spectral densities at 2v to these
linewidths [234].

4.2.3.2. Multiple quantum coherences.The linewidths
of two ZQCs, two DQCs ofAM spins and the triple-
quantum coherence (TQC) contain the totality of
information on MQC of this system. The linewidths
of the remaining ZQC and DQC can be generated by
interchanging the spin labels. These linewidths are
given by [234]:
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From this equation the following results are obtained:
1. Auto-correlation contributions: All dipolar auto-

correlation spectral densities at the Larmor frequen-
cies of various spins contribute equal widths to all
multiple-quantum coherences (second term on
RHS). At zero frequency (first term),JAXAX(0),
JMXMX(0), and JMXMX�vM 2 vX�, JAXAX�vA 2 vX�
contribute equal widths toAM DQC and ZQCs
whereasJAMAM�vA 2 vM� contributes only to ZQCs.
JAMAM(0) does not contribute toAM DQC and ZQC.
None of the dipolar spectral densities at zero
frequency contribute to TQC. At the sum of the two
Larmor frequencies (third term), auto-correlation
dipolar spectral densitiesJAXAX�vA 1 vX� and
JMXMX�vM 1 vX� contribute equal widths to theAM
DQC and ZQC withJAMAM�vA 1 vM� contributing
only to DQC. TQC has equal contribution from
all the three spectral densities at the sum of the
two Larmor frequencies. All the three CSA auto-
correlation spectral densities at zero and Larmor
frequencies (fourth and fifth terms) contribute equal
widths to all the multiple-quantum coherences except
that there is no contribution fromJXX(0) to AM DQC
and ZQC.

2. Cross-correlation contributions: Dipolar cross-
correlation spectral densityJAXMX at frequencies zero
andvX contribute equal and opposite widths to the
AM DQCs and ZQCs, respectively, with no contribu-
tion from the other two cross-correlation spectral
densities (sixth and seventh terms). TQC, on the
other hand, has equal contribution from all the three
spectral densities at the three Larmor frequencies.
Similarly CSA–CSA cross-correlation spectral
densityJA,M(0) contributes equal and opposite widths
to theAM DQCs and ZQCs, respectively (last term).
TQC has equal contribution from all the three
CSA–CSA cross-correlation spectral densities at the
zero frequency. Only two CSA–dipole cross-correla-
tion spectral densitiesJA,AX and JM,MX at zero and
Larmor frequencies contribute differential widths to

the AM DQCs and ZQCs with no contributions from
the remaining spectral densities (eighth and tenth
terms).

4.2.4. Dipole–dipole cross-correlations in a strongly
coupled homonuclear three-spin system ABX

In order to study the effects associated with strong
coupling in the presence of dipole–dipole cross-
correlations, an analysis has been reported in the
literature, calculating the complete transverse relaxa-
tion matrix for a homonuclearABXspin system [232].
Only dipole–dipole cross-correlations have been
included in this study and these results are given in
Sections 4.2.4.1–4.2.4.4.3

4.2.4.1. Single-quantum coherences.The decay
rates for the various coherences in theABX case
contain contributions from auto-correlation spectral
densitiesJABAB, JAXAX andJBXBX and cross-correlation
spectral densitiesJABAX, JABBX and JAXBX each at
frequencies 0,v and 2v . The notation and labeling
of states used in the preceding section for the
heteronuclear case is continued here withB
replacing M. The number of spectral densities is
reduced since vA � vB � vX � v: The strong
coupling parametersu^ has the usual definitions
[246]. Separating out the contributions of strong
coupling into primed quantities (see Eq. (112)), one
can write the contribution of the various spectral
densities to the linewidths of the four ‘A’
coherences (mixedAB in strong coupling situation)
as [232]:

2~RA �
X2
n�0

{ �aA�nv�1 a0A�nv��~Ja�nv�

1 �cA�nv�1 c0A�nv��~Jc�nv�} �116�

This equation, when expanded in terms of the spectral
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3 The decay rates of the various SQCs and multiple-quantum coherences of anABXspin system, whereX is a heteronucleus and considering
relaxation via both CSA and dipolar interactions have also been calculated [Rangeet Bhattacharyya, R.C.R. Grace and Anil Kumar, unpublished
results available on request via e-mail].



densities, is given by:4

From this equation it is seen that for

(i) Weak coupling without cross-correlations (only
the first three terms contribute).
This part is identical to the weakly coupledAMX
case (Eq. (114)) and restates that the linewidths are
unequal due to the contributions from remote auto-
correlation spectral densitiesJBXBX(0) and
JBXBX(2v ). All the other spectral densities have

equal contribution to all the four coherences.
JBXBX(0) andJBXBX(2v ) contribute equal amount to
the outer and inner lines in such a way that they
have symmetrical widths.
(ii) Weak coupling with cross-correlations (the first
five terms contribute).
This is also identical to theAMX case and confirms
that the linewidths are additionally unequal due to
the unequal contributions from the spectral densi-
tiesJABAX(0) andJABAX(v ) (Eq. (115)). However, the
symmetry is maintained in the outer and inner line-
widths. All the other dipole–dipole cross-correla-
tions have zero contribution to the linewidths
[223,228–232].
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4 The results given in Ref. [232] have errors in strong coupling
contributions from spectral densities at zero frequency, which are
corrected here. Some of the coefficient matrices have also been
simplified. The conclusions of Ref. [232] remain unchanged.



(iii) Strong coupling without cross-correlations (the
first three and the sixth, seventh and eighth terms
contribute).
An additional contribution from strong coupling
comes from all the auto-correlation spectral densi-
ties at zero frequency, but the spectral densities atv
contribute only via JABAB(v ) and at 2v via
JAXAX(2v ) and JBXBX(2v ). Here all the linewidths
are unequal without any symmetry. Strong coupling
is known to introduce differences in linewidths of
AB spin system making the inner and outer line-
widths unequal [Ref. [1], p. 509]. These results
indicate that the introduction of the third spin
makes all the linewidths unequal under strong
coupling, even in the absence of cross-correlations.

(iv) Strong coupling with cross-correlations (all the
terms contribute).
Additional contribution comes from all cross-corre-
lation spectral densities at zero andv frequencies,
and at 2v , only JAXBX(2v ) contributes. All line-
widths are unequal and there is no symmetry.

The linewidths of ‘B’ coherences are obtained by
interchanging labels ‘A’ and ‘B’ in Eq. (117) and in
the definitions ofu^ and a consequent substitution of
c^ � 2c7 in the primed matrices of Eq. (117) assum-
ing that the four ‘B’ transitions are arranged in the
order 1–3, 2–5, 4–7 and 6–8.

For ‘X’ spin SQCs, an equation similar to Eq. (117)
can be written having [232]5
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5 See footnote 4 following Eq. (117).



where ss � sin�u1 1 u2�; sd � sin�u1 2 u2�; cs �
cos�u1 1 u2� andcd � cos�u1 2 u2�:

The linewidth vector on the LHS here is arranged in
such a way that in the weak coupling limit the last two
three-spin-one-quantum coherences namely 3,6 and
4,5 have zero intensity and the remaining four SQCs
have equal intensity and are arranged in the order of
increasing frequency with the two coherences

between the pure states 1,2 and 7,8 being the first
and the fourth.

Under various limits, the results yield the following
analyses. In the weak coupling limit, without cross-
correlation the first four ‘X’ coherences have finite and
equal intensity and have linewidth differences coming
only from the remote auto-correlation spectral
densities JABAB(0) and JABAB(2v ) whereas all the

A. Kumar et al. / Progress in Nuclear Magnetic Resonance Spectroscopy 37 (2000) 191–319 251

1

0 0 0

�c1s1 1 c2s2� 0 0

2�c1s1 1 c2s2� 0 0

0 0 0

�c1s1 2 c2s2� 0 0

2�c1s1 2 c2s2� 0 0

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA

JABAB�v�
JAXAX�v�
JBXBX�v�

0BB@
1CCA1

0 0 0

0 2�s2
1 2 s2

2
� �s2

1 2 s2
2�

0 �s2
1 2 s2

2� 2�s2
1 2 s2

2�
0 0 0

0 2�s2
1 1 s2

2� �s2
1 1 s2

2�
0 �s2

1 1 s2
2� 2�s2

1 1 s2
2�

0BBBBBBBBBBBBB@

1CCCCCCCCCCCCCA

JABAB�2v�
JAXAX�2v�
JBXBX�2v�

0BB@
1CCA

1
1
3

0 0 0

2cdsd 22cdsd �c1s1 1 c2s2�1 2�s2
s 1 s2

d�
2cdsd 22cdsd 2�c1s1 1 c2s2�1 2�s2

s 1 s2
d�

0 0 0

22cdsd 2cdsd �c1s1 2 c2s2�2 2�s2
s 1 s2

d�
22cdsd 2cdsd 2�c1s1 2 c2s2�2 2�s2

s 1 s2
d�

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA

JABAX�0�
JABBX�0�
JAXBX�0�

0BB@
1CCA

1

0 0 0

�s2
1 2 s2

2� 2�s2
1 2 s2

2
� �c1s1 1 c2s2�

2�s2
1 2 s2

2� �s2
1 2 s2

2� 2�c1s1 1 c2s2�
0 0 0

�s2
1 1 s2

2� 2�s2
1 1 s2

2� �c1s1 2 c2s2�
2�s2

1 1 s2
2� �s2

1 1 s2
2� 2�c1s1 2 c2s2�

0BBBBBBBBBBBBB@

1CCCCCCCCCCCCCA

JABAX�v�
JABBX�v�
JAXBX�v�

0BB@
1CCA

1 2

0 0 0

0 0 �c1s1 1 c2s2�
0 0 2�c1s1 1 c2s2�
0 0 0

0 0 �c1s1 2 c2s2�
0 0 2�c1s1 2 c2s2�

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA

JABAX�2v�
JABBX�2v�
JAXBX�2v�

0BB@
1CCA (118)



other spectral densities have equal contribution to the
four ‘X’ coherences [232,234]. This results in symme-
trical differential linewidths for the outer and the inner
lines.

In the weak coupling limit with cross-correlations,
the linewidths are additionally unequal due to contri-
butions from the spectral densitiesJAXBX(0) and
JAXBX(v ) with no contribution from all the other
cross-correlation spectral densities. Symmetry is
maintained between the outer and the inner line-
widths. The last two coherences namely 3! 6 and
4! 5 have unequal widths due to auto and cross-
correlations [228–232]. However, they have zero
intensity in the weak coupling limit.

In the strong coupling limit without cross-correla-
tions, strong coupling brings unequal contribution
from all auto-correlation spectral densities at zero
frequency and the spectral densitiesJABAB(v ),
JAXAX(2v ), JBXBX(2v ) to the linewidths of the
mixed ‘X’ coherences. The two ‘X’ coherences
between pure states namely 1! 2 and 7! 8 have
no contribution from strong coupling. The last
two coherences have finite intensity and unequal
widths.

Under the situation of strong coupling with cross-
correlations, all the linewidths of the mixed coher-
ences are unequal due to all the cross-correlation spec-
tral densities at the frequencies 0 andv and the
spectral densityJAXBX(2v) contributing to them. The
two coherences involving the pure states (1! 2 and
7! 8) have no contribution from strong coupling and
have identical widths, which are different from the
other mixed transitions.

4.2.4.2. Double-quantum coherences.For the ABX
case, there are six DQCs. Linewidths for these
coherences have also been obtained in a manner
similar to SQCs. Contribution from strong
coupling and cross-correlation can be separated out
as before and the relaxation matrix elements can be
expressed by an equation similar to Eq. (117) as
[232]:

~RDQ � 2
X2
n�0

{ �aDQ�nv�1 a0DQ�nv��~Ja�nv�

1 �cDQ�nv�1 c0DQ�nv��~Jc�nv�} �119�
This equation when expanded, yields:6
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6 See footnote 4 following Eq. (117).



Here the coherences are arranged as ‘AB’(1–7,
2–8), ‘BX’(1–5, 4–8) and ‘AX’(1–6, 3–8) DQCs,
respectively (Fig. 2). The twoAB DQCs are
between pure states and hence have no
contribution from strong coupling. An analysis of
the linewidths of these DQCs reveals the following:

(I) In the weak coupling limit without cross-
correlations. This is identical to theAMX case,
except that a homonuclear spin system is
considered. Linewidths are not equal but follow
a symmetry pattern. All the auto-correlation
spectral densities at the Larmor frequency
contribute equally to all the DQCs. Only two
out of the three auto-correlation spectral
densities at zero frequency contribute to the
linewidth of each DQC withJABAB(0), JAXAX(0)
and JBXBX(0) not contributing toAB, AX and BX
DQCs, respectively. While all the auto-correlation

spectral densities at 2v contribute to the
linewidth of all DQCs,JABAB(2v ), JAXAX(2v ) and
JBXBX(2v ) contribute a larger amount (twice as
large) to AB, AX and BX DQCs, respectively.
Thus both the DQCs of each pair of spin have
equal widths, not equal to the widths of the
coherences of the other pairs of spins in this
case [227].
(II) Weak coupling with cross-correlations.
Inclusion of cross-correlations within the weak
coupling approximation adds additional widths
to the various DQCs with the above mentioned
symmetry pattern preserved, the same way as in
the AMX case. Only one cross-correlation spectral
density each at zero andv contributes to the
linewidths of each pair of the DQCs such that
only JAXBX contributes toAB, JABAX to BX and
JABBX to AX DQCs, respectively. None of the
cross-correlation spectral densities at 2v
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contribute to the linewidths of the DQCs of
weakly coupled spins [227,232].
(III) In the strong coupling situation without
cross-correlations, the four DQCs between the
mixed states have additional contributions
compared to case (I) to linewidths with no
change in the linewidths of theAB DQCs
(namely 1,7 and 2,8 coherences). While all the
auto-correlation spectral densities at zero
frequency contribute, only one spectral density
at v , namelyJABAB(v ) and two at frequency 2v
namely JAXAX(2v ) and JBXBX(2v ) contribute
additional and unequal widths to the remaining
four DQCs. Thus in this limit the two DQCs
between pure states have equal widths with all
others being different.
(IV) Inclusion of cross-correlation with strong

coupling does not affect the linewidths of the
DQCs between pure states but brings additional
and unequal contributions to the remaining four
DQCs from all the cross-correlation spectral
densities at 0 andv and fromJAXBX(2v ) at 2v .

4.2.4.3. Zero-quantum coherences.For the three-spin
ABX case, there are six ZQCs whose linewidths can
also be expressed as [232]:

2~RZQ �
X2
n�0

{ �aZQ�nv�1 a0ZQ�nv��~Ja�nv�

1 �cZQ�nv�1 c0ZQ�nv��~Jc�nv�} �121�
This equation can be rexpressed in terms of spectral
densities as:7
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Here also the coherences are arranged as ‘AB’, ‘ BX’
and ‘AX’ ZQCs, respectively. All the six coherences
are between mixed states and hence they all have
strong coupling character in them. From these
matrices, it is seen that in the weak coupling limit
each ZQC of a pair has equal width and not equal to
the other pairs, both with or without cross-correla-
tions. In the strong coupling limit, all the widths are
unequal. While none of the cross-correlation spectral
densities at 2v contribute to the linewidths in the
weak coupling limit,JAXBX(2v ) alone contributes in
the strong coupling limit. In the weak coupling
limit, the contribution of cross-correlations to the line-
widths of ZQCs is equal and opposite to their contri-
bution to DQCs [sincecZQ�nv� � 2cDQ�nv��.
4.2.4.4. Triple-quantum coherence.The linewidth of
the TQC of theABXspin system is obtained as [232]:

RTQ
AMX�R1818� �1 1 1�

JABAB�v�
JAXAX�v�
JBXBX�v�

0BB@
1CCA

1 �2 2 2�
JABAB�2v�
JAXAX�2v�
JBXBX�2v�

0BB@
1CCA 1 �1 1 1�

JABAX�v�
JABBX�v�
JAXBX�v�

0BB@
1CCA

�123�

It has contributions from auto-correlation spectral
densities atv and 2v and from cross-correlation
spectral densities atv only. The linewidth of this
coherence is free from strong coupling effects even
in the presence of cross-correlations.

4.2.5. AX2 spin system
Such a spin system is often formed by isolated

methylene carbons with their directly attached
equivalent protons. The carbon (A spin) spectrum
consists of a 1:2:1 triplet with three equispaced
transitions between symmetric eigenstates and a
transition between two antisymmetric states overlap-
ping with the central symmetric transition. While
the decay of the outer isolated transitions follow
the simple-line approximation and are given by
single exponentials, the inner overlapped transitions
decay as two independent exponentials, which
cannot be independently observed. For the central
transition, one can monitor the sum and difference
modes.

Several workers have treated this case and have
included the dipole–dipole cross-correlations
[121,228,229,247]. The decay rates for the two outer
transitions (1,2) and (7,8) are equal and are given by
R1212andR7878, respectively. For the central transitions
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(3,6) and (4,5) one obtains:

d
dt

M1

M2

 !
�

r1 s12

s12 r2

 !
M1

M2

 !
�124�

whereM1 gives the sum mode andM2 the difference
mode, andr ands are given by [229]:

r1 � �1=2��R3636 1 R4545 1 2R3645�

r2 � �1=2��R3636 1 R4545 2 2R3645�

s12 � �1=2��R3636 2 R4545�

�125�

The expressions for variousR’s are obtained as:
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and

R3645� R4536� 2 2
3 JAXAX�0�2 JAXAX0 �0�
� �

: �127�
The first term on RHS of Eq. (126) contains the dipo-
lar auto-correlation and the second term the dipole–
dipole cross-correlation spectral densities. The two
outer transitions have identical decay rates, due to
dipole–dipole auto and cross-correlation contribu-
tions. They are different if CSA–dipole contributions
are included [228]. For the inner transitions, the sum

mode decays biexponentially sinceR3636 and R4545

differ due to auto-correlation spectral density
JXX0XX0 �vX� and cross-correlation spectral densities,
JAXAX0 �vA 2 vX� and JAXAX0 �vA 1 vX�: However, in
the long correlation limit, when onlyJ(0)’s survive,
the difference disappears and the sum mode of inner
transitions decays with a single exponential. Under
this condition, the inner and outer lines become
Lorentzians, whose linewidths differ only due to
cross-correlationJAXAX0 �0�: (Under this limit,R1212�
�4=3��JAXAX�0�1 JAXAX0 �0�� and the decay rate ofM1

is given by�4=3��JAXAX�0�1 JAXAX0 �0��.)

4.2.6. AX3 spin system
A typical AX3 spin system which is often encoun-

tered is the methyl group13CH3. The A spin carbon
multiplet is a quartet, in the intensity ratio, 1:3:3:1.
The complete analyses for such a system is given in
Refs. [175,228–230,248–251]. In the long correlation
limit, whereJAXAX(0) spectral density terms dominate
the transverse relaxation, the relaxation rates for the
outer and inner transitions are given by [229]:

RIN=OUT � 2�2JAXAX�0�7 4JAXAX0 �0�� �128�
HereJAXAX(0) is the auto-correlation spectral density
for the internuclear1H–13C vector evaluated at zero
frequency, andJAXAX0 �0� is the three-spin cross-
correlation spectral density, whereX,X0 share the
sameA spin. Hence from these equations, it can be
seen that forvtc q 1; the inner and outer lines decay
with single exponentials which differ from each other
due to cross-correlations.

In the presence of CSA(13C)–dipole cross-correla-
tions, all the four transitions of theA spin have differ-
ent linewidths. The linewidths of the two outer
transitions are given by [252]:

1
T2

� �
^

� 8
3 JAA�0�1 2JAXAX�0�1 4JAXAX0 �0�

7 8JA;AX�0�1 2JAA�vA�1 3
2 JAXAX�vA�

1 3
2 JAXAX0 �vA�7 6JA;AX�vA�

1 1
2 JAXAX�vA 2 vX�1 3

2 JAXAX�vX�
1 3JAXAX�vA 1 vX�1 3JXX0XX0 �vX�
1 3JXX0XX00 �vX�1 6JXX0XX0 �2vX� (129)
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The differential width between the outermost com-
ponents�1=T2�2 2 �1=T2�1 depends upon the cross-
correlations and equals 16JA;AX�0�1 12JA;AX�vA�: In
the absence of CSA–dipole cross-correlations, the
outer components are identical in width and shape,
yet they differ in width and shape from the inner
components. The inner components each are degen-
erate transitions, and have multi-exponential relaxa-
tion with only the sum mode being observable.

4.2.7. Spin-(1/2) coupled to spin. (1/2) system
Consider the scalar coupled two-spin system where

spin I � 1=2 and spinS. �1=2�: Assuming that the
relaxation of spin S is governed by an axially
symmetric quadrupolar interaction, and spinI is
relaxed directly by theI–S dipolar interaction and
an electronic shielding anisotropy, the relaxation
rate,�1=T2�s;m; of each transition of theI [spin-(1/2)]
spin, is given by [64,253–255]:

1
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� �
s;m
� 2

s�2s2 1�
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{ �s�s1 1��4m2 1 1�

2 m2�4m2 1 5��JQ�vs�1 { �s�s1 1�

2 �m2 1 1��2 1 3m2 2 1}JQ�2vs�}

1
8m

s�2s2 1�
� �

�2s�s1 1�

2 2m2 2 1�JQ:CSAs�vs�

1 8
3 �m2JISIS�0�1 JII �0�2 2mJI ;IS�0��:

�130�
Here JQ are the quadrupolar auto-correlation terms,
JQ;CSAs the cross-correlation between quadrupole
and CSA ofS spin, JISIS is the IS-dipolar andJII the
CSA of theI spin auto-correlation terms, whileJI,IS is
the CSA(I)–dipole(IS) cross-correlation term. In Eq.
(130), only adiabatic (zero frequency) terms have
been included for the CSA and dipole auto and
cross-correlations. While the CSA(I) auto-correlation
contributes equal widths to all the transitions of spinI,
all other auto and cross-correlation terms contribute
differentially. The cross-correlation between quadru-
polar and dipolar relaxation contributes to the
dynamic frequency shift (see Eq. (188)) and not to
the linewidth ofI spin transitions.

4.3. Experimental observation of transverse cross-
correlations

As seen from the above analyses, cross-correlations
lead to DLB/line narrowing. The same effect can lead
to coherence transfer from one spin to another, also
known as RACT. In this section, we first deal with
DLB observations and later with RACT. The same
effect also leads to transverse relaxation optimized
spectroscopy (TROSY), which will be discussed in
Section 7.6.

4.3.1. Direct observations of differential line
broadening

The possibility of observing DLB in coupled spin-
(1/2), spin-(1/2)AX systems was discussed first by
Shimizu [3]. An effort to observe this effect was
done by Mackor and McLean, where they used
CHFCl2 as a model compound [217,219]. They
found that the longitudinal relaxation is different for
the two lines in the high-resolution19F NMR spectrum
but could not see any DLB effects.

Quantitative evidence of DLB was given by Farrar
and Quintero-Arcaya, where they observed DLB in
both the 19F and 31P spectra of fluorophosphate
anion, PFO22

3 [256,257]. Fig. 35 summarizes their
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Fig. 35.31P and19F NMR spectra of fluorophosphate�PFO22
3 � anion

at different temperatures and magnetic field values. The peak
heights for the various doublets are quite different, but in each
case the integrated intensities of each of the pair of lines are
equal. The DLB is due to cross-correlation between the CSA and
dipolar relaxation mechanisms. The DLB increases with the
strength of the magnetic field. [Reproduced with permission from
Ref. [256].]



results. They further concluded that the observation of
differential transverse relaxation is made possible if
the following criteria are satisfied:

• The magnitude of the CSA must be comparable to
the intramolecular dipolar interaction [256,257].
Hence, nuclei having a wide range of chemical
shifts, such as31P, 195Pt, 77Se, 19F, 29Si, 15N and
13C [252,258–260] are expected to display DLB
in their coupled NMR spectra.

• The DLB will increase with the strength of the
magnetic field.

• The observation of DLB requires relatively slow
molecular motions or long correlation times
�vtc q 1�: Therefore, spin systems embedded in
macromolecules or absorbed on high surface area
materials are likely candidates to exhibit DLB.

• DLB will be masked by the presence of inter-
molecular dipolar interactions.

Some other early observations of DLB involve the
observation of such effects for protons in slowly
moving large biomolecules (such as t-RNA) by
Guéron et al. [191]. Another instance is the differen-
tial line widths in the phosphorous doublet in the
phosphonium ion�HP�CH3�13 � when absorbed in
H–Y zeolite [256]. Farrar et al. have showed
that the linewidths of the various13C doublets in

phenylacetylene are differentially broadened due to
CSA–dipole cross-correlations and they also
observed an increase in the DLB with decreasing
temperature (Fig. 36) [258]. Hertzell et al. have
observed both DLB and differential longitudinal
relaxation effects arising from cross-correlations in
the 13C spectrum of methanol adsorbed on silica
(Fig. 37) [252]. These cross-correlation effects can
provide a detailed description of molecular dynamics
and anisotropic interactions at the molecular level.
The relative magnitudes of dipolar and CSA inter-
actions as well as the degree of CSA–dipole and
dipole–dipole cross-correlations have been deter-
mined. It has been shown in this paper that the
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Fig. 36. Coupled carbon-13 NMR spectra of the acetylenic carbon
of phenylacetylene in a 1:1 mixture of acetone-d6 and ethylene
glycol-d6, at 125, 218 and2288C. The spectra were recorded at
90 MHz. The high frequency line is broader than the low frequency
line due to CSA–dipole cross-correlations. The DLB effects
increase as the temperature decreases. A similar DLB effect was
also observed for thepara carbon in the ring, but the effect is more
pronounced for the acetylenic carbon. This is because the principal
axis of the CSA tensor is coincident with the dipolar vector for the
acetylenic carbon. [Reproduced with permission from T.C. Farrar,
B.R. Adams, G.C. Grey, R.A. Quintero-Arcaya, Q. Zuo, J. Am.
Chem. Soc. 108 (1986) 8190.]

Fig. 37. Inversion-recovery13C spectra of methanol adsorbed on
silica recorded using Bruker CXP-200 spectrometer with magic-
angle spinning (MAS) at 260 K. The 0.5 s spectrum is multiplied
by 2 to emphasize the difference in the recovery of the inner and
outer lines. The differences in the linewidths of the multiplet result
from the effects of cross-correlation on the transverse relaxation.
The differential recovery results from the effects of cross-correla-
tion on longitudinal relaxation. [Reproduced with permission from
C.J. Hartzell, P.C. Stein, T.J. Lynch, L.G. Werbelow, W.L. Earl, J.
Am. Chem. Soc. 111 (1989) 5114.]



cross-correlations which give rise to both DLB and
longitudinal multi-spin orders, can be used to deter-
mine the absolute signs of various spin couplings and
position the principal axes of the spin interaction. The
evolution of multi-spin order is extremely sensitive to
motional anisotropies and can be used to study highly
anisotropic systems where conventional NMR relax-
ation studies normally would not work. There are
many recent DLB studies which will be discussed in
Section 7.

4.3.2. Motional information from non-axial CSA and
dipole cross-correlations

Fischer et al. [243], have carried out a detailed
study of motional aspects of the proteinE. coli, flavo-
doxin. In an earlier study, they had measured several
relaxation parameters for the peptide-plane carbonyl
and nitrogen nuclei, and a poor correlation between
the general order parameters of C0–Ca vector and the
N–NH vector was interpreted as evidence for local
anisotropic motion [244]. In the present study [243]
the cross-correlation between the C0 CSA and C0–Ca

dipolar interaction was measured from the differences
in the intensities of the single-quantum C0 doublet
split by J13C0–13Ca

; in a constant time 3D experiment,
for several residues of the13C–15N labeled protein.
The fomalism of Daragan and Mayo [245], has been
extended to include cross-correlation between non-
axial CSA and dipolar relaxation to account for the
dynamics of the C0–Ca vector and N–NH vector and
the CSA tensor components, which behave differently
under anisotropic motion. A detailed motional model
has been fitted to this data to characterize the internal
motion along the C0–Ca and N–NH axes for each
residue [243].

4.3.3. Break down of coherence transfer rules in
equivalent spin systems

Coherence transfer rules have been introduced in
2D NMR, assuming that transverse relaxation can be
ignored [49]. These rules remain valid in the presence
of auto-correlated transverse relaxation but break
down in the presence of cross-correlations, because
of the unequal decay of degenerate coherences
[261–263]. The transfer rules imply that in ap-quan-
tum filtered correlation spectroscopy (pQF-COSY) of
AX2 andAX3 spin systems, no cross peaks should be
observed forp . 2: This is because according to the

predictions, in systems with magnetically equivalent
spins (AX2, AX3) it is not possible to transfer SQC of
the X spins into multiple-quantum coherence invol-
ving more than oneX spin. Müller et al. have found
that in contrast to the prediction based on these selec-
tion rules, SQCs of theX spins inAXn groups can be
transferred into multiple-quantum coherence invol-
ving severalX spins, due to the unequal transverse
relaxation of degenerateX spin SQCs in the course
of the evolution period [261]. This multi-exponential
T2 relaxation, arising due to cross-correlations, can
lead to the appearance of forbidden cross peaks in
2D NMR spectra, which have been observed, for
example in the 4QF-COSY spectra of the protein,
BPTI as shown in Fig. 38 [261]. Mu¨ller has suggested
a new multiple-quantum 2D NMR method to monitor
the combined effects of multi-exponential relaxation,
due to longitudinal and transverse cross-correlations
[264,265]. The experiment employs the pulse
sequencep–t–bf–t1–b 0f 0–acq: In this experiment
the non-selectivep pulse inverts the magnetization
which relaxes multi-exponentially duringt and
creates multi-spin longitudinal orders due to cross-
correlations. At the end oft period,b-pulse converts
these multi-spin orders into multiple-quantum coher-
ences, which evolve duringt1 and are reconverted into
detectable SQCs by ab 0 pulse. The experiment was
performed on BPTI. Skew-diagonal peaks exhibit
lineshapes characteristic of multi-exponentialT1 and
T2 relaxation along the two frequency axes. The
appearance of remote peaks in coupled spin systems
requires only longitudinal relaxation to be non-expo-
nential. Fig. 39 shows the cross-sections of selected
peaks from the 2D spectrum of BPTI obtained with
the pulse sequence listed above which is a 3Q-
MERCY (multi-exponential relaxation spectroscopy)
spectrum (only three-quantum coherence is selected
during t1). These cross-sections clearly demonstrate
the manifestations of multi-exponential longitudinal
and transverse relaxation. Mu¨ller has further observed
multiple-quantum coherences up to an order of 5 in
theA5 spin systems of the organometallicp -complex
ferrocene in the absence ofJ-coupling via multi-
exponential relaxation due to cross-correlations [266].

4.3.4. Relaxation-allowed coherence transfer
Another important development in the experi-

mental observation of cross-correlations in transverse
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relaxation was that connected with RACT peaks in 2D
spectra, particularly COSY type of experiments, even
in the absence ofJ-coupling. Wimperis and Boden-
hausen observed that coherence transfer can be

induced by a single RF pulse between two spins that
are not scalar coupled which in turn gives rise to cross
peaks in COSY spectra [222]. This phenomenon
arises from multi-exponentialT2 relaxation that can
arise from cross-correlations between two dipolar
interactions. Fig. 40 shows schematic spectra that
correspond to (a) a conventional 1D spectrum with a
four-line multiplet of spinA in a linearM–A–K spin
system withJAM . JAK . 0; (b) the same multiplet
antiphase with respect to spinK, which corresponds to
the appearance of the multiplet in a cross-section
through a COSY spectrum if it had arisen from a
non-zero J-coupling, JAK; (c) the same antiphase
multiplet for JAK ! 0 in which the outer and inner
lines do not have the same line width due to dipole–
dipole cross-correlations and it is this multiplet struc-
ture that one expects for a cross-section through a
relaxation allowed cross peak: two lines in antiphase
with respect to a spin that would merely play a passive
role in normal coherence transfer. The experimental
COSY spectrum of umbelliferone (Fig. 41) reveals a
cross peak between the spinsA and K although the
scalar couplingJAK is much less than the linewidth
[222]. They have further discussed the implications
for COSY spectra by considering a four spin-1/2
system M–A…K–X where the dotted line indicates
the presence of a time-dependent dipolar coupling
without scalar interactions and solid lines indicate
the simultaneous presence of a resolved scalar
coupling and a time-dependent dipolar coupling
[223]. Experimental evidence for such RACT peaks
is shown in Fig. 42 [223]. These cross peaks appear
due to dipole–dipole cross-correlations. However,
CSA–dipole cross-correlations can also lead to
RACT peaks.

Even if cross-correlations were not present there
could be differences in the linewidth of the various
transitions of the multiplets of a weakly coupled spin
system with three or more relaxation coupled spins
[see Eq. (114); contributions ofJMXMX�vA ^ vX�].
In these cases RACT peaks can appear in the absence
of cross-correlations.

4.4. Remote cross-correlations

Cross-correlations between two interactions that
do not explicitly depend upon the distance from
the spin of interest have been termed as “remote”
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Fig. 38. Phase-sensitive (a) 2QF-COSY and (b) 4QF-COSY spectra
of basic pancreatic trypsin inhibitor (BPTI, 20 mM in D2O, pD�
4:6; T � 368C). The regions shown contain the cross-peaks between
Ha and Hb of (A) alanine-25, (K) lysine-26, (R) arginine-53, (V)
valine-34 and (E) glutamate-49, as well as the Hb and Hg cross peak
of (T) threonine-54. In (b), all these cross peaks should disappear,
but the signals due to A and T survive because of multi-exponential
transverse relaxation effects, due to cross-correlations. The inserts
show the sign patterns of the cross peaks of A (filled and open
symbols representing positive and negative signals, respectively).
The pattern of the forbidden cross peak in (b) is in antiphase with
respect to all multiplet components. The spectra were obtained with
a Bruker AM-360 spectrometer; spectral width 3030 Hz in both
dimensions, data matrices with 2048× 600 points before and
4k × 4k after zero filling; 32 and 256 scans pert1 value for (a)
and (b), respectively; filtration with shifted sine-bell (f � p=16 in
v1 andp /8 in v2). (c) Simulated antiphase doublet, where each
component consists of the difference of two Lorentzians with
time-constants of 0.2 and 0.125 s. (d) Same as (c) but with limited
digitization and sine-bell multiplication as in the experiment. (e)
Cross-section taken from the experimental “forbidden’’ alanine
cross peak in 4QF-COSY parallel tov1, as indicated by dashed
line in (b). Note the qualitative agreement of (d) and (e).
[Reproduced with permission from N. Mu¨ller, G. Bodenhausen,
K. Wüthrich, R.R. Ernst, J. Magn. Reson. 65 (1985) 531.]



[222,233,235]. The term “remote” is not confined to
cross-correlations since there are also “remote” auto-
correlations. The “remote” terms affect both longitu-
dinal as well as transverse relaxation. In this section,
we confine the discussion to contributions of “remote”
cross-correlations to transverse relaxation. Like all
cross-correlations, “remote” terms also contribute
differential line broadening to various transitions of
a spin, in the case of resolved transitions and to multi-
exponential transverse relaxation in the case of unre-
solved, overlapping or degenerate transitions.

Examples of “remote” cross-correlations are cross
terms (i) between CSA of two different spins in a
molecule, (ii) between CSA of spini and dipolar inter-
action between spinsj and k, (iii) between CSA of
spins j or k and dipolar interaction between spinsj
and k, affecting the linewidths of spini, (iv) cross
terms between two pairs of dipolar interactions with
no common spin among them and (v) cross-terms
between two dipolar interaction among spinsi, j and
j, k affecting spinm. While such cross terms do not
depend explicitly on the distance of the spins from the
spin of interest, they do depend on the geometric
disposition of the spins. For example, the CSA(i)–
CSA(j) cross-term depends on the angle between

the orientation of the two tensors (see Eq. (43)) and
dipole(ij )–dipole(kl) cross-term depends on the angle
between the two dipolar vectors (see Eq. (44)). Simi-
larly CSA(i)–dipole(jk) cross-term depends on the
angle between the orientation of the CSA tensor
with respect to the dipolar vector (Eq. (42)).

It has been shown [233,235] that the remote cross-
correlations have a first-order contribution, which is a
differential effect between SQC or multiple-quantum
coherence. To excite the multiple quanta as well as to
observe the first order differential effect, well resolved
J-couplings are needed between the spins of interest.
In the absence ofJ-coupling, the first-order contribu-
tion cancels and the remote cross-correlations give
rise to a second-order effect, which becomes observa-
ble only in the presence of some direct cross-correla-
tions. In the following, some results are reproduced to
highlight the above conclusions [233], by specific
examples ofAX, AMX andAMKX spin systems.

4.4.1. Remote CSA–CSA cross-correlations
The possibility of a CSA–CSA cross correlated

relaxation was first mentioned by Vold and Vold
[59]. Later Werbelow [83], Konrat and Sterk [227]
and recently Kumar and Kumar [233] showed that
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Fig. 39. Cross-sections of selected peaks from the 2Dmulti-exponentialrelaxation spectroscopy (MERCY) proton spectrum of BPTI at
400 MHz (368C, 18 mM in2H2O, pH� 4:7). Three-quantum coherence is selected duringt1. For these plots, the spectrum was re-transformed
without window multiplication. In (a), the vertical cross-section of the Met-52 singlet exhibits sidelobes, of a sign opposite to the central lobe,
that are obvious manifestations of multi-exponential longitudinal relaxation duringt . The horizontal cross-section (b) is also flanked by such
lobes, which however reflect multi-exponential transverse relaxation. The antiphase doublet between the methyl anda-protons of Ala-58 is
shown in (c) along thev1 dimension. The sidelobes are due to the longitudinal relaxation. [Reproduced with permission from N. Mu¨ller, Chem.
Phys. Lett. 131 (1986) 218.].



the CSA–CSA cross-correlations contribute a DLB
effect on ZQC and DQC. This contribution to DLB
is contained in Eqs. (107), (113) and (115). The spec-
tral densities,JA;X�nv� the remote CSA(A)–CSA(X)
cross-correlations, do not contribute to the linewidths
of SQCs in weakly coupled spins, but contribute a
DLB effect to the ZQC and DQC throughJA,X(0) in
AX spin systems (Eq. (107)), and to DQ(AM) and
ZQ(AM) through JA;M�0� in an AMX spin system
(Eq. (115)). Since the excitation of the ZQC and
DQC requires the presence of a resolvedJ-coupling
between the spins, the cross terms between CSA of
spinsi andj can contribute only when they are nearby
in a covalent network and have a resolvedJ-coupling.
This ensures that only “scalar coupled” spins have a
contribution from CSA–CSA cross-correlations
[233].

The cross-correlation between15N and 13CO
chemical shift anisotropies has been recently observed
while measuring the differences in the relaxation rates
of the ZQC and DQC of these two spins in a constant
time 2D HNCO experiment in a doubly labeled
protein binase (12.3 kDa) [267]. Two experiments
were performed. In experiment (A) (Fig. 43), at the
beginning of the constant period (2D ), the two spin
coherenceNxCx is created, which is the sum of ZQC
and DQC. The Ca carbon is decoupled by a selective
1808 pulse in the middle of theD period. Each ZQC
and DQC is split into doublets by the coupling to the
amide proton. The evolution of each doublet is inter-
changed by a 1808 pulse in the middle of theD period
and an average relaxation of each coherence order is
obtained, retaining the simple-line approximation.
From Eq. (115), it can be seen that the CSA–dipole
cross-correlations, which give differential relaxation
of the doublets of ZQC and DQC cancel out and the
average decay rates of ZQC and DQC differ by the
CSA–CSA and a dipole–dipole cross-correlation at
zero frequency. In addition, the difference contains
some auto- and cross-terms from high-frequency
spectral densities. Retaining only the zero-frequency
spectral densities, one obtains, from the ratio of ZQC
and DQC in a decoupled HNCO experiment

�2D�21 ln
IZQ

IDQ

 !
� JNH;CH�0�1 JN;C�0�: �131�

In the second experiment (B) (Fig. 43), the above two
contributions, have been separated out by creating a
TQC 4HxNxCx at the beginning of the 2D period, but
the evolution of only the ZQC and DQC between
N-15 and C-13 is monitored. The generation of
TQC ensures that the adiabatic contribution involving
the dipolar interaction between the three spins
�JNH;CH�0�� is eliminated [267]. Consequently in
experiment (B)

�2D�21 ln
IZQ

IDQ

 !
� JN;C�0�: �132�

From these experiments (Fig. 44), bothJN,C(0) as well
asJNH,CH(0) were obtained for all the residues in the
protein (Fig. 45). The CSA–CSA cross-correlation
rates were found to vary between11.2 and
25.2 s21, with an average value of22:3^ 1:4 s21

;

andJNH,CH(0) varies between20.1 and23.8 s21, with
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Fig. 40. SchematicA-spin multiplets for a linear three weakly
scalar-coupled spin-1/2 nuclei, with the four lines labeledaa ,
ab etc., according to the states of the coupling partners. In (a), it
is assumed thatJAM . JAK . 0; the linewidth differences are due to
the (positive) cross-correlation spectral densityJAMAK. In (b), the
multiplet is shown in antiphase with respect to spinK, but with
the same linewidths. In the limit ofJAK � 0; case (b) is converted
into case (c). This corresponds to a cross-section through a relaxa-
tion-allowed cross-peak in a 2D correlation spectrum (“COSY”).
These schematics are also applicable to the case where the linewidth
differences would arise from the remote auto-correlation spectral
densityJMKMK. [Reproduced with permission from S. Wimperis, G.
Bodenhausen, Chem. Phys. Lett. 140 (1987) 41.].



an average value of22:0^ 0:8 s21
: While the aver-

age values for both the cross-correlations are within
expected theoretical values, the variation is outside
experimental error. These variations have been

assigned to local anisotropic internal motion as well
as variations of the magnitude of the CSA tensors and
the angles between them [267].

Norwood et al. have also measured the cross-
correlation between1HN and 15N CSA tensors, by
measuring the differential relaxation of the ZQC and
DQC of the amide proton and nitrogen in perdeuter-
ated, 15N-labeled human-dynamic-light-chain-1
protein [268]. They have also considered only the
zero-frequency spectral densities, sincevtc q 1 is
satisfied. Their experiment has the additional advan-
tage that the zero frequency dipole–dipole cross-
correlation terms with all other non-bonded protons
are negligible since all other spins (protons as well as
15N) are far away from the15N–1H bonded pair.
Therefore the difference in the zero- and double-
quantum relaxation rates is exclusively due to CSA–
CSA cross-correlations. This has been measured for
the 1H–15N group of Glutamine 27 of the protein and
a value of 1:01^ 0:14 s21 is obtained for this cross-
correlation. UsingDsN and the angle between the
orientation of the two tensors as measured by Tjandra
et al. [239] a reasonable estimate ofDsHN

� 5:06^
0:73 ppm has been obtained.

4.4.2. Remote CSA–dipole cross-correlations
These cross-correlations show up in three-spin

systems and can be analysed from the results for the
AMX spin system contained in Eqs. (114) and (115).
The linewidths ofA-spin SQCs (Eq. (114)) have a
differential contribution from remote cross-correla-
tions JM;MX�vM� and JX;MX�vX�; both of which are
independent of the distances of spinsM andX from
spinA. The result of Eq. (114) is valid only under the
condition of simple-line approximation, which
requires resolvedJAM andJAX couplings, as shown in
the Appendix of Ref. [233]. In the absence of these
J-couplings, the first-order contribution cancels and
these remote cross-correlations contribute a second-
order effect, but only in the presence of direct cross-
correlationsJA,AM or JA,AX [233]. Similarly for the
multiple-quantum coherences, the linewidths of
which are contained in Eq. (115), it is seen that the
AM ZQC and DQC have a first-order differential line
broadening contribution from remote cross-correla-
tionsJA,MX(0), JM,AX(0) andJA,M(0).

In a recent experiment using doubly (13C, 15N) and
fully enriched human ubiquitin, Brutscher et al. have
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Fig. 41. (a) Partial 2D COSY proton spectrum of an isotropic solu-
tion of umbelliferone in a mixture of D2O, (CD3)2SO and (CD3)2CO
(2:2:1 by volume). The spectrum was recorded with the usual proce-
dures (p /2 mixing pulse) at 223 K and at 400 MHz on a Bruker
AM-400 spectrometer. The relevant four-spin subsystem has been
emphasized by dotted envelopes in the molecule. The scalar
coupling JAK is negligible with respect to the linewidths, butJAM

andJKX are not. The cross-correlation spectral densitiesJAMAK and
JAKKX are large due to spatial proximity and a roughly linear arrange-
ment. The relaxation-allowedA–K cross-peak multiplet centered at
v1 � VA andv2 � VK (framed in (a)) is enlarged in (b), where it
can be compared with the schematic pattern expected for RACT
shown in (c). The signals in this rectangular pattern are separated by
JAM in v1 and JKX in v2. The pattern that would result from a
hypothetical well-behaved transfer due toJAK is shown in (d). Posi-
tive signals have been rendered by filled contours in (b), (c) and (d).
[Reproduced with permission from S. Wimperis, G. Bodenhausen,
Chem. Phys. Lett. 140 (1987) 41.]



utilized the differences in15N–13C0 zero- and double-
quantum decay rates to measure “remote” cross-corre-
lations, involving the three spins,15N and13C0 and the
amide proton nuclei of the peptide plane [269]. The
spectral densities,JN;NHN

and JC0;C0HN
have been

termed as direct andJN;C0HN
and JC0;NHN

as remote
cross-correlations. It is shown (also follows from
Eq. (115)) that the decay rates of the two ZQCs and
two DQCs differ due to CSA–dipole (CSA, d) cross-
correlations which in turn differ from each other by
“remote” CSA–dipole cross-correlations and are
given by:

Rc
DQ � Rc�d�

CSA;d 1 Rc�r�
CSA;d

Rc
ZQ � Rc�d�

CSA;d 2 Rc�r�
CSA;d

Rc�d�
CSA;d � RN;NHN

1 RC0;C0HN

Rc�r�
CSA;d � RN;C0HN

1 RC0;NHN
: (133)

From Eq. (115), it is seen that

Ri;ik � 2 8
3 Ji;ik�0�1 2Ji;ik�vi�

Ri; jk � 2 8
3 Ji; jk�0� (134)

Thus by measuring the relative intensities of the ZQ
and DQ doublets in a constant time experiment (Fig.
46), they obtainedRcross

DQ andRcross
ZQ ; the difference and

sum of which then yields information on the direct
cross-correlation,Rc�d�

CSA;d and remote cross-correla-
tion, Rc�r�

CSA;d: These rates have been measured for 48
peptide planes in the protein. It is found thatRc�d�

CSA;d
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Fig. 42. Stack plot of a double-quantum filtered COSY proton spectrum at 400 MHz of 9-phenanthrol showing relaxation allowed cross-peaks
resulting from cross-correlation between dipolar interactions. Two symmetrically disposedA–X cross-peak multiplets can clearly be seen,
indicating RACT betweenA andX. The diagonal multiplets centered at�v1; v2� � �VA; VA� and (VX, VX) show passive splittings because of
the scalar couplingsJAM andJKX, respectively. The relaxation-allowedA–X cross-peak multiplets centered at�v1; v2� � �VA;VX� (in the back)
and (VX, VA) (in front) appear even though the scalar couplingJAX is negligible. The antiphase splittings of the relaxation-allowed cross-peak
multiplets also result from the passive couplings. Thus, the multiplet centered at�v1; v2� � �VX;VA� is split byJKX in v1 and byJAM in v2. The
intensity of theA–X cross-peak multiplet is approximately 25% of that of the diagonal peak, indicating a large effect of cross-correlation on the
transverse relaxation of theA andX spins. [Reproduced with permission from S. Wimperis, G. Bodenhausen, Mol. Phys. 66 (1989) 897.].



varies between 0.7 and 6.3 s21, whereasRc�r�
CSA;d varies

between23.0 and 0.5 s21. The four smallestRc�d�
CSA;d

are found in the flexible C-terminus region. From the
rather weak overall correlation betweenRc�d�

CSA;d and
Rc�r�

CSA;d; it has been concluded that these two cross-
correlation parameters carry complementary informa-
tion about CSA tensors and about anisotropic internal
and overall motion of the protein [269].

Remote CSA–dipole cross-correlations have also
been measured by Yang et al. [270], involving the
13Ca–1Ha dipolar interaction and the13C0 (carbonyl)
CSA. The method relies on measurement of the peak
intensities of the multiplet components of the zero-
and double-quantum13Ca 2 13C0 coherences, in a
manner identical to the above described experiment.
The experiments have been carried out on the fully
doubly labeled (13C, 15N) protein ubiquitin. The
experiment is a HN(CO)CA scheme, in which the
proton magnetization is transferred to15N and then
to C0 and Ca carbons and back to proton via nitrogen.

During an evolution step,13Ca–13C0 DQC and ZQC
are allowed to evolve withp pulses on15N, decou-
pling the 15N spin with splitting due to protons being
active. The linewidths of the two DQC and ZQCs
(following Eq. (115)) can be written as:

RDQ;a
AM � RDQ

a 1 RAXMX�0;vX�1 Rc�d�
CSA;d 1 Rc�r�

CSA;d

1 RCSA;CSA�0�

RDQ;b
AM � RDQ

a 1 RAXMX�0;vX�2 Rc�d�
CSA;d 2 Rc�r�

CSA;d

1 RCSA;CSA�0�

RZQ;a
AM � RZQ

a 2 RAXMX�0;vX�1 Rc�d�
CSA;d 2 Rc�r�

CSA;d

2 RCSA;CSA�0�

RZQ;b
AM � RZQ

a 2 RAXMX�0;vX�2 Rc�d�
CSA;d 1 Rc�r�

CSA;d

2 RCSA;CSA�0� (135)
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Fig. 43. (A) Pulse sequence for the determination of transverse13CO and15N CSA–CSA cross-correlation rates (GN,C) and 1HN–15N and
1HN–13CO dipole–dipole cross-correlation rates (GHN,HC). Narrow and thin bars represent 908 and 1808 pulses, respectively. Unless specified
otherwise, pulse phases are along thex-axis. The durations of the13CO and13Ca pulses have been optimized not to interfere with each other.
Pulsed field gradients are half-sine-bell shaped with 1 ms duration and strengths ofg1 � 20 G=cm; g2 � 40 G=cm; g3 � 30 G=cm andg4 �
50 G=cm: The delays are:t � 2:7 ms; T � 11:0 ms andD � 22 ms: States-TPPI [8] quadrature detection is achieved by incrementingf2 so
that cross peaks atvc ^ vN were observed. To reduce the resonance overlap between double- and zero-quantum cross peaks, the15N carrier
frequency was shifted to the edge of the15N spectral envelope during the chemical shift evolution.15N decoupling duringt2 was achieved with a
1.25 kHz WALTZ-16 decoupling sequence. Water suppression was achieved with a WATERGATE scheme. (B) The pulse scheme is identical
to (A) except for the two delays 2t (t � 2:7 ms) and two 908 proton pulses just before and after the chemical shift evolution periodD . Details of
phase cycling are contained in Ref. [267] [Reproduced with permission from M. Pellecchia, Y. Pang, L. Wang, A.V. Kurochkin, Anil Kumar,
E.R.P. Zuiderweg, J. Am. Chem. Soc. 121 (1999) 9165.].



whereX is the proton spin andA andM are13C0 spins.
The intensity ratios of the DQC and ZQC in the
constant time (T) experiment are obtained as:8

IDQ;a·IZQ;b

IDQ;b·IZQ;a

 !
� exp�RDQ;aT�·exp�RZQ;bT�

exp�RDQ;bT�·exp�RZQ;aT�

� exp��RDQ;a 2 RDQ;b�T�·exp��RZQ;a 2 RZQ;b�T� (136)

Taking the logarithm, one obtains:

1
T

ln
IDQ;a·IZQ;b

IDQ;b·IZQ;a

 !
� Rc�r�

CSA;d

� R13C0;13Ca–1H 1 R13Ca;13C021H: �137�

The cross-correlation R13Ca;13C0–1H has been
neglected in this study, since the CSA of13Ca is
small and13C0–1H distance is large. The measured
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Fig. 44. (A) and (B) are, respectively, parts of the spectra of the double-zero quantum and modified triple quantum 2D-constant time
experiments recorded with two different pulse schemes given in Fig. 43. (C) and (D) show traces alongv1 taken at the resonance of the
residue Leu-32 from the spectra in (A) and (B), respectively. The spectra were acquired at 303 K on a Bruker AMX-500 spectrometer, with a
1.0 mM sample of15N, 13C-labeled binase (12.3 kDa) fromBacillus intermedius. [Reproduced with permission from M. Pellecchia, Y. Pang, L.
Wang, A.V. Kurochkin, Anil Kumar, E.R.P. Zuiderweg, J. Am. Chem. Soc. 121 (1999) 9165.].

8 All R’s are negative numbers, see footnote following Eq. (107).



R13C0;13Ca–1H has been directly related to a non-axial
CSA tensor (following Goldman [238]), assuming
rigid and isotropic overall tumbling with a correlation
time t c, as:

R13C0;13C–1H � 4
15 "vcgCgHr23

HCtc f �sX;sY;sZ� �138�
where

f �sX;sY;sZ� � 1
2 �sX�3 cos2 uX 2 1�1 sY�3 cos2 uY 2 1�

1sZ�3 cos2 uZ 2 1�� (139)

whereuX, uY anduZ are the angles that the principal
axes of the CSA tensor make with the internuclear
13Ca–1H axis. Assuming a standard peptide plane

geometry and the CSA tensor as measured in a solid
state study by Teng et al. [271], the angles have been
related to the dihedral anglec . The measured cross-
correlation rate and the derived dihedral anglec
correlates well with the calculated values in the two
proteins. In the case of the glycine residue, each ZQ
and DQ coherence is split into triplets and the
ratio of intensities of most upfield and downfield
lines have been used to measure the cross-correlation
rates.

In a subsequent study, Yang et al. [272] have
utilized the idea of measuring the average relaxation
rate of DQa and ZQb components which resonate at
vC0 ^ vCa 2 pJCH and the average rate of DQb and
ZQa components which resonate atvC0 ^ vCa 1
pJCH: This is achieved by simultaneous interchange
of DQa $ ZQb and DQb $ ZQa by application ofp
pulses on1H and 13Ca midway between theT period
of the experiment. It is claimed that since the cross-
correlation rate has been obtained from the ratio of
two, rather than four terms, the precision of the
experiment has been improved.

4.4.3. Remote dipole–dipole cross-correlation

4.4.3.1. Single-quantum coherences.The presence
of remote dipole(ij )–dipole(kl) cross-correlations
requires a coupled four-spin systemAMKX [233]. It
has been shown that the eightA-spin SQCs differ in
linewidths due to direct�JAMAK�0;v�; JAMAX�0;v� and
JAKAX�0;v�� as well as remote�JMKMX�v�; JMKKX�v�
and JMXKX�v�� dipole–dipole cross-correlations,
under the simple-line approximation when all the
eight coherences are resolved. The result can be
summarized by the following equation:

Rc
Aaaa � Rc

Abbb � 1Rc�d�
AMAK 1 Rc�d�

AMAX 1 Rc�d�
AKAX

1 Rc�r�
MKMX 1 Rc�r�

MKKX 1 Rc�r�
MXKX

Rc
Aaab � Rc

Abba � 1Rc�d�
AMAK 2 Rc�d�

AMAX 2 Rc�d�
AKAX

2 Rc�r�
MKMX 2 Rc�r�

MKKX 1 Rc�r�
MXKX

Rc
Aaba � Rc

Abab � 2Rc�d�
AMAK 1 Rc�d�

AMAX 2 Rc�d�
AKAX

2 Rc�r�
MKMX 1 Rc�r�

MKKX 2 Rc�r�
MXKX
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Fig. 45. Dependence of (A) the15N–13CO CSA–CSA cross-corre-
lation rates (GN,C), and (B) the1HN–15N and 1HN–13CO dipole–
dipole cross-correlation rates (GHN,HC) for the various amino acid
sequence measured for the protein binase (12.3 kDa) for well-
resolved cross peaks. The error bars were estimated from the signal
to noise ratio as well as from spectral density terms at higher
frequencies and from magnetic field inhomogeneities, are also indi-
cated in the figure. [Reproduced with permission from M. Pellec-
chia, Y. Pang, L. Wang, A.V. Kurochkin, Anil Kumar, E.R.P.
Zuiderweg, J. Am. Chem. Soc. 121 (1999) 9165.]



Rc
Abaa � Rc

Aabb � 2Rc�d�
AMAK 2 Rc�d�

AMAX 1 Rc�d�
AKAX

1 Rc�r�
MKMX 2 Rc�r�

MKKX 2 Rc�r�
MXKX:

(140)

Both the remote and direct cross-correlations give rise
to first-order differential line broadening, while main-
taining the symmetry of the pattern. If one of the
couplings is zero, the first-order contribution cancels.
For example ifJAX � 0; transitions in which theX
spin changes state will overlap and cancel the

contributions ofRc�d�
AMAX; Rc�d�

AKAX; Rc�r�
MKMX and Rc�r�

MKKX
yielding:

Rc
Aaaa � Rc

Abbb � Rc
Aaab � Rc

Abba

� 1Rc�d�
AMAK 1 Rc�r�

MXKX

Rc
Aaba � Rc

Abab � Rc
Abaa � Rc

Aabb

� 2Rc�d�
AMAK 2 Rc�r�

MXKX: (141)

Differences in the linewidths yield a sum of these
two cross-correlations one of which is the remote
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Fig. 46. Experimental results of the 2D ZQ/DQ HNCO(H) experiment applied to human ubiquitin at 300 K andB0 field strength of 14.1 T.
Quadrature detection on15N was used inv1 and the13C0 demodulation frequency was shifted to 182.5 ppm by time-proportional phase
incrementation. In (A), contour plots of ZQ and DQ cross-peak doublets are shown for the peptide plane between Lys 29 and lle 30 and between
Ser 65 and Thr 66 with the constant period of time evolution,T � 80 ms; wherev1 corresponds to the ZQ/DQ dimension andv2 to the HN

frequency. Projections are drawn along the cross correlated relaxation-active ZQ/DQ frequency domainv1 (15N ppm scale). (B) Plot of ratio of
intensities of the doublets of double and zero-quantum peaks as a function of the constant evolution periodT. [Reproduced with permission
from B. Brutscher, N.R. Skrynikov, T. Bremi, R. Bruschweiler, R.R. Ernst, J. Magn. Reson. 130 (1998) 346.].



contribution for spinA. However, this contribution is
also observable only under the condition that bothJAM

and JAK are unequal and yield well resolved quartet
[233].

4.4.3.2. Double-quantum coherences.The linewidths
of 15Ni–

13Cj DQCs have been studied in a four-spin
system consisting of H–15N–CO–13Ca–H: There are
four DQCs whose linewidths are given by [273]:

Raa � Ra 1 Rc
CSA;di

1 Rc
CSA;dj

1 Rc
di ;dj

Rba � Ra 2 Rc
CSA;di

1 Rc
CSA;dj

2 Rc
di ;dj

Rab � Ra 1 Rc
CSA;di

2 Rc
CSA;dj

2 Rc
di ;dj

Rbb � Ra 2 Rc
CSA;di

2 Rc
CSA;dj

1 Rc
di ;dj

�142�

where the subscriptsa andb reflect the spin states of
the protons attached to nitrogen and carbon,
respectively, the indicesdi anddj refer to N–HN and
C–HC dipolar vectors, respectively.Ra contains the
auto-correlation contribution to the double-quantum
linewidths, which are all identical. TheRc

CSA;di
and

Rc
CSA;dj

terms describe the sum of all interactions
due to CSA–dipole cross-correlated relaxation for
the dith and djth dipolar vectors, respectively.Rc

di ;dj

is the cross-correlation contribution from N–HN and
C–HC dipolar vectors. This cross-correlation is
strongly dependent on the angleu between these
two dipolar vectors (Fig. 47). Experimental
observation of these four DQCs in a constant time
experiment has been carried out by Reif et al. [273],
which yields intensities strongly dependent on this
angle (Fig. 48). The various rate constants have
been calculated by measuring the intensities of the
four DQCs by the following equations:

Rc
di ;dj
� 1

4T
ln

I �ab�_I �ba�
I �aa�_I �bb�

" #

Rc
CSA;di

� 1
4T

ln
I �ab�_I �bb�
I �aa�_I �ba�

" #

Rc
CSA;dj

� 1
4T

ln
I �bb�_I �ba�
I �aa�_I �ab�

" #
�143�

The dipole–dipole cross-correlationRc
di ;dj

is given

by:

Rc
di ;dj
� 8

5
gHgC

r3
NHi

 !
gHgC

r3
CHj

 !
m0"

4p

� �2 1
2
�3 cos2 udi ;dj

2 1�

�144�
where udi ;dj

is the angle between the two dipolar
vectors di and dj. Assuming the planarity of the
peptide bond, angleudi ;dj

depends on the torsion
angle c according to the equation, cosudi ;dj

�
0:1631 0:819 cos�c 2 119�: The torsion anglec
has been estimated from this methodology for
rhodniin, a 11 kDa protein, for all the peptide
planes along the backbone. The extracted torsion
angle c agrees very well with the various known
secondary structure elements of this protein. This
new methodology has proved quite useful in
extracting the structural parameters of proteins in
solution.

In the above study, four values ofc are consistent
with the measured value ofudi ;dj

: It has been recently
shown by Yang and Kay [274,275] that, if in addition
to measuring the cross-correlation between13Ca–1Ha

and15N–1HN dipolar interactions, one also measures
the cross-correlation between the13Ca–1Ha dipolar
interaction and13C0 (carbonyl) CSA, the ambiguity
in c can be reduced to two from four. In order to
derive this rate, the ratio ofRc

CSA;di
and Rc

CSA;dj
as

given by the second and third equations of Eq. (142)
has to be used. The other dipole–dipole cross-correla-
tion between HN–Ca and Ha–N has been found to be
negligible in both these studies.

Pelupessy et al. [276] have recently proposed a
pair of complimentary 2D experiments which enable
one to determine the effects of cross-correlation
between13Ca–Ha and 15N–HN dipolar interactions
on the relaxation of the antiphase multiple-quantum
coherence 4NxC

a
x C0z: This allows one to reduce the

constant timeT, in the experiment by Reif et al., thus
making these schemes applicable to larger biomole-
cules. In the 3D experiments, however, short constant
time evolution periods lead to limited digital resolu-
tion in the zero- and double-quantum dimension, thus
hampering their actual use. By this method, the dura-
tion of the relaxation intervalT is not dictated by the
necessity to resolve the lines of the multiplet in the
third dimension. Furthermore, if the signals overlap
in HSQC spectra, the dispersion of the cross peaks
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can be improved by inserting an additional evolution
period to allow precession of the carbonyl13C0

nuclei, which have favorable relaxation properties
[276].

4.5. Cross-correlations involving quadrupolar nuclei

The interference effects involving the quadrupolar
interaction are documented in the literature
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Fig. 47. (A) Pictorial representation of the angleu between the dipolar vectors Cak –Ha
k and Nk11–HN

k11: (B) Calculated Cak –Nk11 double-
quantum spectra (a) in the absence of dipole–dipole cross-correlations; in the presence of the Ca

k –Ha
k =Nk11–HN

k11 dipole–dipole cross-
correlation with angle (b)u � 908 and (c)u � 08: The signal in the double-quantum dimension is split due to the1JHN and the1JCH-couplings.
aa , ab , ba andbb denote the proton spin states of Ha and HN, respectively. [Reproduced with permission from B. Reif, M. Henning, C.
Griesinger, Science 276 (1997) 1230.].



[277–294]. An early experimental study that
observed the presence of quadrupolar–quadrupolar
cross-correlation was by Vold et al. in 1980 in
which they monitored deuterium relaxation in a
10 mol% solution of CD2Cl2 in Merck liquid crystal
phase V [284,285]. The experiments involved
measurements of spin–lattice deuteron relaxation
in a CD2 group, combined with 2D measurements
of single- and double-quantum spin-echo decay
rates. Six spectral densities, three for auto-correla-
tion and three for cross-correlation, could be deter-
mined in this experiment. Another example in which
dipole–quadrupolar cross-correlations have been

observed in a spin-1 coupled to spin-(1/2) system,
in a nematic phase is shown in Fig. 49 [286]. The
recovery of the two lines with different relaxation is
ascribed to dipole–quadrupolar cross-correlation.
The detailed theory for the longitudinal relaxation
using normal modes in the presence of both dipolar
and quadrupolar relaxation mechanisms, including
their cross-correlations is given in this paper. It
may be noted that dipole–quadrupolar cross-correla-
tions do not gives rise to a differential line broad-
ening and only gives rise to a differential
longitudinal relaxation [287,288].

Cross-correlation between CSA and quadrupolar
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Fig. 48. Experimentally observed peak shapes for selected residues in rhodniin. The HN chemical shift (600 MHz) of residuek 1 1 is given on
the horizontal axis. Double-quantum coherences which evolve between the nuclei Ca

k and Nk11 are represented on the vertical axis. Deviations
from the intensity ratio (1:1:1:1) that would be found without cross-correlated relaxation can clearly be seen. Two residues within ana-helical
(T28 and C80) as well as two residues within ab-sheet (G70 and K96), together with one residue from a turn motive (S88) are shown. The mean
relaxation ratesRc

di ;dj
in Hz as extracted according to Eq. (142) and their standard deviations are given below each residue. [Reproduced with

permission from B. Reif, M. Henning, C. Griesinger, Science 276 (1997) 1230.]



interactions can give rise to DLB, in spin-(1/2)
nuclei coupled to quadrupolar nuclei, as theoreti-
cally shown by Gutowsky and Vold [289], and
Werbelow et al. [290,291]. Granger et al. have
observed in tetrahedral clusters with a phosphorus
ligand bound to a cobalt atom, HFeCo3(CO)11L, that
the 31P spectra of some clusters exhibit a remark-
able asymmetry in the line shapes [292]. This
asymmetry was the first experimental confirmation
of the CSA–quadrupole cross-correlations. Since
the CSA–quadrupole cross-correlations depend on
these two tensor orientations, Elbayed et al.
have calculated the linshapes for three different
cases, namely coincident-axially symmetric, non-
coincident-axially symmetric and general non-coin-
cident quadrupolar and CSA tensors in such systems
[293].

Recently, Werbelow et al. have measured the
quadrupolar–quadrupolar cross-correlation in a
spin-(1/2) coupled to spin-1 system, via ‘spying’
spin-(1/2) nuclei [294]. In the13C multiplets of
deuterated ethylene glycol, it was observed that
the apparent heights of the multiplet components
do not obey the simple pentet pattern due to DLB.
This broadening in the pentet was attributed to
the cross-correlation between the two quadrupolar
interactions.

5. Cross-correlations in the presence of a radio
frequency field

It was shown in Section 3 that cross-correlations
contribute to longitudinal relaxation via spectral
densities only at the Larmor frequency. Thus the
effect of cross-correlations in longitudinal relaxation
as well as on the NOE of slowly tumbling molecules
for which vtc q 1 is minimal. However, in Section
4, it was shown that cross-correlations contribute to
transverse relaxation via spectral densities also at
other frequencies, including zero. Bull [61,295,
296], therefore suggested that the relaxation experi-
ments be performed in the presence of large RF fields
(the so-called rotating frame experiments). The RF
field mixes the evolution of longitudinal and trans-
verse relaxation enhancing the effect of cross-corre-
lations. Such experiments have gained popularity
from several other considerations as well and many
experiments have been developed such as TOCSY
[297,298], HOHAHA [299], CAMELSPIN [300]
and ROESY [301], exploiting both the coherence
transfer and the relaxation studies in the presence
of strong RF fields. A detailed review on relaxation
in the rotating frame in liquids has been published
recently by Bull [61], which includes in detail the
effect of cross-correlations. We will therefore restrict
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Fig. 49. Initial rate inversion recovery experiments of CHDCl2 in the nematic liquid crystal ZLI-1167 obtained on a JEOL FX60Q FTNMR
spectrometer at a temperature of 268C. The experiments were performed selectively on one part of the quadrupole doublet in the2H NMR
spectrum. [Reproduced with permission from J. Voigt, J.P. Jacobsen, J. Chem. Phys. 78 (1983) 1693.]



this review to a few introductory remarks and some
simple cases to illustrate the effect of cross-correla-
tions in the presence of RF fields and refer the reader
to the above review for further details of various spin
systems. The discussion here closely follows the
ideas contained in Bull’s original article [295] and
an experimental study by Burghardt et al. [211].

5.1. Theory

Application of a steady off-resonance�offset�
Dv� RF field of strengthv1 � gH1 along theX-axis,
yields an effective field in theXZ plane in the rotating
frame given by:

veff �
������������������
�Dv�2 1 �v1�2

q
�145�

at an angleu from theZ-direction given by:

u � tan21 v1

Dv

� �
�146�

If veff q R; the various relaxation matrix elements,
then it can be shown that the total magnetization can
be resolved into two components, one spin-locked
along the effective field and the other perpendicular to
it and that the dynamics of the magnetization locked
along the effective field is decoupled from the magneti-
zation transverse to it [211]. Under this assumption,
the density matrix is described by the product of
nuclear spin operators directed along and perpendicu-
lar to the corresponding effective fields. The magne-
tization components transverse to the effective field
perform Torrey oscillations about the effective field
and decay (if the RF field is sufficiently inhomoge-
neous) and can be ignored [302]. The magnetization
of each nucleus is thus locked along its effective field,
whose relaxation becomes a mixture of the relaxation
of the longitudinal and the transverse components.

The transformation to the effective field of each
spin also leads to the transformation of the operators
and one can define spin operators in the rotating frame
(with primes) for each spin as [211]:

IA
X 0

IA
Y0

IA
Z 0

0BBB@
1CCCA �

cosuA 0 2sinuA

0 1 0

sinuA 0 cosuA

0BB@
1CCA

IA
X

IA
Y

IA
Z

0BBB@
1CCCA: �147�

The time evolution of the longitudinal spin operators
in the rotating frame then follows an equation of
motion similar to the laboratory frame case except
all the quantities are replaced by primes [295]. For
example, for a two-spin system (AX), the equation
of motion is given by [211]:

2
d
dt

kIA
Z 0 l

kIX
Z 0 l

k2IA
Z 0 I

X
Z 0l

0BBB@
1CCCA �

r 0A s 0AX d 0A;AX

s 0AX r 0X d 0X;AX

d 0A;AX d 0X;AX r 0AX

0BB@
1CCA

�
kDIA

Z 0 l

kDIX
Z 0 l

k2DIA
Z 0 I

X
Z 0 l

0BBB@
1CCCA �148�

whereD represents the deviation from thermal equi-
librium and the relaxation parametersr 0, s 0 andd 0,
respectively, represent the self-relaxation rate of
each mode, the cross relaxation rate between
modes of the same order and the cross-correlation
rate between modes of different order, in the respec-
tive rotating frames. While the RF field is assumed
to be strong enough to redefine the secular and non-
secular terms (by decoupling the longitudinal and
transverse operators in the rotating frame), it is
assumed to be not strong enough to perturb the
fundamental relaxation process. This later assump-
tion holds if �gH1�tc p 1 [295], a condition
satisfied for all practical purposes. Under this
assumption, all the spectral densities defined earlier
(Section 2.2.5) remain unchanged. However, the
way the spectral densities influence the dynamics
of the magnetization is modified. They need to be
transformed into rotating frame along with the spin
operators. The following sections provide a discus-
sion of the dynamics of the various spin systems
in the rotating frame in the presence of cross-
correlations.

5.2. Effect of CSA–dipole cross-correlations for an
AX spin system

For the homonuclear two-spin systemAX, when the
two spinsA and X are selectively spin locked along
the uA anduX the various elements of Eq. (148), are
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obtained as [211]:

The last two termsJi(nv ) represent spectral densities
arising from random field mechanisms, while the
other spectral densities have their usual meaning. It
is noted that bothr 0 ands 0 continue to depend on
auto-correlation spectral densities even in the rotating
frame. The cross-correlation rates which connect the
single spin operators to the two spin operators are
obtained as [211]:

Hered 0i;ij represents the cross-correlation rate between
even and odd order modes arising from cross terms
between CSA of spini with the dipolar vectorij . The
above equation shows that the spectral densities at zero
frequency also contribute to the cross-correlation rates
and their contribution disappears foruA � uX � 0 (lab
frame). The CSA of spinA contributes to the CSA–
dipole cross-correlation rated 0A;AX; which connects the
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r 0A

r 0X

r 0AX

s 0AX

0BBBBBB@

1CCCCCCA �
� 1

2 sin2 uA 1 1
3 � 8

3 sin2 uA 0

� 1
2 sin2 uX 1 1

3 � 0 8
3 sin2 uX

1
6 �4 sin2�uA 1 uX�1 cos2 uA sin2 uX 1 sin2 uA cos2 uX� 8

3 sin2 uA
8
3 sin2 uX

1
3 �2 sinuA sinuX 2 cosuA cosuX� 0 0

0BBBBBBB@

1CCCCCCCA
JAXAX�0�
JAA�0�
JXX�0�

0BB@
1CCA

1

� 1
2 sin2 uA 1 1� 2�cos2 uA 1 1� 0

� 1
2 sin2 uX 1 1� 0 2�cos2 uX 1 1�

1
2 �1 1 2 cos2�uA 1 uX�1 cos�uA 1 uX�cos�uA 2 uX�� 2�cos2 uA 1 1� 2�cos2 uX 1 1�

sinuAsinuX 0 0

0BBBBBB@

1CCCCCCA

�
JAXAX�v�
JAA�v�
JXX�v�

0BB@
1CCA1

cos2 uA 1 1 0 0

cos2 uX 1 1 0 0

�1 2 cos2 uA cos2 uX� 0 0

2 cosuA cosuX 0 0

0BBBBBB@

1CCCCCCA
JAXAX�2v�
JAA�2v�
JXX�2v�

0BB@
1CCA 1

sin2 uA 0

0 sin2 uX

sin2 uA sin2 uX

0 0

0BBBBBB@

1CCCCCCA
JA�0�
JX�0�

 !

1

1 1 cos2 uA 0

0 11 cos2 uX

1 1 cos2 uA 1 1 cos2 uX

0 0

0BBBBBB@

1CCCCCCA
JA�v�
JX�v�

 !
: (149)

d 0A;AX

d 0X;AX

 !
� 2

4
3

�2 sin2 uA cosuX 1 sinuA sinuX cosuA� 0

0 �2 sin2 uXcosuA 1 sinuA sinuX cosuX

 !
JA;AX�0�
JX;AX�0�

 !

2 2
�cos2 uA cosuX 1 cosuX 2 sinuA sinuX cosuA� 0

0 �cos2 uX cosuA 1 cosuA 2 sinuA sinuX cosuX�

 !
JA;AX�v�
JX;AX�v�

 !
�150�



single spin order of spinA to the two spin order, but not
tod 0X;AX;which connects the single spin order of spinX
to the two-spin order. Similarly, the CSA of spinX
contributes tod 0X;AX and not tod 0A;AX:

If the spin-locking field has different values at
different spins, then either a spin or a group of spins
can be selectively spin locked [296]. In the case of
homonuclear spins, this requires careful adjustment of
the frequency and the amplitude of the RF field. The
above description using the prime notation has the
dual advantage that (i) it is similar to the longitudinal
relaxation description, (ii) it can be continuously
taken from the rotating frame description to the
laboratory frame by continuous change of anglesuA

anduX. Indeed this description is completely valid for
different values ofuA anduX including selective spin
lock of different spins. Some special cases of selective
spin locking are discussed below.

5.2.1. No spin locking
This corresponds to a situation in whichuA � uX �

0: The above parameters reduce to laboratory frame
values and relaxation is purely longitudinal and Eq.
(149) reduces to the truncated Eq. (61) describing the
longitudinal relaxation ofAX spin system in the
absence of RF field [42,45].

5.2.2. Selective spin locking
When the magnetization ofA spin is selectively

spin locked, that isuA � 908 anduX � 0; then from
Eq. (149) it is seen thatIA

Z 0 � IA
X; I

X
Z 0 � IX

Z and
2IA

Z 0 I
X
Z 0 � 2IA

XIX
Z and relaxation is a mixture of long-

itudinal and transverse relaxation. Furthermore, Eqs.
(149) and (150) given above simplify, respectively, to
[211]:

r 0A

r 0X

r 0AX

s 0AX

0BBBBBB@

1CCCCCCA �
1
6

5 16 0

2 0 0

5 16 0

0 0 0

0BBBBBB@

1CCCCCCA
JAXAX�0�
JAA�0�
JXX�0�

0BB@
1CCA

1
1
2

3 4 0

2 0 8

1 4 8

0 0 0

0BBBBBB@

1CCCCCCA
JAXAX�v�
JAA�v�
JXX�v�

0BB@
1CCA

1

1 0 0

2 0 0

1 0 0

0 0 0

0BBBBBB@

1CCCCCCA
JAXAX�2v�
JAA�2v�
JXX�2v�

0BB@
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1 0

0 0

1 0

0 0
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JA�0�
JX�0�

 !

1

1 0

0 2

1 2

0 0
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and

d 0A;AX

d 0X;AX

 !
� 2

8
3

1 0

0 0

 !
JA;AX�0�
JX;AX�0�

 !

2 2
1 0

0 0

 !
JA;AX�v�
JX;AX�v�

 !
�152�

It can be seen from these equations that the cross-
relaxation rates 0AX and the cross-correlation rate
d 0X;AX are zero and only the cross-correlation rate
d 0A;AX is finite. It does not vanish even in the slow
motion limit (since JA,AX(0) contributes). Since in
this case,s 0AX � 0; the transfer of magnetization
from one spin to another is exclusively by cross-corre-
lation which can be measured accurately [211].

5.2.3. Spin locking both spins A and X
For this case,uA � uX � 908; and as seen from Eq.

(149), relaxation is purely transverse. This state is
obtained by applying a high power spin locking RF
field on both the spins. The different relaxation rates,
given by Eq. (149) reduce to:

r 0A

r 0X

r 0AX

s 0AX

0BBBBBB@

1CCCCCCA �
1
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5 16 0
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0 16 16

4 0 0
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1 0 0

1 0 0

0 0 0
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JAA�2v�
JXX�2v�

0BB@
1CCA

1

1 0

0 1

1 1

0 0

0BBBBBB@

1CCCCCCA
JA�0�
JX�0�

 !
1

1 0

0 1
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and the cross-correlation rates go to zero.9 Hence in
the rotating frame, when all the interacting spins are
spin-locked, the partial conversion ofIA

Z 0 to 2IA
Z 0 I

X
Z 0 and

vice versa is not possible. On the other hand, it has
been shown that by spin-locking all the spins along
the magic angle�uA � uX � 548440�; the contribution
of J(0) to the cross-correlation rate is maximum.
Therefore, one can choose this value for for obtaining
the maximum contribution of cross-correlation in

biomolecular NMR. Such experiments have been
carried out using double quantum filtered tilted
ROESY [192].

In the above analyses, it is assumed that theJ-
coupling is small compared to the RF field strength
and that the effective field direction and magnitude are
equal for all the transitions of a spin multiplet. The
cases where different transitions of a multiplet have
different effective field value and direction have been
treated by Bull [61].

5.3. Effect of cross-correlations for an AMX spin
system

The general case of selective spin locking of
each spin of anAMX spin system with different
angles of spin-lockuA, uM and uX is treated here
in order to study the effect of CSA–dipole and
dipole–dipole cross-correlations in the presence of
RF fields. Following the method outlined above for
the two-spin case, the equation of motion of the
longitudinal modes in the rotating frame is obtained
as:

A. Kumar et al. / Progress in Nuclear Magnetic Resonance Spectroscopy 37 (2000) 191–319276

2
d
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(154)9 The absence ofdA,AX in the case when both the spins are spin-
locked with uA � uX � 908 is in agreement with Section 3.5.2;
where also the CSA-dipole cross correlations do not come into
play, whenp pulses are applied to both the spins, decoupling the
dynamics of the gerade�2k2IZSZl; 1

2 1� and the ungerade�kIZl; kSZl�
spaces.



The various self- and cross-relaxation rates stated in
the above relaxation matrix are given by [61,211]:

where

z 0AM�0� � 1
6 �4 sin2�uA 1 uM�1 cos2 uAsin2 uM

1 sin2 uA cos2 uM�

z 0AM�v� � 1
2 �1 1 2 cos2�uA 1 uM�
1 cos�uA 1 uM�cos�uA 2 uM��

z 0AM�2v� � 1 2 cos2 uA cos2 uM (156)

The cross-correlation rates are given by:

d 0A;AM � 2 4
3 �2 sin2 uA cosuM

1 cosuA sinuA sinuM�JA;AM�0�

2 2�cos2 uA cosuM 1 cosuM

2 cosuA sinuA sinuM�JA;AM�v� �157�
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r 0A

r 0AM

r 0AMX

s 0AM

0BBBBBB@

1CCCCCCA �
1
3 1 1

2 sin2 uA
1
3 1 1

2 sin2 uA 0

z 0AM�0� 1
3 1 1

2 sinuA
1
3 1 1

2 sinuM

z 0AM�0� z 0AX�0� z 0MX�0�
1
3 �2 sinuA sinuM 2 cosuA cosuM� 0 0

0BBBBBB@

1CCCCCCA
JAMAM�0�
JAXAX�0�
JMXMX�0�

0BB@
1CCA

1

1 1 1
2 sin2 uA 1 1 1

2 sin2 uA 0

z 0AM�v� 1 1 1
2 sin2 uA 1 1 1

2 sin2 uM

z 0AM�v� z 0AX�v� z 0MX�v�
sinuAsinuM 0 0

0BBBBBB@

1CCCCCCA
JAMAM�v�
JAXAX�v�
JMXMX�v�

0BB@
1CCA

1

1 1 cos2 uA 1 1 cos2 uA 0

z 0AM�2v� 1 1 cos2 uA 1 1 cos2 uM

z 0AM�2v� z 0AX�2v� z 0MX�2v�
2 cosuA cosuM 0 0

0BBBBBB@

1CCCCCCA
JAMAM�2v�
JAXAX�2v�
JMXMX�2v�

0BB@
1CCA

1
8
3

sin2 uA 0 0

sin2 uA sin2 uM 0

sin2 uA sin2 uM sin2 uX

0 0 0

0BBBBBB@

1CCCCCCA
JAA�0�
JMM�0�
JXX�0�

0BB@
1CCA

1 2

1 1 cos2 uA 0 0

1 1 cos2 uA 1 1 cos2 uM 0

1 1 cos2 uA 1 1 cos2 uM 1 1 cos2 uX

0 0 0

0BBBBBB@

1CCCCCCA
JAA�v�
JMM�v�
JXX�v�

0BB@
1CCA �155�



d 0AMAX � 1
3 �2 sinuA cosuM 1 cosuA sinuM�
� �2 sinuA cosuX 1 cosuA sinuX�JAMAX�0�
1 �cosuM cosuX 1 cos�uA 1 uM�
� cos�uA 1 uX��JAMAX�v�

1 sinuM sinuX�1 1 cos2 uA�JAMAX�2v�
�158�

The expressions for the other auto- and cross-corre-
lation rates can be obtained by changing the
subscript indices appropriately. The effect of
various selective spin-locking experiments is
discussed in the following:

5.3.1. Case (i): whenuA � uM � uX � 0
This condition reduces the relaxation to purely

longitudinal relaxation and the expression for the
various relaxation rates reduces to the lab frame
expression given in Eqs. (63) and (64):

5.3.2. Case (ii): whenuA � 908; uM � uX � 0
This situation corresponds to a selective spin lock

of theA-spin and the other spins are unaffected by the
spin locking field. The expression for the various self-
relaxation rates given by Eq. (155), simplifies to:

r 0A

r 0AM

r 0AMX

0BB@
1CCA� 1

6

5 5 0

5 5 2

5 5 0

0BB@
1CCA

JAMAM�0�
JAXAX�0�
JMXMX�0�

0BB@
1CCA

1
1
2

3 3 0

1 3 2

1 1 4

0BB@
1CCA

JAMAM�v�
JAXAX�v�
JMXMX�v�

0BB@
1CCA 1

1 1 0

1 1 2

1 1 0

0BB@
1CCA

�
JAMAM�2v�
JAXAX�2v�
JMXMX�2v�

0BB@
1CCA 1

8
3

1 0 0

1 0 0

1 0 0

0BB@
1CCA

JAA�0�
JMM�0�
JXX�0�

0BB@
1CCA

1 2

1 0 0

1 2 0

1 2 2

0BB@
1CCA

JAA�v�
JMM�v�
JXX�v�

0BB@
1CCA: (159)

The cross-relaxation and cross-correlation rates are

given by [211]:

s 0AM � 0

d 0A;AM � 2 8
3 JA;AM�0�2 2JA;AM�v�

d 0AMAX � 4
3 JAMAX�0�1 JAMAX�v�

�160�

These equations show that while cross-relaxation
rates from the spin locked spin to non-spin-locked
spins are zero (s 0AX is also zero) the single spin-
order of the spin-locked spin, can be converted to
the two- or three-spin orders by the cross-correlation
rates at zero frequency. Thus these cross-correlation
rates can be observed even whenvtc q 1:

5.3.3. Case (iii): whenuA � uM � 908 anduX � 0
This is a situation in which the spinsA andM are

selectively spin locked, while theX-spin remains
unaffected by the spin locking field. The self-relaxa-
tion rates are given by:

r 0A

r 0AM

r 0AMX

0BB@
1CCA� 5

6

1 1 0

0 1 1

0 1 1

0BB@
1CCA

JAMAM�0�
JAXAX�0�
JMXMX�0�

0BB@
1CCA

1
1
2

3 3 0

2 3 3

2 1 1

0BB@
1CCA

JAMAM�v�
JAXAX�v�
JMXMX�v�

0BB@
1CCA1

1 1 0

1 1 1

1 1 1

0BB@
1CCA

�
JAMAM�2v�
JAXAX�2v�
JMXMX�2v�

0BB@
1CCA1

8
3

1 0 0

1 1 0

1 1 0

0BB@
1CCA

JAA�0�
JMM�0�
JXX�0�

0BB@
1CCA

1 2

1 0 0

1 1 0

1 1 2

0BB@
1CCA

JAA�v�
JMM�v�
JXX�v�

0BB@
1CCA: (161)

The cross-relaxation and cross-correlation rates are
given by:

s 0AM � 2
3 JAMAM�0�1 JAMAM�v�;

d 0A;AM � 0;

d 0AMAX � 0;

s 0AX � s 0MX � 0:

�162�
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Under a doubly selective spin-locking case, cross-
correlations involving the dipolar interactions
between the spin-locked spins, become zero. Hence
this provides a method of measuring the cross-relaxa-
tion rate (NOE) between two spins without the inter-
ference of spin diffusion as well as cross-correlation
effects.

5.3.4. Case (iv): whenuA � uM � uX � 908
Under this condition, all three interacting spins are

spin locked and the relaxation is purely transverse.
The various self-relaxation rates are given by:

r 0A

r 0AM

r 0AMX

0BB@
1CCA� 5

6

1 1 0

0 1 1

0 0 0

0BB@
1CCA

JAMAM�0�
JAXAX�0�
JMXMX�0�

0BB@
1CCA

1
1
2

3 3 0

2 3 3

2 2 2

0BB@
1CCA

JAMAM�v�
JAXAX�v�
JMXMX�v�

0BB@
1CCA 1

1 1 0

1 1 1

1 1 1

0BB@
1CCA

�
JAMAM�2v�
JAXAX�2v�
JMXMX�2v�

0BB@
1CCA 1

8
3

1 0 0

1 1 0

1 1 1

0BB@
1CCA

JAA�0�
JMM�0�
JXX�0�

0BB@
1CCA

1 2

1 0 0

1 1 0

1 1 1

0BB@
1CCA

JAA�v�
JMM�v�
JXX�v�

0BB@
1CCA: (163)

The cross-relaxation and cross-correlation rates are
given by:

s 0AM � 2
3 JAMAM�0�1 JAMAM�v�

d 0A;AM � 0

d 0AMAX � JAMAX�v�1 JAMAX�2v�:
�164�

Here, the CSA–dipole cross-correlations go to zero.
In the NOE experiment, if there is any multiplet effect,
it will be due to dipole–dipole cross-correlations.

5.4. Experimental observations

Rotating frame cross-correlations were observed
using selective spin-locking fields by Burghardt et
al. [211]. They observed the CSA–dipole cross-

correlations by selective spin locking using the pulse
sequence shown in Fig. 50(a). Transverse magnetiza-
tion I A

X is initially excited using a self-refocusing 2708,
on-resonance Gaussian pulse [303]. During the subse-
quent spin lock pulse which is applied along theX-
axis, theI A

X term may be regarded as an operatorI A
Z 0 : It

is the rotating-frame relaxation of this term, which is
of interest. This term relaxes via the CSA–dipole
cross-correlation to the two spin order term, 2I A

Z 0 I
X
Z 0

(equivalent to 2I A
X IX

Z in the lab frame). At the end of
the spin locking periodtSL, this term �2I A

X IX
Z � is

separated from the in-phase termI A
X ; by applying

two Gaussian 2708 pulses, the first at the chemical
shift VA, to convert 2I A

X IX
Z into 2I A

Z IX
Z ; and the second

at the chemical shiftVX to create 2I A
Z IX

X : The single-
spin operator terms are excluded by doing a phase
cycle on the three pulses along with the receiver.
Fig. 51 shows the experimentally observed build-up
and decay of the antiphase two-spin order in exifone
recorded with the sequence of Fig. 50(a), including a
hard purging pulse, before the spin-locking period.

Using selective pulses, the rotating frame dipole–
dipole cross-correlation rate was measured in a three
spin system using the pulse sequence shown in Fig.
50(b) [211]. Fig. 52 shows the 2D multiplets ofN-
methylleucine, the 4th residue in the cyclic undeca-
peptide cyclosporin-A, for various mixing times. Fig.
53 shows the 1D build up and decay of the three-spin
order for the same leucine that is shown in Fig. 52.
Brüschweiler et al. [210] have observed the three-spin
order using the tilted rotating frame (3QF T-ROESY)
experiment on BPTI for a spin-locking angle ofu �
358 (Fig. 54). The 3QF-NOESY spectrum is also
shown for comparison. It is seen that there are many
more cross peaks in the 3QF-T-ROESY spectrum than
the 3QF-NOESY. This is due to cross-correlation at
zero frequency showing up in the T-ROESY.

Brüschweiler et al. have also extended the selective
spin locking to a flourine–proton system, in which the
two spins are locked in orthogonal directions, naming
the experiment ortho-ROESY [304]. Cross-correla-
tions lead to an antiphase peak, the amplitude of
which is sensitive to the magnitude of the spin-locking
field, the various cross-correlations and the cor-
relation time of the molecular reorientation. From a
detailed analysis of the results of experiment on
1-fluoro-1,1,2,2-tetrachloroethane in a 1:5 mixture
with benzene-d6, it is shown that the cross peak
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Fig. 50. (a) Pulse sequence for the 1D experimental observation of CSA–dipole cross-correlation using selective spin locking. The Gaussian
pulses typically have a duration of 30 ms with a peak RF amplitude of 55 Hz to provide an on-resonance flip angle of 2708. The RF amplitude of
the spin locking field is typically 40 Hz. The RF frequencies and phases are indicated (VA implies that the pulse is applied at the chemical shift
of spin A). In the laboratory frame product operator evolution graphs, shown at the bottom of (a) and (b), the conversion ofI A

X � IA
Z 0 into

2IA
XIX

Z � 2IA
Z 0 I

X
Z 0 ; represented by a wavy arrow, is due to cross-correlation between CSA of spinA and the dipolar interaction betweenA andX.

(b) Pulse sequence for 2D spectroscopy with selective spin locking, suitable for a system with three or more spins. The Gaussian pulse in the
middle of the evolution period refocuses all the scalar couplings. In the product operator evolution graph, the wavy arrow represents the partial
conversion ofIA

Z 0 into 4IA
Z 0 I

M
Z 0 I

X
Z 0 ; due to cross-correlation between the fluctuations of theAX andAM dipolar interactions. [Reproduced with

permission from I. Burghardt, R. Konrat, G. Bodenhausen, Mol. Phys. 75 (1992) 467.]



observed in this case is largely due to cross correlated
fluctuation between the scalar coupling and the isotro-
pic chemical shift in a system undergoingtrans/
gauchereorientation. This is an extremely interesting
work, which shows by explicit theoretical and experi-
mental analysis, that time dependent correlated fluc-
tuations of isotropicJ and isotropic chemical shift can
lead to two-spin orders.

Poppe and Halbeek have observed differential
relaxation of the anomeric protons ofa- and b-
[1-13C]-d-glucose during the non-selective proton
spin-lock in proton–carbon system (ortho-ROESY
experiment) and during a selective proton spin-lock
(SLOESY experiment). The observed features in the
spectrum are due to CSA (proton) and dipolar
(1H–13C) cross-correlations. The experiments were
performed under the conditionv1tc < 1; in order to
enhance the cross-correlations [305]. Varma et al.
[306] have recently shown that in higher spin systems
�n $ 4�; if the spin-locking fields are very weak, the

residual scalar interactions can give rise to three-spin
order terms, which are difficult to distinguish from the
three spin order terms arising from dipole–dipole
cross-correlations. On the other hand, if the spin-lock-
ing fields are strong enough to make the scalar
couplings ineffective, new complications arise due
to the interaction of the RF field with the passive
spins [306].

6. Dynamic frequency shift

It has been mentioned in Section 2 that the relaxa-
tion matrixG has real and imaginary parts (Eq. (12)).
The real part gives rise to relaxation, which has been
discussed in detail, in Sections 3–5. The imaginary
part, gives rise to a small frequency shift, known as
the dynamic frequency shift (DFS). While the DFS
has been known in the literature for a long time and
was introduced in the context of the semiclassical
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Fig. 51. Experimental build-up of two-spin order in the tilted frame, 2IA
Z 0 I

X
Z 0 ; involving the two protons HA and HX in exifone, obtained with the

pulse sequence of Fig. 50(a), including a hard purging pulse. The spin locking interval was varied between 1 and 900 ms. The spectra were
recorded at 303 K with a Bruker AM-400 spectrometer equipped with a selective excitation unit, using a sample dissolved in [2H6] DMSO
without degassing. [Reproduced with permission from I. Burghardt, R. Konrat, G. Bodenhausen, Mol. Phys. 75 (1992) 467].



theory of relaxation by Abragam [1], it has gained
importance in recent years due to contributions from
cross-correlations. Both auto and cross-correlation
spectral densities contribute to DFS, but manifest in
the spectra in a different manner. Auto-correlations
contribute equal DFS to all transitions of a spin,
giving rise to a net DFS, indistinguishable from a
chemical shift and therefore difficult to establish
experimentally. Cross-correlations, on the other
hand, give rise to differential effects on various transi-
tions. In the simplest case of a doublet, the effect is
often equal and opposite on the two transitions,
making DFS indistinguishable from a change in
coupling value, and again difficult to establish experi-
mentally, except via careful measurement of the split-
ting as a function of magnetic field [307]. In the case
of a triplet or higher multiplets, which may have
unequal DFS on various transitions (arising from
cross-correlations) the symmetry of the multiplet is
broken, giving rise to unequivocal experimental
evidence of the existence of DFS. This latter type
therefore needs a minimum of three coupled spin-(1/
2) system or a spin-(1/2) coupled to spin. (1/2) and

needs resolved or partially resolved multiplets [308–
310].

It can be seen that in the case of non-overlapping
non-degenerate transitions,�uvaa0 2 vbb 0 u q Gaa 0bb 0 ;

the simple-line approximation) the summation on the
RHS of Eq. (20) reduces to only one term, namely,
Gaa 0aa 0 ; which contributes to the time evolution of the
off-diagonal elementsaa 0 ; which has a frequency
vaa 0 ; an exponential decay rateRaa 0aa 0 and a DFS
Laa 0aa 0 : However, in the limit uvA 2 vXu q
JAXqs Gaa 0bb 0 ; the coupled evolution of the twoA tran-
sitions of anAX spin system, can be written from Eq.
(12) and Eq. (21) as:

d
dt

 
s12�t�
s34�t�

!
� 2

"
i

 
v12 1 d12 0

0 v34 1 d34

!

1

 
R1212 R1234

R1234 R3434

!# 
s12�t�
s34�t�

!
:

�165�
Here use is made of the fact thatRaa 0bb 0 � Rbb 0aa 0 and
that Laa 0bb 0 is negligible, andv12 � vA 1 1

2 JAX and
v34 � vA 2 1

2 JAX and daa 0 � Laa 0aa 0 �v�: Eq. (165)
can be discussed in two limits. In the first limit, if
JAX q R1234; the contribution ofR1234 is negligible
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Fig. 53. One-dimensional multiplets of theN-methylleucine-4th
residue in cyclosporin-A, obtained with the 1D selective spin lock-
ing shown in Fig. 50(a), without the purging pulse. The spin locking
interval was varied from 20 to 750 ms. [Reproduced with permis-
sion from I. Burghardt, R. Konrat, G. Bodenhausen, Mol. Phys. 75
(1992) 467.]

Fig. 52. Two-dimensional three-quantum filtered spectra of the cyclic
undecapeptide, obtained with a selective spin lock applied to the
protons Ha and Hb of the N-methylleucine-4th residue cyclosporin-
A for the duration from 100 to 400 ms. The spectra were recorded at
303 K with a Bruker AM 400 spectrometer using a degassed solution
in CDCl3. The spectral widths are 128 and 256 Hz inv1 andv2,
respectively (only 20× 40 Hz shown). 64× 512 data points were
recorded, zero-filled to 128× 1k. A Lorentzian-to-Gaussian line-
shape transformation�LB � 21:5; GB� 0:08� was applied before
Fourier transformation. [Reproduced with permission from I.
Burghardt, R. Konrat,G. Bodenhausen, Mol. Phys. 75 (1992) 467.]
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Fig. 54. Proton NMR spectra of a 20 mM solution of basic pancreatic trypsin inhibitor in D2O at pD� 4:6 recorded with a RF field strengthgB1=2p � 6100 Hz and irradiation
effectively 14.3 ppm at lower field from the middle of the spectrum. 1024 experiments with 60 transients each were recorded. (a) 3QF NOESY (500 MHz),B1 � 0; u � 0 at 305 K.
The water resonance ridge atv2 � 4:7 ppm is plotted at a four times higher level than the rest of the spectrum. (b) 3QF T-ROESY withu � 358 (600 MHz) at 300 K. The Hb–Ha

cross peak region is shown, which also includes some other cross peaks. The water resonance was suppressed by presaturation. [Reproduced with permission from R. Brüschweiler,
C. Griesinger, R.R. Ernst, J. Am. Chem. Soc. 111 (1989) 8034.]



and each coherencev12 andv34 evolve independently
of each other by a single time constant given byR1212

or R3434. The DFS also makes a contribution to the
shift of each line. The imaginary part of auto-correla-
tion spectral densities contributes equal values tod12

andd34 while the imaginary part of cross-correlation
spectral densities makes equal and opposite contribu-
tions tod12 andd34, exactly in the mannerR1212 and
R3434 differ from each other via the real part of cross-
correlation spectral densities. This results in a modi-
fied splitting given byJ 1 �d12 2 d34�: In the limit, J
is zero, the two transitions overlap and their time
evolution gets coupled. In such a case, one can moni-
tor the time evolution of the sum�s12 1 s34� and
difference�s12 2 s34� modes. In this circumstance,
the imaginary part of cross-correlation spectral densi-
ties cancels out and the DFS is obtained only from the
imaginary part of auto-correlation term, which can at
best shift slightly the resonance frequency and is
indistinguishable from a chemical shift change. In
the intermediate case whenJ , R1234; the full
equation has to be solved and one obtains numerical
solutions [311]. Similar analysis can be carried out for
higher order spin systems. In the following, we point
out the DFS of various spin systems in the simple-line
approximation, assuming all transitions and coher-
ences to be well resolved.

Before that the functional form of the DFS and its
manifestation under various motional limits is briefly
discussed.

6.1. Functional form of the dynamic frequency shift

Following Eq. (12), K(v ), the DFS is the sine
transform of the correlation functionG(t ) and can
be written as:

Kmn�v� �
Z∞

0
Gmn�t� sin�vt� dt; �166�

whereGmn�t� is the correlation function of the lattice
part of the interactions containing both auto-correla-
tions �m � n� and cross-correlations�m ± n�: For
isotropically tumbling moleculesKmn�v� is obtained
as [64]:

Kmn�v� � 1
2

CmCn�3 cos2 xmn 2 1� vt2
c

1 1 �vtc�2
" #

�167�

where t c is the correlation time,xmn the angle
between the principal axes of the tensor interaction
m andn with Cm andCn being the constants indicating
the strength of each interaction. This should be
compared with the real part of the spectral densities
which govern the relaxation of the spin and which are
given by [58]:

Jmn�v� � 1
2

CmCn�3 cos2 xmn 2 1� tc

1 1 �vtc�2
� �

:

�168�
Eqs. (167) and (168) indicate that the real and the
imaginary parts of the spectral densities differ only
by a multiplicative factorvt c. Thus the analytical
expressions for DFS are similar to the linewidths of
the various coherences, except for the multiplicative
factor vt c and the absence of adiabatic (zero
frequency) contributions to DFS. The dependence of
these spectral densities ont c has been studied by
Fouques and Werbelow (Fig. 55) [312]. They show
that for isotropic reorientations, the DFS becomes
comparable to the linewidth forvtc < 1 and shows
up prominently. For the short correlation time limit
vtc p 1; the DFS is much smaller in magnitude
compared to the real part of the spectral densities. In
this limit, one obtains well resolved multiplets, since
the linewidths are small, but the DFS is negligible. On
the other hand, for the long correlation limitvtc q 1;
the DFS reaches a saturation value. The non-adiabatic
contributions to the linewidthJ(v ) and J(2v )
decrease, but the adiabatic contributionJ(0) increases
linearly, yielding broad lines, masking the multiplet
structure. In cases, where the adiabatic contribution to
linewidths is negligible, such as heteronuclear dipolar
interaction, the DFS becomes important in this limit,
as well. Anisotropic and internal motions, in general,
reduce the magnitude of DFS [312].

6.2. Dynamic frequency shift for various spin systems

In this section, the DFS in various spin-(1/2)
systems is discussed, within the limit of the “simple-
line approximation”, such that there are no degenerate
transitions. A special case of degenerate transitions of
three equivalent spins (A3) will also be considered.

6.2.1. Two unlike spin-1/2 system (AX)
Considering all the four single-quantum transitions
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to be well resolved, the off-diagonal elementsRaa 0bb 0

andLaa 0bb 0 have negligible influence. Under this secu-
lar approximation, the DFS follows a result which is
similar to the real part ofG given in Section 4.2.1,
except that the zero-frequency (adiabatic) contribu-
tions to the DFS are absent. Considering the relax-
ation of the spin system to be governed by the CSA
of each spin and the mutual dipolar interaction, the
frequencies of the two single-quantum transitions of
spinA can be written as:

vA 1 LA
auto^ � 1

2 JAX 1 LA
cross� �169�

whereLA
auto is obtained neglecting the adiabatic contri-

butions, as [64,314]:

2LA
auto� 1

6 KAXAX�vA 2 vX�1 1
2 KAXAX�vA�

1 KAXAX�vA 1 vX�1 2KAA�vA� �170�
and the cross-correlation contribution as:

LA
cross� 2KA;AX�vA�1 2KX;AX�vX�: �171�

The DFS for theX-spin transitions can be obtained by
interchanging the indicesA andX in the above equa-
tions. The cross-correlation contribution is identical
for both the spins, but the auto-correlation contribu-
tion is different on the two spins [307,313–316].

The double and zero quantum coherences also have

DFS but only from auto-correlation terms respectively
given by [64]:

2LDQ
AX � 1

2 �KAXAX�vA�1 KAXAX�vX��
1 2KAXAX�vA 1 vX�
1 2�KAA�vA�1 KXX�vX�� �172�

and

2LZQ
AX � 1

2 �KAXAX�vA�2 KAXAX�vX��
1 1

3 KAXAX�vA 2 vX�
1 2�KAA�vA�2 KXX�vX�� �173�

For homonuclear weakly coupled spins,vA < vX �
v; and the contribution fromKAXAX�vA 2 vX� to auto-
correlations vanishes both for SQ and ZQ cases (Eqs.
(170) and (173)).

These shifts, for single as well as for MQ coher-
ence, are typically less than 1 Hz and are difficult to
establish as arising due to DFS, since they are indis-
tinguishable from the chemical shift. However, the
change inJ value (or the doublet separation) could
be identified due to DFS by making field-dependentJ
measurement, provided CSA and dipolar interactions
are the major contributors to the relaxation and their
cross term is significant in magnitude [307].

6.2.2. Three spin-1/2 system (AMX)
For a weakly coupled heteronuclear three spin-(1/2)

system (AMX), with all three quartets well resolved
�JAM ± JAX ± JMX q linewidths), such that the
simple-line approximation holds, the DFS contribu-
tions to the four ‘A’-spin single-quantum transitions
are obtained, as [64,317]:

vaa
A � LA

auto 1 JAMX 1 2KAM 1 2KAX

vab
A � LA

auto 2 JAMX 1 2KAM 2 2KAX

vba
A � LA

auto 2 JAMX 2 2KAM 1 2KAX

vbb
A � LA

auto 1 JAMX 2 2KAM 2 2KAX:

�174�

While auto-correlations contribute identical shifts to
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Fig. 55. Plot ofJ0(0),J1(v0), J2(2v0), K1(v0) andK2(2v0) measured
in units of 4pv0/j

2 versus the reorientational correlation timet ,
measured in units ofv0. Herej is the strength of the interaction.
[Reproduced with permission from C.E.M. Fouques, L.G.
Werbelow, Can. J. Chem. 57 (1979) 2329].



all the A-spin transitions given by:

2LA
auto� 1

6 �KAMAM�vA 2 vM�1 KAXAX�vA 2 vX��
1 1

2 �KAMAM�vA�1 KAXAX�vA��
1 �KAMAM�vA 1 vM�1 KAXAX�vA 1 vX��
1 2KAA�vA�; (175)

the cross-correlations contribute differential shifts,
breaking the symmetry of the multiplets. The contri-
bution of dipole–dipole cross-correlations to DFS,
following Brüschweiler, is given by [317]:

JAMX � 2�KAMAX�vA�1 KAMMX�vM�1 KAXMX�vX��
�176�

and the CSA–dipole cross-correlation contribution is
given by (to be published):

Kij � Ki;ij �vi�1 Kj;ij �vj� �177�
All the three dipole–dipole cross-correlations
contribute equal and opposite DFS to inner and
outer transitions ofA-spin multiplet, breaking the
symmetry of the multiplet. Similarly, the CSA–dipole
cross-correlations also contribute differential shifts.

It can be shown that the contribution of the DFS to
the various spin systems can be added as a modifica-
tion to the spin Hamiltonian (to be published) and the
above result for the contributions of dipole–dipole
and CSA–dipole cross-correlations to single-quantum
transitions of spin-(1/2) system can be generalized,
into the following spin Hamiltonian:

Hcross
DFS � 4

X
i,j,k

Jijk IZiIZjIZk 1 4
X
i,j

Kij IZiIZj �178�

where [317]

Jijk � 2�Kijik �vi�1 Kijjk �vj�1 Kikjk�vk��; �179�
andKij is given by Eq. (177).

Thus, in general, the presence of cross-correlations
break the symmetry of a multiplet, leading to unequi-
vocal evidence for the existence of DFS. However, it
is possible that some CSA–dipole cross-correlations
retain the symmetry of the multiplet, while changing
the J.

6.2.3. Three identical spin-(1/2) system (A3)
All the single-quantum transitions of this spin

system are degenerate, with the eigenstates being
grouped into a quartet and two doublets belonging,
respectively, to the irreducible representationsE, A1

andA2 of the C3v symmetry group.
Werbelow has given expressions for the DFS for

the SQ transitions of the quartet manifold as well as
for the doubly degenerate manifolds. The DFS of
these degenerate transitions, in the presence of
CSA–dipole and dipole–dipole cross-correlations
are different [308,313]. WhileJ-coupling does not
lift the degeneracy of these transitions, the DFS
could. However, the simple-line approximation
would not be valid in this case.

6.3. Dynamic frequency shifts for quadrupolar nuclei

6.3.1. Spin-1 system
The DFS of the two single quantum coherences for

a system of isolatedI spins (spin-1) relaxed by intra-
molecular anisotropic shieldings and quadrupolar
interactions are given by [64]:

V1;0 � 2�2KQI �vI �1 4KQI �2vI �1 2KCSAI �vI �

1 12KQI ;CSAI �vI �� �180�

V0;21 � 2�2KQI �vI �1 4KQI �2vI �1 2KCSAI �vI �

2 12KQI ;CSAI �vI ��: �181�
The DFS difference between these two coherences:

V1;0 2 V0;21 � 2�24KQI ;CSAI �vI �� �182�
depends on the cross-correlation between quadrupolar
and CSA relaxation.

The DFS of the double quantum coherence is given
by [64]:

V1;21 � 2�4KQI �vI �1 8KQI �2vI �1 4KCSAI �vI ��:
�183�

and is dependent only on auto-correlation terms. The
relaxation rate of the double quantum coherence given
by:

�1=T2�1;21 � 4JQI �vI �1 8JQI �2vI �1 �32=3�JCSAI �0�

1 4JCSAI �vI � �184�
which has no adiabatic quadrupolar contribution. In
this case, if the extreme narrowing condition fails, the
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DFS will be larger than the homogeneous linewidth.
The maximum DFS of the double quantum coherence
is given by �3=20��e2qI QI =h�2=vI and may exceed
1 kHz for a deuteron. This suggests that for quadru-
polar nuclei, DFS of significant order to be measur-
able can be anticipated [64].

6.3.2. General case of spin I. 1
As seen in Section 6.3.1 (spinI � 1 case), the

auto-correlation contribution to the DFS can be
significant for quadrupolar nuclei. The constant
e2qQ=h for most of the quadrupolar nuclei ranges
from 0.2 to 5 MHz and the DFS from quadrupole
relaxation range from one to several kHz. This is
the main reason for the interest in DFS in quadru-
polar nuclei with subsequent observation of the
same in various systems [318–326]. It may be
noted that even in such cases the DFS will not be
pronounced in regions away from theT1 minimum,
where it will be smaller than the adiabatic linewidth
[326]. The DFS,Vm,m2n for the specific component
uml! um2 nl of the n quantum coherence for an
arbitrary spin I (either integer or half-integer) is
given by [327]:

Vm;m2n �
"

8n

I2�2I 2 1�2
#

� �� 2 I �I 1 1�1 6m�m2 n�1 2n2 1 1
4

�
�KQI �vI �1 �I �I 1 1�2 3m�m2 n�

2 n2 2 1
2 �KQI �2vI �

	
: (185)

Using the above equation, the DFS for various transi-
tions of nuclei withI , �9=2� have been tabulated and
plotted [for I � �5=2� and (3/2), Fig. 56]. This figure
clearly exemplifies the fact that the DFS reveals itself
outside the extreme narrowing regime that is in the
long correlation limit, for the cases in which the adia-
batic contributions to linewidths are absent.

The DFS due to the cross-correlation between
quadrupolar and other interactions can become promi-
nent even when there are dominant quadrupolar inter-
actions. For example, the DFS associated with the
cross-correlation between quadrupolar and CSA is

given by [64]:

Vm;m2n � 212n�2m2 n�
I �2I 2 1�

� �
KQI ;CSAI �vI �: �186�

6.4. Dynamic frequency shifts of I� 1=2 spins scalar
coupled to efficiently relaxed quadrupolar spins (S)

Efficiently relaxed quadrupolar nuclei can dissipate
single quantum coherences of coupled spin-1/2 nuclei
via scalar relaxation of the second kind [328–331].
Cross-correlation between the quadrupolar, CSA and
dipolar relaxation can result in a differential shift of
multiplet components that are comparable to the
multiplet splittings themselves. This section discusses
the effect on the line shape features of spin-1/2 nuclei
arising from the cross-correlation induced DFS from
J-coupled, efficiently relaxed quadrupolar nuclei.

The spin-1/2 line shape function:

F�v� � Re
Z∞

0
kI1�t�I2�0�lexp�2ivt� dt; �187�

is calculated from the expression [1,332]:

F�v� � Re
Xs

m�2 s

Xs

m0�2 s

�A21�v��m;m0 �188�

whereA is a �2s1 1� × �2s1 1� symmetric matrix,
with s being the spin quantum number of the quad-
rupolar spin. The matrix elements ofA are given by
[313,332]:

Am;m � i�vI 2 v 2 mJ 1 Vs;m�2 �1=T2�s;m �189�

Am;m21 � Am21;m � A2m;2m11 � A2m11;2m

� �2�s2 m1 1��s1 m��2m2 1�2s22

� �2s2 1�22�JQs�vs� �190�

Am;m22 � A2m;2m12 � Am22;m � A2m12;2m

� �2�s2 m1 1��s2 m1 2��s1 m2 1�

� �s1 m�s22�2s2 1�22�JQs�2vs� �191�
In the above,J is theI–Sscalar coupling constant, and
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vI � gI B0: The DFS is obtained as [313,332]:

Vs;m � gI

jgI j
4

s�2s2 1�
� �

�s�s1 1�2 3m2�KQS·DIS�vS�
�192�

Simulations of the13C line shape for a13C–2H spin
system for various values of the rotational correlation
time t are shown in Fig. 57 [313]. It is seen from Fig.
57 that under extreme narrowing conditions, the
expected symmetric triplet is obtained. The multiplet
structure collapses near theT1 minimum. In the slow
motion regime, the multiplet structure reappears with
a markedly noncentrosymmetric line shape. Experi-
mentally such nonsymmetric lineshapes have been
observed (Fig. 58) in13Ca triplets in an 1H–13C

correlation spectrum of monodeuterated glycine resi-
dues in a small protein,E. coli thioredoxin, in the
absence of2H decoupling [283]. The observed DFS
arises through cross-correlations between dipolar and
quadrupolar relaxation. Simulation of similar line-
shape features have been reported for various spin
systems, namely13C–11B [332], (Fig. 59), and
31P–17O [332] (Figs. 60 and 61). Figs. 60 and 61
contain simulations with varying quadrupolar
coupling and magnetic field strengths. From these
figures, it is evident that the multiplet resolution
increases at slower correlation times and/or higher
magnetic field strengths. The former in any case
depends on various other relaxation mechanisms
like dipolar interactions with other spins and CSA
contributions. These simulated patterns obtained
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Fig. 56. Plot of the quadrupole-induced dynamic frequency shiftVm,m0 measured in units of (1/T2)m,m0 for various coherences having no
adiabatic linewidth contribution. The parameterVT2 equals the DFS/halfwidth-at-halfheight ratio. Only the magnitude and not the sign of the
shift is considered. The solid curves (a) and (c) are forI � �3=2� and the dotted curves (b), (d) and (e) are forI � �5=2� spins. The various
transitions are (a)V3=2;23=2 �I � 3

2 � (b) V5=2;25=2 �I � 5
2 � (c) V1=2;21=2 �I � 3

2 � (d) V1=2;21=2 �I � 5
2 � (e) V3=2;23=2 �I � 5

2 �: [Reproduced with
permission from L.G. Werbelow, R.E. London, Conc. Magn. Reson. 8 (1996) 325].



from an appropriate blend of structural and dynamic
parameters range from highly resolved spectra with
anomalous intensity distributions and unequal peak
separations, to partially collapsed spectra showing
linewidth asymmetries arising from DFS due to
cross-correlations. The sensitivity of these lineshapes
to structural and dynamical parameters provides an
elegant way for investigating the motional character-
istics of the corresponding spin systems.

The simulations listed above carry additional
attraction because many of the recent developments
in high resolution multi-dimensional NMR methods
for the determination of structure of biomolecules
employ extensively13C, 15N and 2H labeling of the
molecules [307,332–336]. These labeled spin systems
will have fragments containing spin-1/2 spin-1 which
are directly bonded to each other and they may have a
J-coupling interaction between them. Although the
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Fig. 57. Spectral simulations of the13C spectra for the13C–2H spin grouping. The13C–2H dipole–dipole coupling constant was13.6 kHz
(rCD � 1:09 �A;

1JCD was120 Hz and quadrupole coupling constant1170 kHz, are based upon commonly accepted values. It is also assumed
that the dipolar and quadrupolar interaction are completely correlated�JQ:D�v� � { JQ�v�JD�v�} 1

2 � and the applied field strength is 11.75 T.
Simulations (A) through (F) correspond to isotropic reorientation with a correlation timet � 10 ps; 100 ps, 1 ns, 10 ns, 30 ns and 100 ns,
respectively. [Reproduced with permission from L.G. Werbelow, R.E. London, Conc. Magn. Reson. 8 (1996) 325].



J-couplings can be masked by the quadrupolar inter-
actions, there could be a residual line broadening. This
broadening could be reduced by RF irradiation in the
vicinity of the resonance of the quadrupolar nucleus.
Murali and Rao [311] have extensively studied the
lineshapes of a spin-1/2 nucleus coupled to a quadru-
polar nucleus (of spin-1) subjected to RF irradiation,
in the presence of a cross-correlation induced DFS
(Fig. 62). For the system they have considered, DFS
with respect to the spin–spin multiplet arise from the
dipole–quadrupole cross-correlation terms of the spin
�S� 1� and from the CSA–dipole cross-correlation
term of spin�I � �1=2��: This figure shows that the
DFS causes asymmetric multiplet patterns, which
collapse under RF irradiation, along with disappear-
ance of the DFS.

6.5. Experimental observations of the dynamic
frequency shifts

It has been observed that there is a considerable line
narrowing of 13Ca resonances on perdeuteration of
proteins calcineurin B [316] and thioredoxin [333].
The 2H-coupled13C multiplets in these proteins exhi-
bit asymmetrical patterns (Fig. 58), which have been

explained as due to dipole–quadrupole cross-correla-
tion induced DFS [283]. The13C spectrum of perdeut-
erated glycerol (Fig. 63) consists of a triplet for the
central methine carbon, which broadens when the
temperature is lowered from 333 K, and collapses to
a broad singlet at around 293 K, the temperature
corresponding to theT1 minimum of deuterium. On
further lowering of temperature, the lines become
narrow again, showing an asymmetric triplet between
283 and 268 K. These features have been reproduced
via simulations and ascribed to CSA–quadrupole
cross-correlation induced DFS [315].

One of the earliest observations of DFS in NMR is
by Marshall et al. [337] by a lineshape analysis of
23Na in an aqueous sodium laurate/lauric acid solu-
tion. For a spin-3/2 nuclei, the theoretical spectrum
(Fig. 64), has two transitions of different chemical
shifts and widths. The narrow component arises
from �1=2� ! 2�1=2� transition, while the broad
component arises from�3=2� ! �1=2� and 2�1=2� !
2�3=2� transitions. The chemical shift is due to differ-
ent DFS. Marshall et al. [337] observed that the asym-
metry in the composite peak in Fig. 64 is difficult to
establish experimentally since it cannot be distin-
guished from a small phase misadjustment and
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Fig. 58. Upper trace: F1 slice of a2H-coupled2H–13C HSQC spectrum of [2–2HR,2–13C] glycine enrichedE. coli thioredoxin drawn through
the Gly-74 resonance. Lower trace: The corresponding F1 slice obtained using broad-band2H decoupling (attenuated six-fold relative to the2H-
coupled spectrum). These spectra were obtained at 14.1 T under conditions corresponding to a 8.1 ns correlation time. [Reproduced with
permission from R.E. London, D.M. LeMaster, L.G. Werbelow, J. Am. Chem. Soc. 116 (1994) 8400.]



could be overlooked. They have used the extraordin-
ary sensitivity of the dispersion vs. absorption
(DISPA) plot, to highlight deviations from a Lorent-
zian line shape, substantiating the existence of two
chemically shifted peaks. The DISPA plot of the
23Na spectrum of ordinary NaCl in D2O [Fig. 65(a)]
is reflective of a near Lorentzian shape. On the other
hand, the DISPA plot for the sodium ion spectrum in a

laurate/lauric acid mixture [Fig. 65(b)] deviates
significantly from Lorentzian shape, yielding an
asymmetric composite peak, establishing the DFS.

Tromp et al. [318] have shown that the observation
and quantification of the DFS by an analysis of line-
shape can be complemented by the calculation of the
shift from the field dependent relaxation rates. The
lineshape analysis is done for23Na in an isotropic
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Fig. 59. Spectral simulations of the13C spectra for a directly bonded boron nucleus. The11B–13C dipole–dipole coupling constant
(gCgBr23

CB"=2p � 12:55 kHz), 1JBC scalar coupling constant (160 Hz) and quadrupole coupling constant, (e2qQs=h� 11 MHz) are based
upon literature values. The assumed field strength is 11.75 T. It is assumed that the dipolar and quadrupolar interactions are completely
correlated. Shielding anisotropies are assumed to be negligible. Simulations (A)–(F) correspond to isotropic reorientation withtc � 10 ps;
100 ps, 1 ns, 30 ns and 100 ns, respectively. [Reproduced with permission from L.G. Werbelow, G. Pouzard, J. Phys. Chem. 85 (1981) 3887.]



medium of crosslinked aqueous NaPSS (sodium poly-
styrene sulfonate) in which the sodium relaxation is
far from the extreme narrowing limit. They have also
systematically observed the field dependence of the
DFS. The measurement of the DFS for single quantum
coherences has been difficult since the shifts are
comparable to the linewidths. However, inI � �3=2�
systems, it has been theoretically shown that the DFS
for triple quantum coherence can be larger than its
linewidth, allowing clear observation of DFS [338].
Eliav et al. [339,340] have presented the experimental
observation of a triple quantum DFS in solution.
The DFS was measured on the triple quantum spec-
trum of 23Na in 4,7,13,16,21-pentaoxa-1,10-diazabi-

cyclo[8.8.5] tricosane, dissolved in glycerol. The
relaxation times of the triple quantum coherence
and the triple quantum DFS were measured by the
2D pulse sequence, 908–t /2–1808–t /2–908–t1–
908–t2 (acq). They have observed that the DFS is
larger at the lower temperature where the decay rate
is smaller. Recently another interesting experimental
observation of DFS is the13C triplet of doubly
labeledd-glucose complexed toE. coli periplasmic
glucose/galactose receptor, and it is shown that an
asymmetrical triplet can arise due to DFS from
cross-correlation between the13C–2H dipolar inter-
action and the quadrupolar relaxation of deuterium
(Fig. 66) [341].
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Fig. 60. Spectral simulations of the31P spectra for a directly bonded oxygen-17 nucleus. The17O–31P dipole–dipole coupling constant
(gPgOr23

PO"=2p � 2:0 kHz), and1JPO scalar coupling constant (200 Hz) are typical. The applied field strength is taken as 11.75 T. It is assumed
that the dipolar and quadrupolar interaction are completely correlated {JQ:D�v� � �JQ�v�JD�v��1=2} and motions are isotropic with a correlation
time of 30 ns. Shielding anisotropies are assumed negligible. Simulations (A)–(D) correspond to quadrupole couplings,e2qQs=h of 11,12,13
and15 MHz, respectively. [Reproduced with permission from L.G. Werbelow, G. Pouzard, J. Phys. Chem. 85 (1981) 3887.]



7. Other recent developments

Cross-correlations have gained significant interest
in recent years with the advent of high-field spectro-
meters. At the high fields produced by superconduct-
ing magnets, the CSA has increased proportionally
and its cross-correlation with dipolar interactions
has become routinely observable. A large number of
studies are directed towards DLB and narrowing
produced by cross-correlations in single as well as
multiple quantum coherences in13C, 15N, 2H labeled
biomolecules. Major attention is focused on spectral
densities at zero frequencies, which increase in value
for large molecules in the long correlation limit.
Furthermore, the large CSA tensors of13C and 15N
at high fields are contributing significantly to cross-
correlations with dipolar relaxation. Recently, there
have been several observations of cross-correlations
from Curie relaxation in paramagnetic proteins, at

high fields. Some of the recent experimental results
are discussed in the following sections.

7.1. Cross-correlations in paramagnetic molecules

Cross-correlation between dipole–dipole relaxa-
tion and paramagnetic relaxation can play an impor-
tant role in paramagnetic proteins [342,343].
Anomalous cross peaks have been observed in
the COSY spectra of metalloproteins containing
paramagnetic species and they were attributed to
cross-correlation between the interproton dipole–
dipole interaction and the Curie spin relaxation
(CSR) (Fig. 67) [344]. These cross peaks in COSY
spectra in the absence of scalar coupling arise from
cross-correlation induced coherence transfer and can
be distinguished from scalar coupling cross peaks by
their phase with respect to the diagonal. While similar
relaxation-induced cross peaks have been reported
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Fig. 61. Spectral simulations of the31P spectra for a directly bonded17O nucleus. An isotropic correlation time of 100 ns is assumed. Other
relevant parameters are as indicated in Fig. 60. For (A)e2qQs=h� 13 MHz; B0 � 11:75 T; for (B) e2qQs=h� 13 MHz; B0 � 17:60 T; for (C)
e2qQs=h� 15 MHz; B0 � 11:75 T; for (D) e2qQs=h� 15 MHz; B0 � 17:60 T: [Reproduced with permission from L.G. Werbelow, G.
Pouzard, J. Phys. Chem. 85 (1981) 3887.].



due to other cross-correlations, they can be quite
pronounced for paramagnetic compounds even when
the NMR signals are broad. Hence the report of COSY
cross peaks even for linewidths as large as 500–
1000 Hz should be taken as a caveat.

Bertini et al. have shown that CSR is often the
dominant source of proton line broadening in para-

magnetic macromolecules and it effectively acts as a
CSA relaxation mechanism [345–348]. The CSR
mechanism is due to the dipolar coupling of each
nucleus with the time-averaged electron magnetic
moment induced by the external magnetic field. It
may be noted that like CSA, the CSR also increases
with the magnetic field and becomes quite prominent
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Fig. 62. Simulated13C spectra of a13C–2H spin system with the dynamic frequency shifts arising from the quadrupole–dipole cross-correlation
included. The spectra were plotted as a function of�v0I 2 v�=J: The parameters used in the simulation areJ=2p�13C–2H� � 22 Hz; tc � 20 ns;
e2qQ� 1:1 × 106 s21 and the proton Larmor frequency was set at 600 MHz. The irradiation amplitudesnr � vr =2p in (a) 0, (b) 11, (c) 22, (d)
50, (e) 100, (f) 150, (g) 500 and (h) 1000 Hz. Note that the vertical scales are not the same in all the figures. [Reproduced with permission from
N. Murali, B.D.N. Rao, J. Magn. Reson. A 118 (1996) 202.]



at high magnetic fields. They also found that although
cross-correlation effects are the largest when the CSR
and dipolar interactions are nearly equal, they remain
significant upto a ratio of 100. They have critically
surveyed the literature reporting the observation of
COSY cross peaks in paramagnetic metalloproteins
and found that the ratio of the relaxation-induced
effect to the scalar effect could be as high as 700.
True scalar cross peaks may be expected for small
metalloproteins, if the electron spin multiplicity is
small and the scalar coupling constant is large. It
may be noted that the relaxation-induced peaks are a
rich source of structural and geometric information.

Maler et al. have investigated the influence of para-

magnetic cross-correlation effects on the longitudinal
relaxation of small molecules, such ascis-chlor-
oacrylic acid in solution in the presence of Ni21 ions
with the two olefinic protons constituting an isolated
AX spin system [349]. Differential relaxation was
observed in the presence of nickel ions due to cross-
correlations between dipole–dipole and CSR [349]. In
an interesting study, it is shown that the change ofJ
due to cross-correlation induced DFS between CSR
and dipole–dipole relaxation can interfere with the
change in splittings due to small residual dipolar
couplings arising from slight orientations of paramag-
netic proteins in high field [350]. This study points out
that these should be carefully discriminated. In
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Fig. 63.13C natural abundance spectrum of glycerol-d8 at various temperatures at a magnetic field strength corresponding to a 600 MHz proton
Larmor frequency. (A) Complete spectrum at 333 K. (B) Spectral region of the methine triplet in the temperature range from 333 to 258 K.
Spectra were recorded with the spectrometer in the unlocked mode; therefore the reference frequency is arbitrary. A total of 32 transients were
recorded per spectrum. [Reproduced with permission from S. Grzesiek, Ad Bax, J. Am. Chem. Soc. 116 (1994) 10196.]



another recent study of uniformly15N-labeled cyto-
chrome C3, the relative linewidths of the doublet
peaks of the15N-coupled imido proton of the coordi-
nated imidazole group were reversed on oxidation
(Fig. 68) [351]. This inversion has been explained
by the interference between the electron–proton dipo-
lar and 15N–1H dipolar interactions. Such an effect
can be used to assign the imido protons of the coordi-
nated imidazole groups in heme proteins. The elec-
tron–proton dipolar cross-correlation is thus another
source of structural information in the investigation of
paramagnetic proteins [352–354].

7.2. Determination of chemical shift anisotropy

The CSA of various nuclei in peptides has been
determined with the help of solid-state NMR techni-
ques [355–357]. In solution, by measuring the CSA–
dipole cross-correlation rate one can determine the
CSA. Recently, many groups have measured the
15N, 13C and1H CSA in several proteins by monitor-
ing the differential relaxation of the spin multiplets.

7.2.1.15N CSA measurements
Dalvit [358] demonstrated the feasibility of transfer

of polarization from1H to 15N arising from cross-
correlation between the proton CSA and proton–nitro-
gen dipolar relaxation mechanisms in a fully15N
labeled protein. The proton magnetization was initi-
ally spin locked during which the single spin order of
the protonIX was partially converted into 2IXSZ via the
CSA(1H)–dipole(1H–15N) cross-correlation, which
was detected in a 2D HSQC experiment. A large
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Fig. 64. Energy-level diagram (right) and single-quantum NMR
spectrum (left) for a spin-(3/2) nucleus with rotational correlation
time tc � 1:2=v0 � 15 ns for23Na at 7.0 T. The narrow component
line arises from the2(1/2) to (1/2) transition and the broad compo-
nent from the1(1/2) to 1(3/2) and2(3/2) to 2(1/2) transitions.
Note the distinct chemical shift difference between the broad and
the narrow transitions. [Reproduced with permission from A.G.
Marshall, T. Cottrell, L.G. Werbelow, J. Am. Chem. Soc. 104
(1982) 7665.]

Fig. 65. (a) Experimental23Na NMR spectrum and its correspond-
ing DISPA plot for 1.0 M NaCl in D2O, obtained from Fourier
transformation of an unapodized 4096-point time-domain data set
at a spectrometer frequency of 79.388 MHz, with a 908 excitation
pulse (44ms), for one cycle of an 8-pulse phase-alternating
sequence. The close fit of the experimental data to the DISPA
reference circle indicates a near-perfect Lorentzian line shape. (b)
Experimental23Na NMR spectrum and its corresponding DISPA
plot (left) for 120 mM NaCl, 20 mM sodium laurate and 5 mM
lauric acid in aqueous (15% D2O) solution. The sample was
milky white, with a sodium laurate concentration of about twice
the critical micelle concentration for 0.1 M NaCl solutions of
sodium laurate. Detection was as in (a), except for a 208 excitation
pulse width. The experimental DISPA plot (left) closely matches
with that computed forv0tc � 5:6 (right). [Reproduced with
permission from A.G. Marshall, T. Cottrell, L.G. Werbelow, J.
Am. Chem. Soc. 104 (1982) 7665.]



number of cross peaks with varying intensity, indica-
tive of variation in the magnitude and direction of the
CSA tensor with respect to the dipolar axis, were
observed.

Tjandra et al. [239] measured the15N CSA tensor in
uniformly 15N-enriched human ubiquitin utilizing the
cross-correlation between the15N-CSA and 15N–1H
dipolar relaxation. The experiment is essentially a
HSQC (15N–1H correlation) experiment, with a
relaxation period 2D inserted before the15N evolution
period during which the CSA–dipole cross-correla-
tion converts the antiphase15N magnetization into
inphase 15N magnetization. Two spectra were
recorded: one in which the operator terms arising
from 15N CSA–dipole cross-correlation terms are
selected (experiment A) and a reference experiment
(B) in which they are suppressed (by combined use of
additional pulses on the proton channel and
gradients). The intensity ratio of the cross peaks in
the two experiments has been shown to follow the
relation:

IA

IB
� tanh�2DdI ;IS�; �193�

where d I,IS is the CSA–dipole cross-correlation in

which I � 15N and S� 1H: Significant variation in
the intensities of the peaks as a function of residue
number was observed. These were then reduced using
a local order parameter toCSAred� S2�sk 2
s'�P2�cosu� whereu is the angle between the prin-
cipal axis of the CSA tensor and the dipolar vector,S2

is the generalized order parameter [359] andDs �
�sk 2 s'� is the CSA anisotropy. The variation in
observed intensity thus could be due to a variation
in any of these parameters. The observed CSAred/S2

shows a good correlation with the observed isotropic
15N chemical shift, indicating that the sum of the most
shielded CSA tensor components is largely invariant
to structural changes.

7.2.2.1H CSA measurements
Tjandra and Bax have also measured the amide

proton CSA in15N-enriched ubiquitin and perdeuter-
ated HIV-1-protease, by modifying the pulse scheme
in two different ways [240]. In the first method, the
relaxation delay 2D is incorporated in the proton
evolution before transfer of magnetization to15N,
followed by a normal HSQC, experiment and as
before a reference experiment is obtained by incorpor-
ating ap pulse on15N during the periodD . The ratio

A. Kumar et al. / Progress in Nuclear Magnetic Resonance Spectroscopy 37 (2000) 191–319 297

Fig. 66. Simulation of the observed13C triplet arising from its coupling to deuterium of D-[1-13C, 1-2H] glucose complexed withE. coli
periplasmic glucose/galactose receptor. A, D and G are the experimental spectra, recorded respectively at 5, 15 and 258C and at 125 MHz. B, E
and H are the corresponding simulated spectra. C, F and I show the overlaps confirming the DFS arising from the cross-correlation between the
13C–2H dipolar interaction and the deuteron quadrupolar relaxation, in these systems. For other details see Ref. [341]. [Reproduced with
permission from S.A. Gabel, L.A. Luck, L.G. Werbelow, R.E. London, J. Magn. Reson. 128 (1997) 101.]



of the intensities follow the same hyperbolic tangent
dependence as in Eq. (193). In a second experiment,
they have utilized the constant time evolution period
and expanded it to a 3D experiment. The advantage is
that instead of running two experiments, with and
without cross-correlations, one resolves the15N-
coupled proton doublet in theF1 dimension, the15N
chemical shift inF2, and the1H chemical shift inF3.
The ratio of the intensity of the components of the
proton doublet is given by:

I1

I2
� exp�24TdS;IS�; �194�

where dS,IS is the proton (S) CSA and IS is the
proton–nitrogen dipolar interaction. The measured
proton CSA is found to be large inb-sheets and

considerably smaller ina-helices. This has been
correlated with the length of the hydrogen bond,
which is longer in helices compared tob-sheet in
these proteins (Fig. 69).

Tessari et al. [241] have also measured the amide
proton CSA in 15N-labeled proteins using modified
constant time HSQC experiments. The pulse schemes
are shown in Fig. 70. The constant relaxation period is
inserted in 15N evolution after INEPT transfer of
polarization from proton to15N in scheme A, in
which the15N-CSA, 15N–1H dipolar cross-correlation
plays the role. In scheme B, the constant relaxation
period is inserted before polarization transfer to15N,
such that the1H-CSA, 1H–15N dipolar cross-correla-
tion is active. The remaining part of the sequence is
the same as the HSQC experiment. In each case, two
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Fig. 67. Downfield region of the 360 MHz phase-sensitive COSY spectrum of horseradish peroxidase in D2O at pH 7.0 and 558C. The nearly
absorptive antiphase cross peak between the well-resolved 7-Ha and 7-Ha 0 resonances shows the predominance of the cross-correlation effect
between interproton dipolar relaxation and Curie spin relaxation (CSR). The slight asymmetry of the cross peak is due to non-negligibleJ-
coupling effects. The diagonal peak is phased to be positive, and positive and negative components of the cross-peak multiplet are marked “1 ”
and “2 ”, respectively. Cross peaks between His170–CbH and -CbH 0 and between 6-Ha and 6-Ha 0 of the heme are distorted due to their
proximity to the approximately 50 times more intense diagonal resonances. [Reproduced with permission from J. Qin, F. Delaglio, G.N. La
Mar, A. Bax, J. Magn. Reson. B 102 (1993) 332.]



spectra are recorded: one in which the CSA–dipole
cross-correlations are retained and a reference
experiment in which they are suppressed. The ratio
of the intensity of a peak in these two experiments
yields:

ln
Icross

Iref
� 4Ddi;ij ; �195�

wherei is the CSA of the selected spin of experiment
A or B. This linear dependence of the intensity ratio
on D andd i,ij is prone to less errors than the hyper-
bolic tangent dependence of Eq. (193). They found
significant variation indH,HN as a function of residue
number and much less variation fordN,NH. The results

from 15N studies indicate a globular, well-structured,
isotropic tumbling protein, displaying similar
dynamics for most residues. On the other hand, the
1H CSA–dipole cross-correlation rate depends upon
the CSA of the amide proton and also on the mobility
of the H–N bond vector, which gives rise to the
variation indH,HN.

7.2.3.13Ca CSA measurements
Recently Tjandra and Bax have also measured the

13Ca CSA in 13C, 15N uniformly doubly labeled
proteins, by monitoring the differential relaxation
of the 13Ca–{ 1H} doublet, due to cross-correlation
between the13Ca CSA and 13Ca–1Ha dipolar relax-
ation [360]. The methodology followed is identical
to the 15N CSA measurement outlined above, except
that here the INEPT polarization transfer is first to
13Ca carbon using selective carbon Ca pulses.
During the constant Ca relaxation periodD , the
carbonyl carbons (C0) are decoupled by using a
selective 1808 pulse in the middle of theD period.
Furthermore, during 13Ca evolution period, the
protons are decoupled by Waltz decoupling. The
13Ca coherence is further transferred to15N and a
15N–1H HSQC spectrum is obtained in which the
intensity of the cross peak in spectrum A
is dependent on the13Ca CSA, 13Ca–1Ha dipolar
cross-correlation and in the reference spectrum B,
the cross-correlation is suppressed by the use of a
1808 proton pulse applied appropriately during the
D period. As before, the intensity ratio in the two
experiments is given by Eq. (193). In a 3D version
theD period also includes frequency labeling of the
13Ca, with the central 1808 pulse on13Ca moving in
concert witht1. In the 3D version the relative inten-
sity of the 13Ca–{ 1Ha} doublet components are
measured, which equals exp(24Dd I,IS). Both the
experiments were applied to samples of uniformly
enriched 13C, 15N-ubiquitin and calmodulin
complexed to a 26 residue unlabeled peptide frag-
ment (M13) of skeletal muscle myosin light chain
kinase. Large variations in13Ca CSA were observed
which correlates well with the various secondary
structure elements. For example,s k–s' for 13Ca

in b-sheets is obtained as 27:1^ 4:3 ppm; while
for a-helices it was found to be 6:1^ 4:9 ppm
[360].
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Fig. 68. Proton NMR spectra of the imidazole imido proton of His-
52 of uniformly 15N-labeled cytochrome C3 from Desulfovibrio
vulgaris Miyazaki F in the fully reduced (A) and fully oxidized
(B) states. HMQC spectra were obtained with a Bruker AMX-
500 MHz NMR spectrometer at 308C. The protein was dissolved
in a 20 mM phosphate buffer (90%1H2O/10%2H2O), at (A) pH 7.0
and (B) pH 5.0. Partial slices for the proton dimension are presented.
[Reproduced with permission from T. Ohmura, E. Harada, T. Fuji-
wara, G. Kawai, K. Watanabe, H. Akutsu, J. Magn. Reson. 131
(1998) 367.]
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Fig. 69. HN CSA calculated from the quantitative cross-correlation experiments, as a function of residue number for ubiquitin. The secondary
structure of ubiquitin is marked at the top (solid arrow:b-sheet; small pitch coil:a-helix; large pitch coil: 310-helix). The CSA tensor is assumed
to be axially symmetric with its unique axis collinear with the N–H bond direction. [Reproduced with permission from N. Tjandra, A. Bax, J.
Am. Chem. Soc. 119 (1997) 8076.]

Fig. 70. Pulse sequence for quantitative measurement of (A)15N CSA–dipole cross-correlations and (B)1HN CSA–dipole cross-correlations.
Narrow and wide bars denote pulses with a 908 and 1808 flip angle, respectively. For both experiments, two variations of the pulse scheme are
recorded selecting for magnetization arising from CSA–dipole pathways and a reference. For the reference experiment, the delays were chosen
as indicated in the dashed boxes and the phasef6 (A) or f3 (B) was changed. All pulsed-field gradients (PFG) had a sine-bell shape and were
applied along theZ-axis. [Reproduced with permission from M. Tessari, F.A.A. Mudler, R. Boelens, G.W. Vuister, J. Magn. Reson. 127 (1997)
128.]



7.3. Isolation of relaxation pathways by linear
combination of various modes

7.3.1. Longitudinal modes
Norwood et al. have utilized the idea of coadding

the relaxation rates of various modes such that the
relaxation of the sum is dependent only on the mutual
dipolar relaxation of the two spins, free from all other
relaxations, external to the two spins [361–363]. For
longitudinal relaxation, this is shown by taking a
three-spin systemAMX [361]. The sumrA 1 rM 2
rAM yields [see also Eq. (63)]:

rA 1 rM 2 rAM � � 2
3 JAMAM�vA 2 vM�1 4JAMAM�vA 1 vM��

�196�
This sum is only dependent on the mutual dipolar
interaction between the two spins and is independent
of all other auto and cross-correlation terms. RatesrA,
rM can be directly measured using selective inversion
of A andM spins, under the initial rate approximation.
rAM can be measured using the sequence 908x�A�–D–
908y�A�–t–908f14�A;M�2 908f1�A;M�–Acq�fR�: The
transverse magnetization ofA�IA

y � evolves into anti-
phase�2IA

x IM
z � duringD and is converted into two-spin

longitudinal order �2IA
z IM

z � by the second 908y�A�
pulse, which decays duringt and is measured using
a double quantum filter with appropriate phase cycle
[361].

Dipolar relaxation of the three-spin systems can
also be isolated from the rest of the spin by the follow-
ing linear combinations [362] (see also Eq. (63)):

rA 1 rM 1 rX 2 rAMX� � 1
3 JAMAM�vA 2 vM�

1 2JAMAM�vA 1 vM��1 � 1
3 JAXAX�vA 2 vX�

1 2JAXAX�vA 1 vX��1 � 2
3 JMXMX�vM 2 vX�

1 2JMXMX�vM 1 vX��
or

rAM 1 rX 2 rAMX� 1 � 1
3 JAXAX�vA 2 vX�

1 2JAXAX�vA 1 vX��1 � 2
3 JMXMX�vM 2 vX�

1 2JMXMX�vM 1 vX�� �197�
Both these linear combinations isolate the mutual
relaxation of a set of three spins, free of all cross-

correlations. However, while the first depends on all
the three dipolar interactions, the later depends only
on two of the dipolar interactions and is preferred.

7.3.2. Transverse modes
Isolation of relaxation pathways can also be

achieved by linear combination of transverse relaxa-
tion rates. For example, considering again the weakly
coupled three-spin systemAMX, one can monitor the
relaxation rates of the sum modes of SQC, ZQC and
DQC [362]. The following linear combination isolates
the dipolar relaxation between spinsA andM:

2�r�1�A1 1 r�1�M1 �2 r�0�2A2M2 2 r�2�2A1M1

� � 4
3 JAMAM�0�1 1

6 JAMAM�vA 2 vM�1 JAMAM�vA�
1 JAMAM�vM�1 JAMAM�vA 1 vM�� �198�

wherer�1�A1 is the self-relaxation rate of the sum mode
of SQCs of spinA, r�0�A1M2 that of the ZQCs ofA andM
spins, andr�2�A1M1 that of the DQCs [362]. This linear
combination is again free of all cross-correlations.
Another combination which exclusively depends on
the dipole–dipole cross-correlation between the three
spins, is given by:

r�0�2A2M1 1 r�2�2A1M1 1 r�2�2M1X1 2 r�3�2A1M1X1 2 r�1�A1 2 r�1�M1 2 r�1�X1

� � 2
3 JAMAX�0�1 1

2 JAMAX�vA���3 cos2 uAM;AX 2 1�=2

1 � 2
3 JAMMX�0�1 1

2 JAMMX�vM���3 cos2 uAM;MX 2 1�=2

1 � 2
3 JAXMX�0�1 1

2 JAXMX�vX���3 cos2 uAX;MX 2 1�=2:
�199�

Excitation of multiple quantum coherences requires
resolved couplings between the pair of involved
spins. In such a circumstance, the measurement of
ZQC, SQC and DQC sum modes presents practical
problems and has to be done by taking into account
the J-coupling evolution [362].

7.3.3. Combination of longitudinal and transverse
modes

In Eqs. (198) and (199), only the decay rates of the
inphase transverse modes were considered. If the
decay rate of antiphase transverse moder2A1Mz

is
also measured, one can combine longitudinal and
transverse mode relaxation rates in the following
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manner:

rA1 1 rMz
2 r2A1Mz

� � 1
6 JAMAM�vA 2 vM�

1 JAMAM�vM�1 JAMAM�vA 1 vM��: �200�
This rate is also free of other dipolar interactions as
well as cross-correlations.

Experimental pulse schemes have been given for
measuring the above rates [361–363].

7.4. Dipole–dipole cross-correlations in13CH2 and
13CH3 spin systems

Recently heteronuclear dipole–dipole cross-corre-
lations which couple carbon single-spin-order (Sz) to
carbon–proton three-spin-order (4SzIz1Iz2) in 13CH2

and 13CH3 spin systems have been utilized to charac-
terize the side chain motion in biopolymers [364]. The
technique has been applied to the cyclic decapeptide
antamanide and to the protein human ubiquitin. This
rate depends on the modulation details of the cross
terms betweenSI1 and SI2 dipolar interactions. The

experimental data has, therefore, been compared
with various motional models. The 1D experiments
have been carried out using the pulse scheme of Fig.
71(a) and the 2D ROESY experiments using the pulse
scheme of Fig. 71(b). Suppression of undesired terms
at the beginning and the end of the mixing period is
essential to monitor the small cross-correlation rates.
In this case, the pathways�0� / k4SzIz1Iz2l!
s�m� / kSzl has been utilized.

Fig. 72 shows the 1D spectra obtained using the
scheme of Fig. 71(a) on13C labeled antamanide
dissolved in (a) chloroform atT � 280 K and (b) acet-
one atT � 310 K: The viscosity of chloroform,h �
0:651 cP at 280 K while for acetone,h � 0:285 cP at
310 K. Using Stoke’s relation, the correlation times
for isotropic reorientation are in the ratio [364]:

tc�chloroform at 280 K�
tc�acetone at 310 K� � 2:6 �201�

Fig. 72 reveals that there are three classes of signals.
(i) The Val-1 and Ala-4 methyl group signals are
negative in (a) and positive in (b). (ii) The13CH2
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Fig. 71. Pulse sequences to measure the cross-relaxation rate constantG4SzI1zI2z;Sz
: (a) 1D version in the laboratory frame with a INEPT

preparation sequence to generate the initial 4SzI1zI2z and (b) 2D version in the rotating frame, optimized for the observation of CH2 groups.
The delays used areD1 � 1=�4JCH� andD2 � 1=�8JCH� for CH2 groups andD2 � 1=�4JCH� for CH3 groups. [Reproduced with permission from
M. Ernst, R.R. Ernst, J. Magn. Reson. A 110 (1994) 202.]



signals are negative in both for the CgH2 of Pro-2 and
Pro-7, but rather weak in (b). (iii) Signals which are
positive in both (for all the remaining residues).
From these data and measuredT1 values of Ca reso-
nances, upper and lower bounds have been obtained
for the correlation times of internal motion for these
residues.

Using 13C-labeled ubiquitin the 2D experiment has
been carried out with the pulse scheme of Fig. 71(b).
Most of the cross peaks for the13CH2 are positive
except for 13CbH2 in Ser-57, 13CgH2 in Pro-37 and
13CgH2,

13CdH2 and 13C1H2 in Lysine residue at 6,
11, 29, 33, 48 and 63 positions. The positive cross-
peaks of13CH2 groups indicate slow rotation about
thex1 angle with a correlation timeti < 1:3 ns: The

negative cross peak for Pro-g indicates fast pucker-
ing motion with a large amplitude. The negative
cross peaks of lysine side chains indicate a rapid
and virtually unrestricted motion of these residues
[364].

7.5. Combined use of transverse and longitudinal
cross-correlations

Several groups have suggested measurement of
longitudinal and transverse cross-correlation rates in
independent experiments, on the same sample, to
obtain motional parameters independent of structural
attributes. The procedure is to measure the CSA–
dipole cross-correlation rateh xy for transfer of
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Fig. 72.k4SZI1ZI2Zl! kSZl cross-relaxation13C spectra for fully13C-labeled antamanide (a) in chloroform atT � 280 K and in (b) in acetone
atT � 310 K; for six different mixing timestm. The spectra have been recorded at 150.8 MHz13C resonance frequency with the pulse sequence
of Fig. 71(a) in the laboratory frame. The visible multiplet structure is due to13C–13C J-coupling interactions. The chemical shift refers to
d�TMS� � 0 ppm: [Reproduced with permission from M. Ernst, R.R. Ernst, J. Magn. Reson. A 110 (1994) 202.]



inphase transverse magnetizationkSXl (or kSYl) to
antiphase coherencek2IZSXl (or k2IZSYl). The same
CSA–dipole cross-correlation is also responsible for
cross relaxation between longitudinal orderskSZl and
k2IZSZl with rate constanth z. These rates for CSA–
dipole cross-correlation in a two-spin system are
given by [365]:

hz � 24cdP2�cosu�J�vS�
hxy � 2 2

3 cdP2�cosu��4J�0�1 3J�vS��
�202�

Here c� �gSB0DsS�=�
���
30
p �; d � � ��

3
p

m0"gIgS�=
�4pr3

IS

���
10
p � and cdP2�cosu�J�vS� � JS;IS�vS� (Eq.

(42)). These expressions can be obtained from Eqs.

(64) and (107), as well as being given in Eq. (A8). It is
noted that whileh xy depends on bothJ(0) andJ(vS),
h z depends only onJ(vS). The ratesh xy andh z have
been measured by using the following experiments.
The rateh xy is measured using the pulse scheme of
Fig. 73(a). The proton magnetization�kIZl� is trans-
ferred to 15N by an INEPT transfer ask2IZSYl (or
k2NYHZl), which evolves during thet period and is
converted tokSYl (or kNYl) by the cross-correlation
rateh xy. The 1808 15N pulse in the middle oft refo-
cuses chemical shift andJ-coupling evolutions, as
well as averages the auto relaxation rates of the
inphase and antiphase coherences. Ift � n=J; then
the effective evolution during the relaxation period
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Fig. 73. Pulse sequences for the measurement of (a) transverseh xy and (b) longitudinalh z
1H–15N dipolar/15N CSA relaxation interference

effects. Narrow and wide bars correspond to 908 and 1808 pulses, respectively. Solid bars represent rectangular pulses, while open bars
correspond to composite�908x–908y�908 and composite�908y–1808x–908y�1808 pulses. All pulses are applied with phasex unless specified
otherwise. Delay durations areD � 2:67 ms andd � 0:75 ms: Two experiments are performed for each value of the relaxation periodt . In the
first experiment, the composite1H 908 pulse, designated by the narrow open bar is included,ta � D and tb � D 1 t1=2: In the second
experiment, the composite 908 pulse is absent,ta � D 1 t1=2 andtb � t1=2: [Reproduced with permission from C.D. Kroenke, J.P. Loria,
L.K. Lee, M. Rance, A.G. Palmer III, J. Am. Chem. Soc. 120 (1998) 7905.]



t is given by:

d
dt

kSYl�t�
k2IZSYl�t�

 !
� 2

R2 hxy

hxy R2

0@ 1A kSYl�t�
k2IZSYl�t�

 !
�203�

in whichR2 � �R2 1 R2IS�=2; whereR2 andR2IS are the
self-relaxation rates ofkSYl andk2IZSYl; respectively.
Two experiments are performed in which after thet
period, eitherkSYl or k2IZSYl are selectively detected
and the ratios of the intensities of these two experi-
ments yields:

IA

IB
� tanh�hxyt� �204�

An experiment has also been designed to measure
h z by an analogous method of Fig. 73(b), which
averages the relaxation rates ofkSZl and k2IZSZl:
During this experiment, the cross relaxation (NOE)
betweenkSZl and kIZl as well as cross-correlation
betweenkIZl and k2IZSZl are suppressed, retaining
exclusively the cross-correlationh z between kSZl
and k2IZSZl: As shown in Fig. 73(b), the proton
magnetizationkIZl is converted via an INEPT trans-
fer into the two-spin orderk2IZSZl prior to the
relaxation periodt . The composite15N 1808 pulse
in the middle of thet period suppresses the cross-
correlation between the1H CSA and1H–15N dipolar
interactions. This reduces the 3× 3 rate equation
between kSZl, kIZl and k2IZSZl into a 2× 2 [Eq.
(A11)] containing only kSZl and k2IZSZl; with h z

as the rate constant between them. Further averaging
in the self-relaxation rates ofkSZl; R1 and k2IZSZl;
R1IS is achieved by a series of pulses, represented by
a transformationU, mid-way between each half of
the t period. The rate equation describing the time
evolution of the longitudinal one and two spin order
in analogy with Eq. (203) is then given by:

d
dt

kSZl�t�
k2IZSZl�t�

 !
� 2

R1 hz

hz R1

 !
kSZl�t�

k2IZSZl�t�

 !
�205�

whereR1 � �R1S 1 R1IS�=2 andR1S� rS and R1IS �
rIS of Eq. (63). Two experiments are again carried
out; experiment A monitors the decay of the two-
spin order and experiment B the transfer of two-spin
order to single-spin order via the cross-correlation.

The ratio of these two intensities is obtained as:

IB

IA
� tanh�hzt�: �206�

The ratio of the transverse and longitudinal cross-
correlations thus obtained, is given by:

hxy

hz
� 4J�0�1 3J�vS�

6J�vS� ; �207�

and is independent of the principal values and orien-
tations of the CSA tensors and is sensitive only to
internal and overall motions that contribute to dipo-
lar and CSA relaxation mechanisms. Kroenke et al.
measured the15N–1H dipolar and 15N CSA cross-
correlations in2H, 15N enriched RNaseH [365]. The
same ratio (Eq. (207)) has been utilized by Kojima
et al. [366], to obtain the ratio between the spectral
densities at zero and atvS as:

J�0�
J�vS� �

3
4

2
hxy

hz
2 1

� �
�208�

They have monitored the13C–1H dipolar and 13C
CSA cross-correlation in13C–1H doublets of C8–
H8 and C2–H2 in a DNA decamer duplex with
purine randomly13C enriched to 15%. The spectral
density at zero frequencyJ(0) is independent of
chemical exchange effects. With limited internal
motions, the ratio also enables an accurate evalua-
tion of the correlation time for overall molecular
tumbling as well as the anisotropic rotational diffu-
sion tensor. Application of these techniques for
investigating dynamics in biomolecules have been
demonstrated [365,366].

Fushman and Cowburn [367] have also suggested a
method, which combines the transverse self-relaxa-
tion rate R2 of 15N and the cross-correlation rate
(h xy), between15N–1H dipolar and15N CSA. Extend-
ing the works of Tjandra et al. [239] and Tessari et al.
[241], they observed that the spectral densities respon-
sible for these rates have some common features,
which can be further exploited. For example they
note thatR2 for 15N is given by:

R2 � 1
2 �d2 1 c2��4J�0�1 3J�vN��1 PHF 1 Rex

�209�
wherePHF contains the high frequency contributions
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to R2 and is given by:

PHF � 1
2 d2�J�vH 2 vN�1 6J�vH�1 6J�vH 1 vN��

�210�
and Rex corresponds to a conformational exchange
contribution if any. (HerevN and vH are Larmor
frequencies of15N and 1H, respectively). Eq. (209)
can be obtained from Eq. (107), except forRex. For
high-field spectrometers,vHtc q 1 andPHF is often
negligible. Further assumingRex to be negligible,
R2 < �1=2��d2 1 c2��4J�0�1 3J�vN��:

Fushman and Cowburn further note that, since the
cross-correlation rate (h xy) between15N–1H dipolar
and 15N CSA for transverse relaxation, given by Eq.
(202) andR2 given above contain exactly the same
combination of spectral densities, the ratio,
�hxy=R2� < �2dc=�d2 1 c2��P2�cosu�: Since hxy=R2

does not contain any direct dependence on spectral
densities, this ratio provides a basis for a direct,
model independent determination of15N CSA from
experimentally measured parameters, without explicit
knowledge of the microdynamic parameters and with-
out any assumption about the model of overall motion
[367]. Published15N relaxation data on human ubiqui-
tin [239,360] have been analyzed using the above
argument. It is found that (i) the ratiohxy=R2 values
lie within 0.7–0.8 for various residues. This variation
is likely due to deviations inu , variations in CSA
values and/or to experimental errors. The solid state
NMR studies have indicated CSA of15N to be
< 2160 ppm andu < 20–248: A statistical analysis
of the above ubiquitin data indicates that CSA is
< 2170 ppm andu lies between 10 and 258 [368].

7.6. TROSY: transverse relaxation optimized
spectroscopy

The DLB (which can also be appropriately called
differential line narrowing) due to CSA–dipole
cross-correlations has recently been shown to lead to
a significant narrowing of one of the lines of aJ-split
multiplet in 2D correlation experiment, which in turn
leads to improved signal to noise ratio of the sharp
peak and hence its detectability [369].

At high magnetic fields, the CSA relaxation of1H,
13C and15N in enriched proteins, forms a significant
source of relaxation along with dipole–dipole relax-
ation. This leads to an overall increase in the trans-

verse relaxation rate. The transverse relaxation of
amide protons has been successfully reduced by
large-scale deuteration of non-labile protons. In
such circumstances, the DLB effect arising from
CSA–dipole cross-correlation leads to further
narrowing of one of the components of the15N–1H
fragment of the peptide bond. Theoretical calcula-
tions indicate that for proteins of size.25 kDa, at
proton frequencies near 1 GHz, almost complete
cancellation of all transverse relaxation within a
15N–1H moity can be achieved for one of the four
multiplet components in a15N–1H correlation experi-
ment [369]. TROSY observes exclusively the narrow
component for which the residual linewidth is
entirely due to dipolar relaxation with remote protons
in the protein. This protocol increases significantly
the size of biomolecules that can be studied by multi-
dimensional NMR. TROSY has been discussed in
detail [369–371], with further improvements inS=N
ratio by utilization of steady-state magnetization as
well as echo–antiecho pathways [372,373]. The
method has also been applied to13C–1H system
[374–376]. The main features of TROSY are
explained in the following. Details are contained in
the above references.

TROSY (Fig. 74) is basically a heteronuclear
correlation experiment, in which the proton magne-
tization is first transferred to15N (or 13C) which
evolves duringt1 period (with differential relaxation
rate of the 15N doublet due to CSA(15N)–dipole
(15N–1H) cross-correlation) and transferred back to
proton with detection duringt2, again with differen-
tial line broadening of the proton doublet due to
CSA(1H)–dipole (1H–15N) cross-correlation. The
resulting heteronuclear cross peak (Fig. 75) is a
multiplet of four peaks each having different widths,
in thev1 andv2 dimensions. One of the cross-peak
components is narrow and the other broad in both
dimensions with the remaining two peaks being
broad in one and narrow in the other dimension.
The ST2-PT step in Fig. 74 has been introduced
to effect single-transition to single-transition
polarization transfer (ST2-PT) which adds up the
magnetization of various quadrants of the 2D
experiment, canceling out all but the narrowest
component.

The experiment starts with a 908 pulse on proton
and transferring this magnetization to15N(13C). The
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density matrix at points (a) and (b) in Fig. 74 are given
by [371]:

s�a� � 2IY

s�b� � 2I ZSX � IZS2 1 IZS1

� IZ�S1
12 1 S1

34�1 IZ�S2
12 1 S2

34�
�211�

The time evolution of these single-quantum coher-
ences is given by:

wherev I andvS are the Larmor frequencies of the
spinsI andS, T2S andT1I are the transverse relaxation
time of spinSand longitudinal relaxation time of spin
I, respectively, and

p� 1

2
��
2
p gIgS"

r3
IS

dS� 1

3
��
2
p gSBoDsS

dI � 1

3
��
2
p gI BoDs I :

�213�

R1212andR3434are the transverse relaxation rates of the
individual components of theS doublet (following
Eqs. (103) and (107)) given by [370]:

R1212� � p 2 dS�2�4J�0�1 3J�vS��1 p2�J�vI 2 vS�

1 3J�vI �1 6J�vI 1 vS��1 3d2
I J�vI �

R3434� � p 1 dS�2�4J�0�1 3J�vS��1 p2�J�vI 2 vS�

1 3J�vI �1 6J�vI 1 vS��1 3d2
I J�vI �

�214�
Here the principal axis of the CSA tensor of inter-
nuclear dipole vectors are assumed to be collinear.
For 15N, the dominant mechanisms are CSA and dipo-
lar interactions, with the attached proton whereas,T2S

andT1Sare determined by dipolar interactions with the
other protons as well.

Under the simple-line approximation, whenS12 and
S34 are well resolved, the off-diagonal elements of Eq.
(212) can be neglected and the two coherences evolve
independently with their transverse relaxation rate
difference given by:

R1212 2 R3434� 2pdS�4J�0�1 3J�vS�� �215�
In thev2 dimension, the linewidth difference is given
by:

R1313 2 R2424� 2pdI �4J�0�1 3J�vI �� �216�
Fig. 76 shows the cross-sections taken at the various
positions of the 2D spectra. This clearly shows that
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1
2T1I
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1
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0B@
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Fig. 74. Pulse sequence for 2D [1H, 15N]-TROSY using single tran-
sition to single transition polarization transfer (box identified with
ST2-PT). Narrow and wide bars represent non-selective 908 and
1808 RF pulses, respectively. The delayt � 2:7 ms: PFG indicates
the pulsed magnetic field gradients applied along thez-axis: G1,
amplitude 30 G/cm, duration 1 ms;G2, 40 G/cm, 1 ms;G3, 48 G/
cm, 1 ms;GN, 260 G/cm, 0.75 ms;GH, 60 G/cm, 0.076 ms. The
phase cycle used was:c1 � �y;2x�; c2 � �2y�; c3 � y; c4 �
�2y�; cR � �y;2x�; x on all other pulses. To obtain a complex
interferogram, a second FID is recorded for eacht1 delay, withc1 �
�y; x�; c2 � y; c3 � �2y�; c4 � y; and GN inverted. The use of
ST2-PT thus results in a 2D[1H, 15N]-correlation spectrum that
contains only the most slowly relaxing component of the 2D
15N–1H multiplet. Water saturation is minimized by keeping the
water magnetization along the1z-axis during the entire experiment,
which is achieved by the application of the water-selective 908 RF
pulses indicated by the curved shapes on the line1H. The use of the
gradientsGN andGH (broken lines) allows the recording of the pure
phase absorption spectrum without any cycling of the pulse phases.
[Reproduced with permission from K.V. Pervushin, G. Wider, K.
Wüthrich, J. Biomol. NMR 12 (1998) 345.]
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Fig. 75. Contour plots of15N, 1H correlation spectra showing the indole15N–1H spin system of Trp-48 recorded in a 2 mM solution of
uniformly 15N labeledfushi tarazu(ftz) homeodomain complexed with an unlabeled 14-bp DNA duplex in 90% H2O/5% 2H2O at 48C, pH�
6:0; measured at the proton frequency of 750 MHz. (a) Conventional broadband decoupled [15N,1H] COSY spectrum. The evolution caused by
J(1H,15N) scalar coupling was refocused in thev1 andv2 dimensions by a 1808 proton pulse in the middle of the15N evolution int1 and by
WALTZ composite pulse decoupling on15N during data acquisition, respectively. (b) Conventional [15N,1H] COSY spectrum recorded without
decoupling duringt1 andt2. (c) TROSY-type [15N,1H] correlation spectrum recorded with the pulse sequence of Fig. 74. Chemical shifts relative
to DSS in ppm and shifts in Hz relative to the center of the multiplet are indicated in both dimensions. The arrows identify the locations of the
cross-sections shown in Fig. 76. [Reproduced with permission from K.V. Pervushin, R. Riek, G. Wider, K. Wu¨thrich, Proc. Natl. Acad. Sci.
USA, 94 (1998) 12366.]



one of the components is narrower in both dimensions
than the decoupled line and exclusively observed after
ST2-PT step (Fig. 76c). TheS=N ratio of the narrow
component further increases by a factor

��
2
p

on
coaddition of echo–antiecho parts [371] and further
more by 10–15% by addition of the equilibrium15N
magnetization [370].

The sensitivity gain of TROSY has been
exploited for mapping the binding surface of chaper-
one FimC (a protein of 23 kDa) for the adhesin
FimH (28 kDa). The conventional spectrum of the
51 kDa complex gave a few, very broad, almost
undetectable signals. The15N-labeled FimC and
unlabeled FimH complex, gave many signals in

correlation spectra, but still all cross peaks were
not present. Perdeuteration of FimC except at
amide positions, dramatically improved the situa-
tion. Further improvement was achieved by using
TROSY. The TROSY type15N–1H correlation spec-
trum of 15N/2H labeled FimC in free state and
complexed with unlabeled FimH, yielded TROSY
spectra with narrow peaks for all the15N in the
protein, many of which show significant chemical
shift changes near the binding sites (Fig. 77)
[377]. This demonstrates a methodology not achiev-
able for complexes of this size with conventional
methods. Similar improvements have also been
reported for 13C–1H system in a 13C labeled
18 kDa protein cyclophilin [374,375]. Here it is
shown that for the aromatic carbon the CSA(13C)–
dipole(13C–1H) cross-correlation narrows one of the
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Fig. 76. Cross-sections through the spectra of Fig. 75 (solid lines).
To facilitate a comparison of the linewidths in the different spectra
the cross-sections were normalized to the same maximal signal
amplitude. (a1), (a2) etc. refer to the arrows in Fig. 75. Simulated
line shapes (dashed lines in (a) and (b)) were calculated using
J�1H;

15N� � 2105 Hz; tc � 20 ns; chemical shift anisotropies of
DsH � 216 ppm; DsN � 2160 ppm: For 1HN, the relaxation due
to dipolar coupling with the other protons in the nondeuterated
complex was approximated by three protons placed at a distance
of 0.24 nm from 1HN. [Reproduced with permission from K.V.
Pervushin, R. Riek, G. Wider and K. Wu¨thrich, Proc. Natl. Acad.
Sci. USA, 94 (1998) 12366.]

Fig. 77. (a) TROSY-type15N& 1H correlation spectra (recorded on a
Bruker DRX-750 MHz spectrometer) of uncomplexed15N/2H
labeled FimC (left spectrum) and of15N/2H labeled FimC
complexed with unlabeled FimH (right spectrum). Both samples
contained 0.4 mM of15N/2H-labeled FimC, pH 5.0 in 90% H2O,
10% D2O. A slight excess of FimH was used in the complex to
ensure that FimC was fully bound. Both spectra were measured at
388C. The panel (c) shows an expanded view of the superposition of
the spectra in (a) and (b). In (c), the cross peaks are labeled with
their corresponding amino acid number and the cross peaks that
have shifted in the complex by a large amount are linked to their
nearest neighbor by a line. [Reproduced with permission from M.
Pellecchia, P. Sebbel, U. Hermanns, K. Wu¨thrich, R. Glockshuber,
Nature, Structural Biology 6 (1999) 336.]



13C doublet component considerably. The optimum
effect is observable in the1H resonance frequency
range of 600–800 MHz and leads to a sensitivity
gain by a factor of 10. Several groups have reported
TROSY enhancement and given further improve-
ments/variations in the TROSY scheme [378–385].

Recently several groups have reported direct
evidence of the existence of hydrogen bonds in15N-
labeled oligonucleotides and15N–13C labeled proteins
by NMR, utilizing the sensitivity gain and line-
narrowing features of TROSY [386–391].

7.7. Cross-correlation under magic angle spinning

Chung and Oldfield reported the presence of CSA–
dipole cross-correlation effects in the nuclear spin
relaxation of polymers under magic angle sample
spinning [392]. Differential relaxation was observed
in proton-coupled13C MAS inversion-recovery spec-
tra for the methine C–H spin groups in poly(cis-
isoprene). Further experiments have substantiated
the presence of temporal cross-correlations between
the 13C–H dipolar and13C CSA interactions in the
spin–lattice relaxation rates of olefinic and methine
carbons in polymeric species [393].

8. Experiments that avoid cross-correlations

There have been several techniques and experimen-
tal methodologies proposed to suppress cross-correla-
tion effects. In longitudinal relaxation, the multiplet
effects can be suppressed easily in homonuclear spin
systems, by the use of a non-selective 908 measuring
pulse. In heteronuclear spins, 908 pulses would be
needed on two or more spins to suppress the multiplet
effect. The net effects can be avoided by the use of
short mixing times as they are second order in time.
This pertains only to NOE measurements and not to
inversion-recoveryT1 measurements where the use of
long mixing times is unavoidable. In general, unlike
the multiplet effects, the net effects persist in all the
experiments and are difficult to suppress.

Boyd et al. have used the idea that avoiding the
creation of multi-spin orders can suppress cross-corre-
lation effects inT1 measurements of a spin, which can
be achieved if all the other relaxation-coupled spins
are selectively saturated during the relaxation recov-
ery period [394]. This has been used in measuring15N

T1 in 15N–1H systems with proton broad-band
decoupling, which essentially causes saturation of
proton magnetization, during the recovery period.
Kay et al. have come up with pulse sequences for
removal of cross-correlation effects on the measure-
ment of heteronuclearT1 and T2 values in proteins
[395]. Cross-correlation effects onT1 can be removed
by applying 1H 1808 pulses during the time allowed
for longitudinal relaxation at a rate at least five times
faster than the decay rate of the fastest decaying multi-
plet component. Alternative pulse schemes are also
suggested that involve1H saturation or1H decoupling
during the time allowed for longitudinal relaxation,
which is similar to the approach used by Boyd et al.
[394].

The cross-correlation effects onT2 can also be
removed by the use of a series of 1808 pulses applied
selectively toJ-coupled spin. The rapid 1808 pulsing
interchanges the labels of the spin states of the two
transitions which otherwise relax with differentT2 due
to cross-correlations if they areJ resolved, which
relax with an average rate devoid of cross-correla-
tions. These ideas have been used to measure15N T1

andT2 for uniformly 15N-labeled SNase [390]. Broad-
band decoupling was shown to be effective in remov-
ing the cross-correlation effects inT2 measurements
by Palmer et al. [396]. They have shown that applica-
tion of a 1808 pulse to the protons attached to the
heteronucleus synchronously with every second
echo of the heteronuclear spin, efficiently eliminates
the effects of cross-correlations. Composite pulse
decoupling of the protons during the CPMG sequence
and application of a single 1808 pulse to the protons at
the midpoint of the CPMG sequence are not very
effective in removing the cross-correlation effects
[396].

As it has been discussed in detail in Sections 5.2
and 5.3, selective spin lock of a particular spin, in a
group of coupled spins makes the CSA–dipole cross-
correlation rate zero and hence can be thought of as a
way of suppressing cross-correlations. Also the
experiment proposed by Levitt and Di Bari, discussed
in Section 3.5.2, can also isolate relaxation pathways
removing certain cross-correlations. For example, if
1808 pulses are applied on all the relaxation-coupled
spins, then the even and odd order modes have
different symmetry, avoiding cross-correlations
which couple them [214,215].
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9. Conclusions

Cross-correlations affect the longitudinal relaxation
including NOE via spectral densities at the Larmor
frequency. They affect transverse relaxation via spec-
tral densities at zero frequency as well. Therefore, in
biomolecular studies the most significant observation
of cross-correlations are the differential transverse
relaxation or differential line broadening/narrowing
of various single- and multiple-quantum coherences.
Some of these effects of cross-correlations have been
utilized for obtaining additional information on struc-
tures and dihedral angles of the biomolecules. The
differential line broadening which narrows one of
the components of the multiplet has been utilized
for increasing the resolution andS=N ratio leading to
enhancing the sizes of the biomolecules that can be
studied by NMR. Recently, several applications of the
enhanced resolution and sensitivity arising out of
transverse cross-correlations have been demonstrated.
In future, cross-correlations will therefore continue to
play a dominant role in biomolecular NMR.
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Appendix A. Operator formalism for relaxation

The expectation values of any operatorQ is given
by Tr{s (t)Q}. Using the equation of motion of the
density matrix (Eq. (8)), the time evolution of the
expectation value of any operator is obtained as
[1,238]:

dkQl
dt
� 2

1
2

Z1 ∞

2 ∞
Tr{ ��Q;H 0 p�t��;

H 0p�t 2 t���s p 2 s0�} dt �A1�

The trace in the integral on the RHS is a difference of
expectation values of the type:

k��Q;H 0p�0��;H 0p�t��l 2 k��Q;H 0 p�0��;H 0 p�t��leq

In order to calculate the time evolution of the expec-
tation value of any observable, one needs to calculate
the commutators of various operators with the relaxa-
tion Hamiltonians and there is no need either to make
any assumption about the form of the density matrix
during the evolution of the system, or to calculate
explicitly the variation of its matrix elements. The
evolution of any desired physical quantity is obtained
by proper choice of the operatorQ. When considering
a spin operator,Ia �a � x; y; z�; we treat its projection
on the subspace ofSz � 1�1=2� and2(1/2) (for a two-
spin system; can be easily extended to higher order
systems) as:

I �1�a � Ia� 1
2 1 Sz� I �2�a � Ia� 1

2 2 Sz� �A2�
It is often more convenient to calculate the expec-
tation values of linear combination:

Ia � I �1�a 1 I �2�a

2IaSz � I �1�a 2 I �2�a

�A3�

For a two-spin systemIS, considering relaxation via
CSA of spinsI and mutual dipolar interaction, the rate
equation for the longitudinal relaxation is given by

A. Kumar et al. / Progress in Nuclear Magnetic Resonance Spectroscopy 37 (2000) 191–319 311



[238]:

d
dt

kIzl

kSzl

k2IzSzl

0BB@
1CCA � 2

A1 E1 B1

E1 A01 B01

B1 B01 C1

0BB@
1CCA·

kIz 2 2I0l

kSz 2 2S0l

k2IzSzl

0BB@
1CCA
�A4�

where

A1 � Dtc

(
6�1 1 a2�
1 1 v2

I t
2
c

1
2

1 1 �vI 2 vS�2t2
c

1
12

1 1 �vI 1 vS�2t2
c

)

B1 � Dtc

(
12a

1 1 v2
I t

2
c

)

E1 � Dtc

(
12

1 1 �vI 1 vS�2t2
c

2
2

1 1 �vI 2 vS�2t2
c

)

C1 � Dtc

(
6�1 1 a2�
1 1 v2

I t
2
c

1
6

1 1 v2
St

2
c

)

A01 � Dtc

(
6

1 1 v2
St

2
c

1
2

1 1 �vI 2 vS�2t2
c

1
12

1 1 �vI 1 vS�2t2
c

)
(A5)

with D � �1=4p�d2 � �1=20��m0=4p�2g2
I g

2
S"2r26 and

a � 2�2=3�H�sk 2 s'�r3
=�gS"�: Eq. (A4), is identi-

cal to a reduced Eq. (61) for a two-spin system, with
A1 � rI � rA; A01 � rS� rM ; E1 � sIS � sAM; B1 �
dI ;IS � dA;AM; B01 � dS;IS � dM;AM � 0 and C1 �
rIS � rAM:

Similarly for transverse relaxation, one obtains the
rate equation as:

d
dt

kI1l

k2I1Szl

 !
� 2

A2 B2

B2 C2

 !
·

kI1l

k2I1Szl

 !
�A6�

which is formally identical to Eq. (105), withA2 �
�1=2��D1 1 D2�1 C; B2 � �1=2��D1 2 D2� and C2 �
�1=2��D1 1 D2�2 C: Eq. (A6) can be transformed into

expectation values of single transition operator
equation as:

d
dt

I �1�1

I �2�1

0@ 1A

� 2
1�iJ=2�1 l 1 h m

m 2�iJ=2�1 l 2 h

 !
I �1�1

I �2�1

0@ 1A
�A7�

This equation is equivalent to Eq. (103), withD1 �
l 1 h; D2 � l 2 h andC � m: Here it is noticed that
both l andm contain only auto-correlation spectral
densities whileh gives the cross-correlation spectral
densities.

Kroenke et al. have recently rewritten the expres-
sions for various constants in the above formalism
without defininga as the ratio between CSA and
dipolar magnitudes [365]. The cross-correlation in
longitudinal and transverse relaxation have been
unified into a single notation ash z andh x,y. The equa-
tion of motion for transverse relaxation is given by:

d
dt

kSyl�t�
k2IzSyl�t�

 !
� 2

R2 hxy

hxy R2

0@ 1A kSyl�t�
k2IzSyl�t�

 !
�A8�

where R2 � �R2 1 R2IS�=2; and for longitudinal
relaxation is given by:

d
dt

kSzl�t�
k2IzSzl�t�

 !
�

R1 hz

hz R1IS

 !
kSzl�t�

k2IzSzl�t�

 !
�A9�

with the I spin evolution decoupled. The above equa-
tion has been written assuming that, the contribution
from equilibrium I and S magnetization have been
removed by subtracting pairs of experiments in
which, the sign ofI0 and S0 are altered, that the
small effect of I spin dynamics is removed by
inverting all S spin operators at time�t=2� (only the
ungerade space dynamics is included in the above).
Furthermore, it is assumed that one is dealing with a
two-spin system, since all the other spins (protons)
have been removed by deuteration. In Eqs. (A8) and
(A9), the cross-correlation spectral densities are given
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by:

hz � 24cdP2�cosu�J�vS�
hxy � 2 2

3 cdP2�cosu��4J�0�1 3J�vS��
�A10�

where c� �gSB0DsS�=
���
30
p

; d � � ��
3
p

m0"gIgS�=
�4pr3

IS

���
10
p �; u is the angle between the principal

axis of the CSA tensor and the dipolar vector and
cdP2�cosu�J�vS� � JS;IS�vS�: The auto-correlation
spectral densities are given by:

R1 � rS� �d2
=4��3J�vS�1 J�vI 2 vS�

1 6J�vI 1 vS��1 c2J�vS�

R2 � 1
2 �D1 1 D2� � �d2

=8��4J�0�1 3J�vS�
1 J�vI 2 vS�1 6J�vI �

1 6J�vI 1 vS��1 �c2
=6��4J�0�

1 3J�vN��1 Rex

R1IS � s IS � �d2
=4��3J�vS�1 3J�vI ��

1 c2J�vS�1 R1I

R2IS � C � �d2
=8��4J�0�1 3J�vS�1 J�vI 2 vS�

1 6J�vI 1 vS��

1 �c2
=6��4J�0�1 3J�vS��1 Rex 1 R1I ;

�A11�
whereRex represents the additive effect of chemical
exchange line broadening andR1I is the longitudinal
relaxation rate constant resulting from dipolar inter-
actions between the amide1HN(I) spin and other
remote protons that are near in space.

Experiments have been designed to monitor the
time evolution of kSx;yl; k2Sx;yIzl; kSzl and k2IzSzl
operators directly, rather than the conventional obser-
vables, such asI �1�a andI �2�a : The selective observation
of I �1�a andI �2�a requires well-resolved multiplets. Rapid
interconversion ofI �1�a andI �2�a by appropriately placed
p pulses allows the monitoring ofkIal and k2IaSzl
operators.

Goldman in the first part of the paper [238] assumes
that the principal axis of the axially symmetric CSA
tensor is parallel to the internuclear dipolar vector. He

then introduces an angle between the two, showing
that auto-correlation terms involving CSA do not
depend on the angle and only the cross terms between
the CSA and dipolar relaxation are to be multiplied by
a factor�3 cos2 u 2 1�=2; yielding the spectral density
as outlined by Eq. (A8). In the next part of the paper,
Goldman considers the case of non-axial CSA tensors
such that the principal values are all different, with the
following Hamiltonian:

HCS� gI �sx0Hx0 Ix0 1 sy0Hy0 Iy0 1 sz0Hz0 Iz0 � �A12�

whereOx0y0z0 represents the molecule fixed principal-
axes frame of the CSA tensor, withz0 being the prin-
cipal axis. The laboratory frame is represented by
OXYZwith u 0 being the angle betweenOZ and Oz0

andf 0 being the angle betweenOXand the projection
of Oz0 on the planeOXY. The isotropic part ofHCS is
given by:

HCSI � 1
3 gI �sx0 1 sy0 1 sz0 �H·I �A13�

However, it is only the anisotropic part which contri-
butes to relaxation and can be expressed as the sum of
two axially symmetric anisotropic chemical shift
tensors as:

HCSA �H�1�
CSA 1 H�2�

CSA �A14�

with

H�1�
CSA � 1

3 gI �sx0 2 sz0 ��2Hx0 Ix0 2 Hy0 Iy0 2 Hz0 Iz0 �

H�2�
CSA � 1

3 gI �sy0 2 sz0 ��2Hy0 Iy0 2 Hx0 Ix0 2 Hz0 Iz0 �
�A15�

There are cross terms betweenHDD and each of the
H�1�

CSA andH�2�
CSA. The cross terms between these two

CSA tensors (the angle between them beingp=2)
affects both the transitions of theI spin equally,
since these terms do not depend onSz. By analogy
with the expression fora , Goldman defines the
cross-correlation in this case as:

a1 � 2�2=3�H�sx0 2 sz0 �r3
=�gS"�

a2 � 2�2=3�H�sy0 2 sz0 �r3
=�gS"�

�A16�

In the auto-correlation expression given byA1 andC1
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in Eq. (A5),a 2 is then replaced by

�a2
1 1 a2

2 2 a1a2� � �4H2r6
=9g2

S"3��s 2
x0 1 s 2

y0 1 s 2
z0

2 sx0sy0 2 sy0sz0 2 sz0sx0 �;
and in the cross-correlation termB1 (Eq. (A5)),a is
replaced by

1
2 �a1�3cos2ux0z 2 1�1 a2�3cos2uy0z 2 1��:
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[210] R. Brüschweiler, C. Griesinger, R.R. Ernst, J. Am. Chem.

Soc. 111 (1989) 8034.
[211] I. Burghardt, R. Konrat, G. Bodenhausen, Mol. Phys. 75

(1992) 467.
[212] B. Boulat, R. Konrat, I. Burghardt, G. Bodenhausen, J. Am.

Chem. Soc. 114 (1992) 5412.
[213] G. Jaccard, S. Wimperis, G. Bodenhausen, Chem. Phys. Lett.

138 (1987) 601.
[214] M.H. Levitt, L. Di Bari, Phys. Rev. Lett. 69 (1992) 3124.
[215] M.H. Levitt, L. Di Bari, Bull. Magn. Reson. 16 (1994) 94.
[216] J. Jeener, Adv. Magn. Reson. 10 (1982) 1.
[217] E.L. Mackor, C. MacLean, J. Chem. Phys. 42 (1965) 4254.
[218] C. MacLean, E.L. Mackor, J. Chem. Phys. 44 (1966) 2708.
[219] E.L. Mackor, C. MacLean, Prog. NMR Spectrosc. 3 (1967)

129.
[220] P.M. Runnels, Phys. Rev. 132 (1963) 27.
[221] J.M. Anderson, Mol. Phys. 8 (1964) 505.

A. Kumar et al. / Progress in Nuclear Magnetic Resonance Spectroscopy 37 (2000) 191–319316



[222] S. Wimperis, G. Bodenhausen, Chem. Phys. Lett. 140 (1987)
41.

[223] S. Wimperis, G. Bodenhausen, Mol. Phys. 66 (1989) 897.
[224] S.G. Withers, N.B. Matsen, B.D. Sykes, J. Mag. Reson. 61

(1985) 545.
[225] J. Boyd, U. Hommel, V.V. Krishnan, Chem. Phys. Lett. 187

(1991) 317.
[226] F.A.L. Anet, J. Am. Chem. Soc. 108 (1986) 7102.
[227] R. Konrat, H. Sterk, Chem. Phys. Lett. 203 (1993) 75.
[228] R.R. Vold, R.L. Vold, J. Chem. Phys. 64 (1976) 320.
[229] J.H. Prestegard, D.M. Grant, J. Am. Chem. Soc. 100 (1978)

4664.
[230] L.E. Kay, T.E. Bull, J. Magn. Reson. 99 (1992) 615.
[231] L.G. Werbelow, A.G. Marshall, Chem. Phys. Lett. 22 (1973)

568.
[232] P. Kumar, A. Kumar, J. Magn. Reson. A 115 (1995) 155.
[233] P. Kumar, A. Kumar, J. Magn. Reson. A 119 (1996) 29.
[234] P. Kumar, Cross-correlation studies in relaxation of coupled

spins in NMR, PhD thesis, Indian Institute of Science,
Bangalore, 1996.

[235] A. Wokaun, R.R. Ernst, Mol. Phys. 36 (1978) 317.
[236] L.G. Werbelow, D.M. Grant, J. Magn. Reson. 20 (1975)

554.
[237] N. Müller, G. Bodenhausen, R.R. Ernst, J. Magn. Reson. 75

(1987) 297.
[238] M. Goldman, J. Magn. Reson. 60 (1984) 437.
[239] N. Tjandra, A. Szabo, Ad Bax, J. Am. Chem. Soc. 118 (1996)

6986.
[240] N. Tjandra, Ad Bax, J. Am. Chem. Soc. 119 (1997) 8076.
[241] M. Tessari, F.A.A. Mudler, R. Boelens, G.W. Vuister,

J. Magn. Reson. 127 (1997) 128.
[242] N. Tjandra, Ad Bax, J. Am. Chem. Soc. 119 (1997) 9576.
[243] M.W.F. Fischer, L. Zeng, Y. Pang, W. Hu, A. Majumdar,

E.R.P. Zuiderweg, J. Am. Chem. Soc. 119 (1997) 12629.
[244] L. Zeng, M.W.F. Fischer, E.R.P. Zuiderweg, J. Biomol.

NMR 7 (1996) 157.
[245] V.A. Daragan, K.H. Mayo, J. Magn. Reson. B 107 (1995) 274.
[246] J.A. Pople, W.G. Schneider, H.J. Bernstein, High Resolution

Nuclear Magnetic Resonance Spectroscopy, McGraw-Hill,
New York, 1959.

[247] B.W. Goodwin, R. Wallace, R.K. Harris, J. Magn. Reson. 22
(1976) 491.

[248] J.D. Cutnell, J.A. Glasel, J. Am. Chem. Soc. 98 (1976) 7542.
[249] J.D. Cutnell, W. Venable, J. Chem. Phys. 59 (1974) 258.
[250] L.J. Burnett, B.H. Muller, Chem. Phys. Lett. 18 (1973) 553.
[251] P. Meakin, J. Jesson, J. Magn. Reson. 19 (1975) 37.
[252] C.J. Hertzell, P.C. Stein, T.J. Lynch, L.G. Werbelow, W.L.

Earl, J. Am. Chem. Soc. 111 (1989) 5114.
[253] R.L. Vold, H.S. Gutowsky, J. Chem. Phys. 47 (1967) 4782.
[254] L.G. Werbelow, J. Kowalewski, J. Chem. Phys. 107 (1997)

2775.
[255] L.G. Werbelow, J. Kowalewski, J. Magn. Reson. 128 (1997)

144.
[256] T.C. Farrar, R.A. Quintero-Arcaya, Chem. Phys. Lett. 122

(1982) 41.
[257] T.C. Farrar, R.A. Quintero-Arcaya, J. Phys. Chem. 91 (1987)

3224.

[258] T.C. Farrar, B.R. Adams, G.C. Grey, R.A. Quentero-Arcaya,
Q. Zuo, J. Am. Chem. Soc. 108 (1986) 8190.

[259] T.C. Farrar, M.J. Jablonsky, J.L. Schwartz, J. Phys. Chem. 98
(1994) 4780.

[260] L.-P. Hwang, P.-L. Wang, T.C. Wong, J. Phys. Chem. 92
(1988) 4753.

[261] N. Müller, G. Bodenhausen, K. Wuthrich, R.R. Ernst,
J. Magn. Reson. 65 (1985) 531.

[262] M. Rance, P.E. Wright, Chem. Phys. Lett. 124 (1986) 572.
[263] T.C. Wong, P.-L. Wang, D.-M. Duh, L.P. Hwang, J. Phys.

Chem. 93 (1989) 1295.
[264] N. Müller, Chem. Phys. Lett. 131 (1986) 218.
[265] N. Müller, Monatshefte fur Chemie 120 (1989) 801.
[266] N. Müller, J. Magn. Reson. 81 (1989) 520.
[267] M. Pellecchia, Y. Pang, L. Wang, A.V. Kurochkin, A.

Kumar, E.R.P. Zuiderweg, J. Am. Chem. Soc. 121 (1999)
9165.

[268] T.J. Norwood, M.L. Tillett, L.Y. Lian, Chem. Phys. Lett. 300
(1999) 429.

[269] B. Brutscher, N.R. Skrynnikov, T. Bremi, R. Bruschweiler,
R.R. Ernst, J. Magn. Reson. 130 (1998) 346.

[270] D. Yang, R. Konrat, L.E. Kay, J. Am. Chem. Soc. 119 (1997)
11938.

[271] Q. Teng, M. Iqbal, T.A. Cross, J. Am. Chem. Soc. 114 (1992)
5312.

[272] D. Yang, K.H. Gardner, L.E. Kay, J. Biomol. NMR 11
(1998) 213.

[273] B. Reif, M. Hennig, C. Griesinger, Science 276 (1997) 1230.
[274] D. Yang, L.E. Kay, J. Magn. Reson. B 110 (1996) 213.
[275] D. Yang, L.E. Kay, J. Am. Chem. Soc. 120 (1998) 9880.
[276] P. Pelupessy, E. Chiarparin, R. Ghose, G. Bodenhausen,

J. Biomol. NMR 13 (1999) 375.
[277] G. Kontaxis, H. Sterk, J. Kalcher, J. Chem. Phys. 95 (1991)

7854.
[278] D. Muhandiram, T. Yamazaki, B.D. Sykes, L.E. Kay, J. Am.

Chem. Soc. 117 (1995) 11536.
[279] L.C. TerBeek, E.E. Burnell, Phys. Rev. B 50 (1994) 9245.
[280] M. Ishiwata, J. Phys. Soc. Jpn 60 (1991) 1379.
[281] M. Ishiwata, Y. Ishii, J. Phys. Soc. Jpn 60 (1991) 1743.
[282] R.P. Lubianez, A.A. Jones, J. Magn. Reson. 38 (1980) 331.
[283] R.E. London, D.M. LeMaster, L.G. Werbelow, J. Am. Chem.

Soc. 116 (1994) 8400.
[284] R.L. Vold, R.R. Vold, R. Poupko, G. Bodenhausen, J. Magn.

Reson. 38 (1980) 141.
[285] E.J. Pedersen, R.L. Vold, R.R. Vold, Mol. Phys. 41 (1980)

811.
[286] J. Voigt, J.P. Jacobsen, J. Chem. Phys. 78 (1983) 1693.
[287] D. Petit, J.P. Korb, A. Delville, J. Grandjean, P. Laszlo,

J. Magn. Reson. 96 (1992) 252.
[288] L.G. Werbelow, J. Magn. Reson. 67 (1986) 66.
[289] H. Gutowsky, R.L. Vold, J. Chem. Phys. 47 (1967) 4782.
[290] L.G. Werbelow, A. Allouche, G. Pouzard, J. Chem. Soc.

Faraday Trans. 83 (1987) 871.
[291] L.G. Werbelow, A. Allouche, G. Pouzard, J. Phys. Chem. 88

(1984) 4692.
[292] P. Granger, K. Elbayed, J. Raya, P. Kempgens, J. Rose,

J. Magn. Reson. A 117 (1995) 179.

A. Kumar et al. / Progress in Nuclear Magnetic Resonance Spectroscopy 37 (2000) 191–319 317



[293] K. Elbayed, P. Kempgens, J. Rose, P. Granger, J. Rose,
J. Magn. Reson. 130 (1998) 209.

[294] L.G. Werbelow, G.A. Morris, P. Kumar, J. Kowalewski,
J. Magn. Reson. 140 (1999) 1.

[295] T.E. Bull, J. Magn. Reson. 80 (1988) 470.
[296] T.E. Bull, J. Magn. Reson. 93 (1991) 596.
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