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1. Introduction not provide any coupling to the outside environment.

In other words, it provides no contact with the lattice
The phenomenon of nuclear magnetic resonance and causes no relaxation. However, if the internal
(NMR) involves placing magnetically active nuclear motions in solids are at rates comparable to the
spins embedded in a gas, liquid or solid phase in a Larmor frequency, the dipolar interaction becomes
constant, large and uniform magnetic field, causing a time dependent and couples the spins to the rotational
splitting of magnetic energy levels. Energy can be motion and acts as a mechanism for transferring the
absorbed by these spins from a resonant radio- energy from the spin system to the rotational degrees
frequency (RF) field causing transitions between of freedom and causes spin-lattice relaxation. In
these levels. Immediately following this absorption, liquids, the intramolecular dipolar interaction,
the spins start to exchange this energy among them-between the spins of the same rigid molecule,
selves and also pass it on to other degrees of freedom,becomes time dependent due to rapid molecular
that is, the spins start to relax. Relaxation is central to reorientations. Intermolecular dipolar interaction
the NMR phenomenon as a necessary prerequisite for(between the spins of two different molecules)
its detection. It is also used as a probe for obtaining becomes time dependent additionally due to trans-
information on the local environment of the spins and lational motion. There are dipolar interactions
about the dynamics of the molecules in which the between several spins at the same time, many of
spins are embedded. which have identical time dependences arising from
One of the most important interactions that couples the same reorientational or translational motion.
nuclear spins to each other and to the environment is Additionally, there are other sources of relaxation
the dipole—dipole interaction between the spins. In for the nuclear spins. The electrons surrounding the
static solids, the dipolar interaction provides only a nuclei contribute to the magnetic interactions in
static coupling between the spins and causes mutualseveral ways. In paramagnetic systems, the electron
exchange of energy within the spin system, but does spin has a strong coupling with nuclear spins and can
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cause rapid relaxation of nuclear spins, resulting in from the early days of NMR [2,3] and repeatedly
very short lifetimes of the excited nuclear magnetic rediscovered. In the 1950s, it was observed that the
states giving rise to broad NMR lines. In diamagnetic ESR spectra of various paramagnetic centres in solu-
systems, this strong interaction is absent as the elec-tion (copper complexes, vanadyl ions, etc.) split into
tron spins are paired. However, the applied magnetic several lines by hyperfine interactions with nuclear
field B, causes an induced precession of the electrons,spins, had different widths for the various lines, a
which produces a magnetic field at the site of the description of these experiments, along with the refer-
nucleus. This induced field which is small compared ences to the original articles can be found in
to By (only parts per million, ppm) and proportionalto  Ayscough [4] and Artherton [5]. The origin of this
the applied field, causes a shift in the resonance effect was traced to an interference between the aniso-
frequency of the nuclear spins known as the chemical tropic electronicg factor and the electron—nuclear
shift. This field, hence the shift, is dependent on the couplings by McConnell [6], who also gave an
orientation of the molecule with respect to the applied approximate solution of the relaxation equations. An
magnetic field. In single crystals, the shift has a extensive theory of electron resonance linewidths,

definite value for each orientation, giving sharp

including the effect of quadrupolar interactions and

shifted resonances; in powders, there are a large chemical exchange, was given by Freed and Fraenkel

number of orientations, yielding broad powder
patterns; in liquids, it becomes time dependent and
for isotropically reorienting molecules, only the
trace of the shift tensor survives, yielding a chemical
shift for a functional group and different chemical
shifts for different functional groups. However, the
time-dependent part of the chemical shift tensor (if
anisotropic) causes relaxation of the nuclear spins.
The chemical shift anisotropy (CSA) relaxation has

[7]. In high-resolution liquid state NMR, the effects of
cross-correlations were observed in double resonance
experiments used for studying the relaxation of
coupled spins [8-12].

The mathematical aspects of the theory of cross-
correlations were put into a sound footing by the
works of Schneider [13-16], Blicharski [17-20],
Hubbard [21], Pyper [22,23] and others. Later,
the field of NMR saw the extraction of useful

been a well-known source of relaxation of nuclei with
large CSA tensors such d3C, ™N, F and *'P.
However, with the use of high magnetic fields for

physiochemical information from these, which was
illustrated by the work from the groups of Vold
[24—29], and Grant [30—33]. In these early works, it
NMR studies, this mechanism is becoming important was shown that while cross-correlations lead to differ-
even for smaller CSA tensors of nuclei such as ential line broadening of resolved multiplets, they also
protons. There are yet other mechanisms of relaxation lead to non-exponential spin—Ilattice relaxation. Many
of spins such as the spin rotation interaction and scalar early observations concentrated on the latter feature,
relaxation of first and second kinds [1]. In addition, even though it was well known that there can be
nuclei having spin angular momenta greater than (1/2) several sources for non-exponential recovery
have a quadrupole moment. This quadrupolar interac- [34,35]. For example, while non-exponentidl;
tion becomes time dependent due to rapid fluctuations behavior of methyl groups in solids due to cross-
in electric field gradients at the site of the nucleus and correlations was predicted by Hilt and Hubbard [36],
causes rapid relaxation of such nuclei. Quadrupolar it was pointed out that in powder samples and in single
relaxation of nuclei with spins greater than (1/2) crystals, the multiple orientations of methyl groups in
usually dominates all the other relaxation processes a unit cell can also lead to multi-exponential behavior
in diamagnetic systems. of spin—lattice relaxation [37]. Careful experiments
Thus there are several mechanisms acting simulta- on single crystals with a single orientation of methyl
neously by which nuclear spins can relax. The simul- groups established the presence of cross-correlations
taneous presence of various mechanisms gives rise toin methyl groups. However, unequivocal evidence for
cross terms between these mechanisms. These crosthe presence of cross-correlations in spin—lattice
terms, known as cross-correlations, are the interfer- relaxation were obtained by the observation that
ence effects in relaxation between distinct interactions different lines of a multiplet are found to relax at
with the same tensorial character, have been known different rates giving rise to a “multiplet effect”
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[38—46]. Currently, the manipulation of multi-spin  years, especially in transverse relaxation of coupled
order by multi-pulse NMR methodologies leads to spins.
the measurement of cross-correlations systematically, This review is devoted to describing the work that
opening up new areas of interest. Interest in these has been carried out in this field in recent years. There
cross terms has been further rejuvenated in recentare already several outstanding reviews on relaxation,
years due to a rapid development of NMR methodol- which treat cross-correlations in some detail by,
ogy for structure determination of biomolecules using Werbelow and Grant [58], Vold and Vold [59],
saturation transfer experiments also known as nuclear Canet [60] and the recent ones by Bull [61] and
Overhauser effect (NOE). Werbelow [62]. The present review is organized in
The development of 2D and multi-dimensional the following manner. Section 2 covers the basic
NMR spectroscopy made it possible to obtain reso- Redfield theory of relaxation, points out the contribu-
nance assignments of large number of biomolecules tion of cross terms to the relaxation elements and
and to obtain large numbers of internuclear distances separates out the longitudinal and transverse relaxa-
using NOE, resulting in the calculation of 3D struc- tion. Sections 3 and 4, respectively, cover the contri-
ture of the molecules in solution [47—-49]. The infor- bution of cross-correlations to longitudinal and
mation on internuclear distances is usually obtained transverse relaxation and their experimental observa-
using qualitative estimates of NOE intensities. tion. Section 5 deals with cross-correlations in the
However, attempts are often made to obtain accuraterotating frame and Section 6 with the dynamic
guantitative distances from the NOE intensities [50]. frequency shift (DFS). Section 7 deals with other
In all such cases, it becomes necessary to probe therecent experimental observation of cross-correlations
saturation transfer process in detail. A semi-quanti- and Section 8 deals with experiments that avoid cross-
tative estimate is often made by including the simul- correlations.
taneous presence of several relaxation mechanisms
and spins but by neglecting the cross terms between
the various relaxation mechanisms. In recent years,
attention has been focused on the contributions of
these cross terms. Several justifications have been
given for their neglect in NOE measurements. One
of the main justifications is that the multiplets of a
spin are often not resolved, canceling out the first-
order differential effect of cross-correlations, or that
a 90 measuring pulse can suppress the multiplet
effect. Since the dimension of the relaxation matrix dot(t) . )
to be handled for inclusion of cross-correlations ot TIH o+ AW, oV] @)
increases rapidly with the number of interacting
spins, their inclusion requires a very convincing justi-
fication. Several authors, on the other hand, have
pointed out that these cross terms can be put to good
use by obtaining additional and often crucial informa-
tion on the structures of molecules, molecular reor-
ientations and internal motions [51-57]. Furthermore,
in recent years, with the availability of higher
magnetic fields which enhance the contribution of
CSA to relaxation and in particular its cross terms T = exp(i# ot), 2
with other dominant mechanisms, the study of cross-
correlations has become attractive. Significant effects
of CSA-dipole, dipole—dipole and quadrupole— dg*(t) o
dipole cross-correlation have been observed in recent — g — —I[A (0, o O], ©)

2. Theory
2.1. Equation of motion

The von Neumann-Liouville equation, which
describes the time evolution of the magnetic reso-
nance phenomenon using spin density matrift)
can be written as [1]:

where #, is the time-independent part of the

Hamiltonian which contains the spin Hamiltonian

and ' (t) describes the time-dependent part, which
contains the relaxation Hamiltonians. This equation is
solved using second-order time-dependent pertur-
bation theory, by first removing the major time

dependence via transformation to the interaction
representation using the transformation operator:

yielding,
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where wherew,, = 0, — w, is the frequency of the tran-
. 1 sitiona — o' andI” the relaxation superoperator such

o () =To®OT 4 that its elementg’,, g5 connect the time evolution of

and ogg to that ofo,,. Here due to the stationary nature

of #'(t), elements oR matrix (coefficientsl’,,/gp1)
A0 =TH' OT L. (5) become independent of time and due to the Hermitian

) o nature of#’’(t), one obtains the following symmetry
Eq. (3) can be solved by successive approximations as q|ations:

[1]:

t Faoz’ /:F*/aa/:F:/a/ :F/ara. (10
a'*(t)za*(O)—iJ (1), o (0)] it BB BB BB = 1 BB
0
Elements ofI" are linear combinations of spectral
t I/ . . .
_J at’ [ at"pe @y, e @, ot o). densities given by:
0 0
(6) Fowz’BB/ = jaﬁa’ﬁ/(waﬁ) + jaﬁa’ﬁ’(wﬁ’a’)

Taking the time derivative of this equation, one gets —s szﬁ/ (g, = By Zj o (@.)
@ yay Y @ aypyYATY
Y Y

do*(t 0l *
7O _ i, 00 -

dt

where the spectral densities are the Fourier transforms

t
_ I ol I ol *
,[o A0, AT, o O ™ [63] of the correlation function and are defined as:

Since #'(t) is a stationary random function, so is _
A"(t). On substitutingr =t — t', after taking the  Jagap(®) ZJ Gupap(nE ' “dr
ensemble average and making several approximations 0

[1] namely; (i) #”(t) and ¢*(0) are not correlated 1 [

and can be separately averaged; (i) assuming ) J:ooGaﬁa/B'(T) cogwr) dr
A" (t) = 0 where the bar indicates an ensemble aver-

00

age, the first term on the right-hand side (RHS) is [ )

zero; (iii) in the second term on the RH&;(0) can - 'IO Gapap (1) SiN(wT) d7

be replaced by *(t) and all higher order terms are

neglected; (iv)o'(t) is replaced byo™(t) — o(c0) = = Joparp (@) — IKoprp (). (12)

o’ (t) — op, where the system relaxes towarlg (v)

the integral on the RHS can be extendedhtsince the HereGggap (7) is the correlation function], gy s (w)
memory betweew#'(t) and #(t — 7) only lasts for a and K,g.g(w), respectively, are the real and
short time, one obtains: imaginary parts of the spectral densities. Substituting
do(t) Eq. (12) in Eq. (11) one can write:

at

—J (A7), [A(t — 7),07(t) — gp]] dr.
0

(8
Taking matrix elements of the above equation in the where
eigenstatesa), |B) of the unperturbed Hamiltonian

FO(C(’,Bﬁ/ == Raa/BB/ - iLaa//B,B/ (13)

Ao with eigenvaluesy,, wg, one obtains [1]: Rua'gp = Japa'p(@ap) T Juparp (0p4r)

dO'* /(T . %

e © = S exliwaw — wpp I awpplo”®) — oolgg ~8up D Jpyary(@py) ~ B D Juypy(@yp)
BB’ s Y

© 14
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and article is specifically devoted to the study of the effect
L _Kk K of the cross-correlations on the longitudinal and the
aa'pp’ = Kapa'p (@ap) + Kapap (0par) transverse relaxation of coupled spins.

= 8up D Kpyarn(0py) = Burp D Kanpy(@yp) (1D 5 oo
Y Y

_ _ _ From Eqg. (9), it is seen that the time dependence
The relaxation matrixI() therefore, contains areal  of ¢, is described by the various elements of the

part ®) and an imaginary part.j. The real parR, I' matrix and the oscillating factor, ejpw,, —
which containsl(w) contributes to the relaxation. The wgp)t]. The contribution of the elements &f to the
imaginary part., which contain&(w) can be identi-  time development of* for rapidly oscillating terms,

fied with a frequency shift, known as the “dynamic for which (w,, — wgg) # 0, are small and their
frequency shift” (DFS) [64,65]. The DFS has been contributions are therefore neglected. This is known

observed in several cases, which will be discussed g5 the secular approximation [65] Under this approx-
separately in Section 6 of this article. The major jmation Eq. (9) reduces to:

emphasis in this article will be on relaxation,

i i i d()'*k (t ! %
described by the real part of the relaxation matrix. It ©%aa o _ S ol ®) — 0015 20
may also be noted that while dt T
Rlw)=R-w); L) =-L-o). (16) where the prime on the summation indicates that only
The second equation of Eq. (16) states th@) = O, terms for which w,, = wgg are retained. This

sinceL is odd and continuous, that there is no contri- @PProximation decouples the time evolution of the

bution to the DFS from zero-frequency spectral densi- diagonal elements ofs” from the off-diagonal
ties. or in other words. there are no adiabatic €/ements. However, since for the diagonal elements

contributions to the DFS. This also means that the there is no oscillatory part, the time evolution of all
time evolution of populations are unaffected by the the diagonal elements is mutually coupled. The time

imaginary part of spectral densities. The correlation €volution of the off-diagonal elements is further
function G gy () is given by decoupled into various multiple quantum orders
apa ’

(waor = wgg = Nawy). EQ. (20) then breaks up into a
Gapap (1) = (| H'(V)|BY /| At — D|B)" a7 block structure as indicated by the dashed lines in Fig.
1. If in addition, all the transitions in each single and

where the bar represents an ensemble average. Thenytiple quantum manifold are non-degenerate and
relaxation Hamiltonian may contain several terms \ye|| separated, such thdt,, — wpg| > Tawpp
1 a ao 4

and can be written as: then each coherenae’,, evolves independent of all
() = Z ) (18) others and decays exponentially with qtime copstant,
n R.vao'» the real part ofl’. The effective Redfield

matrix then looks like a “kite” (Fig. 1) [49].

each representing a particular interaction which, for Eq. (20) is transformed into the laboratory frame as:

example, can be dipolar interactions between pairs of

. . . . dO'(m/(t) .
spins or C_SA relaxatlon. of a spin. The correlation = Wy T gy (1) + Zraa’ﬁﬁ’("(t) — 00)gp-
function will then contain several auto and cross- dt Tl
correlation terms given by: 1)

HAOIBX ! | At — 1|BY The first term on the RHS of Eq. (21) gives the
frequencies of various coherences (for“ «') and

the second term gives their relaxation including the
DFS, if any. For diagonal elements = «'), the first

term is zero and the time evolution of all diagonal
The first term on the RHS is the auto-correlation term elements is coupled. All the above discussion is
and the second term is the cross-correlation term. This valid only in the absence of a RF field. In the presence

Gaﬁa/B’(T) = z <Ol

+ > (0B

n<n’,n#n’

AT =By, (19
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~ON |[Ha~o~
=~ON |mewo=

—_ -
=T

....... -—

L -

gu -
’au - N

Fig. 1. A pictorial representation of the Redfield relaxation equation. The relaxation matrix is block structured under the secular approximation
shown by dashed lines. If, in addition all the transitions are nondegenerate, the off-diagonal elements between various coherences of same orde
can be neglected, or in other words, there is no transverse cross-relaxation process and the Redfield matrix takes the form of a kite known as the
“Redfield kite” [49].

of RF fields, the evolution of various elements®ef  whereA® are spin operators ard(t) are random
become coupled and the above kite structure is modi- functions of lattice variables anglis the rank of the
fied. The dynamics of in the presence of the RF field tensors. The reason for expressing the relaxation

will be treated in Section 5. Hamiltonians in this form is that, the time dependence
_ o in these interactions arises due to molecular motions a
2.2. Relaxation Hamiltonians description of which requires a series of transforma-

tions which in turn can then be conveniently described
in terms of transformation properties of spherical
harmonics. The Hermiticity of#’'(t) requires that

As mentioned in Section 1, there are several
mechanisms for the relaxation of a spin. The main
ones are (i) dipolar, (i) CSA, (iii) quadrupolar, (iv)
spin-rotation and (v) scalar relaxation of kind | and Il.  A@" — (—)9A?  and |:<O|)T(t) = (—)IFCt),

\_(et another _often _used mechanism, ca_lled_ “random (23)
field mechanism”, is a model for relaxation in which

it is assumed that a randomly varying time dependent and the secular approximation mentioned earlier leads
isotropic field is produced at the site of the spin by tO

outside sources (the details of which are unspecified), .
which causes relaxation of the spin. This field can be (FOOF t))ay = 6qq,<F(Q)(t)F(“) (). (24
either uncorrelated, partially or fully correlated attwo The form of various relaxation Hamiltonians,

or more spins. The random field mechanism has beeniscussed extensively in the literature [1,65—70] is
a convenient tool for describing the relaxation of spins pyiefly outlined below.

in magnetic resonance. Conditions under which the
spectral densities of several of the above mechanisms, , | Intramolecular direct dipole—dipole interaction
reduce to those of the random field mechanism have
also been given [66,67].

The various relaxation Hamiltonians can in general

This is the most significant interaction with which
the nuclear spins exchange their energy with each
. . other and with other degrees of freedom. This is also
be expressed as products of irreducible tensors of thethe interaction responsible for transfer of magnetiza-
type [1,12,66]: tion from a spin to its neighbors known as NOE,
H'(t) = Z (—)IAPEC ) (22) which has become a major source of structural infor-

q mation for molecules, especially biomolecules. The
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direct dipolar interaction between two spins can be
written as [68,69]:

(25

The coupling tensoD of rank 2 is traceless and
axially symmetric, which in a molecular fixed princi-
pal axis coordinate system, is given by:

Hp =13)D; 1()).

-1 00
Mo Yiyjﬁ
Di=|— -1 2
B o I
0 0 2

with the principal z-axis being given by the inter-
nuclear vector. The significance Bfbeing traceless
is that for an ensemble of rapidly and isotropically

tumbling molecules in space, there is no net change

of energy and the dipolar interaction does not contri-
bute to the time averaged Hamiltonian of a high-
resolution NMR spectrum. However, it does contri-
bute to the relaxation of various transitions of the
spectrum. Upon transforming to the laboratory fixed
frame withBy, field along thez-axis, the spin operators
of the dipolar interaction are given by [70]:

A2 — Iiilji
At =TI 27
A% = (447 = (1 + 17116
while the space part is given by
Fo— —(%)yzhmrﬁ@(a ®). (29

Here Yg(a, ¢) are the spherical harmonics of second
rank with 6 and ¢ being the polar and azimuthal
angles, between the two frames respectivelyjs
the internuclear distance between spinsndj and

vi, v; are the gyromagnetic ratios of the concerned
nuclei.

2.2.2. Chemical shift anisotropy
This interaction can be written in the form:

Hesa=T-0-H, (29)

where H is the external magnetic field, and the
chemical shift tensor. In generat, is neither axially
symmetric nor traceless. The isotropic parbogives
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rise to chemical shift in reorientating molecules and
does not cause relaxation. The anisotropic part causes
relaxation. The spin operators of the CSA interaction
in the molecule fixed (prime) frame are given by [12]:

A® = [3H}, —1"H]

a6
A—1:+7(H;|;+|;H’i) (30)
A= ),
2
and the space part is given by:
/
0— 1y, F*l=0, = F?= ;\‘% (31)

2.2.3. Quadrupolar interaction

The form of the quadrupolar interaction between
the nuclear spin and the electric field gradient at
the site of the nuclear spin is given by [70]:

Ho=TQT. (32

whereQ is the quadrupole coupling tensor given by:
___ e

Q=3 @ - 1)hV 33

with V being the electric field gradient tensor. The
guadrupolar interaction comes into play only for
nuclei with spinl > (1/2) where it proves to be a
major relaxation mechanism.

The spin operators of the quadrupolar interaction in
the laboratory frame are given by:

A°=312 -1 +1)
At = 1V6(1,). + 1.1y

= 1.613.

(34

2 _
and the space pafe™ () is proportional to the
spherical harmonicsY,™(«, B,7) of order two.
Cross-correlation between quadrupolar relaxation of
spin| with its dipolar relaxation to spi®(1/2) is an
important source of relaxation of spif, and is
discussed in Section 4.5.

2.2.4. Scalar spin—spin coupling
The Hamiltonian for scalar spin—spin coupling can
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be written as:

Hy=1J-S (35
wherel andS correspond to the two nuclear spirs.
has two parts, a traceless tensbrand a diagonal
tensorJ®. For isotropic molecular reorientationd’
does not contribute to coherent splitting, but contri-
butes to relaxation, exactly like dipolar relaxation.
Indeed, for all practical purposes, this part can be
combined with dipolar relaxation (some times called
pseudo dipolar) and needs no further elaboration [1].
The diagonal part gives rise to the well-known
coherentJ-coupling. This part can also become time
dependent in two different ways, which are known as
scalar relaxation of the first and second kinds [1]. In
the first kind, theJ-coupling becomes time dependent
due to rapid chemical exchange between coupled and
uncoupled sites. If the exchange rétér,) > J, then

the splitting collapses and the coupling becomes a
source of relaxation. In the second kind, one of the
coupled spins has a rapid self relaxation of its own,
either because it is a quadrupolar nucleus having rapid
self-relaxation or due to its coupling with a strong
paramagnetic or quadrupolar center. In such cases,
its spin state becomes time dependent which can
then be lumped with the lattice. The spin operators
for this interaction are given by [1]:

A=1, Al=IL (36)
and the space part is given by

0 1 -1
F'=JS, F'=1Js, F*=1Js. @7

2.2.5. Expressions for the spectral densities
The correlation functionG,.s. g (Eq. (17)), for
isotropic reorientation of rigid molecules is obtained as:

= (a| A" (V| BX /| A ()| B Yexp(—1/7c)
(38)

Gaﬁa'[i’ (1)

where 7. is the correlation time for the isotropic
motion. On Fourier transforming the correlation func-
tion, one obtains the various spectral densities. The
expressions for the real parts of the various spectral
densities are given below.
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(i) For auto correlated dipoldj} relaxation,

3 (Mo) v?vfﬁz[ 7 ] 39
10\ 4m ri? w72

wherer; is the distance between the spirad,;.
(ii) For auto correlated CSAY relaxation,

Jijij (w) =

o) = L 2R2Agy] e
W = gEee| 755 | @o
where Ao = (0'|i| - ail) is a measure of the
CSA.
(iif) For auto correlated quadrupola)§) relaxa-
tion,
3 €90\ T,
Qs — c
IHw) = 160( h )[1+w27§]’ “1)

whereQsis the quadrupolar coupling constant
of the nucleuss.
(iv) For CSA()—dipole(j) cross-correlation,

i(&)%%
10\4an) 13
X E(3 co 6, 1)[7]

2 b 1+ o2 |

(42)

where 6, ; is the angle between the principal
axis of the CSA tensor, assumed to be axially
symmetric and the internuclear vecigr

(v) For CSA{)—CSA(j) cross-correlation,

Jijij(w) = Bo(Aoy)

1
Jj(w) = 30 7| Y BO(AU'|)(A0'J)

1 Te
X 5(3 co$ 6 ; — )[ P2 ] (43

where 6; ; is the angle between the principal
axis of the two CSA tensors, both of which
are assumed to be axially symmetric.

(vi) For dipole(j)—dipolekl) cross-correlation,

olie)

X %(3 C0§ eij,kl — 1)[

2
Y Y vnte
IJkl (w) = L 3k3 :
Ml
Te ]
1+ w27§ ’
(4%
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wheregj  is the angle between the two dipolar
vectorsr; andry.
(vii) For quadrupoleQs)—CSA() cross-correlation,

1
Q.,CSA — ' ]
J (w) = 80<e2qu><w.Ao.>

X (3 cog g csp — 1)

| |

where 6o _csa is the angle between the quad-
rupolar and CSA tensors, both of which are
assumed to be axially symmetric.

(viii) For quadrupoleQ)—dipole(j) cross-correla-
tion,

\]QS,DU ((U) = %(Z_ﬁ)(equS)< ﬂyr’};] )

ij

Tc

T+ o2 “9

Te ]
1+ w? Tg ’
(46)

X (3 co$ b, p, — 1)[

Where(ulQS,Dii is the angle between the dipolar
vector ij and the axis of the quadrupolar
tensor, which is assumed to be axially
symmetric.

The expressions for the DFEX) can be obtained
from the above Egs. (39)—(46) by converting the
absorptive Lorentzians into dispersive Lorentzians,
by multiplying the numerators on the RHS widd.

Cross-correlations which do not contain the
distance between the relevant interactions explicitly,
namely, CSA—CSA cross-correlatiofig(w), K; (w);
CSA-dipole  cross-correlations J; jj (), K; j(w);
dipole—dipole cross-correlationsl; jy(w), Kjj x(w);
and those involving quadrupole interaction
J% CSA (), K&CSA(w) and J%Pi(w), K Pi(w)
are termed as “remote” in this article.

3. Cross-correlations in longitudinal relaxation

According to the phenomenological Bloch equa-
tions [71-73], the longitudinal magnetization
recovers exponentially to its equilibrium value via
the spin—lattice relaxation time constaiif. This
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time constant describes the rate at which the spins
exchange their energy with the lattice. A single time
constant is obtained only for a two-level system.
When there are more than two levels, the relaxation
recovery is complex, described by the relaxation
matrix given in Eq. (9). The longitudinal relaxa-
tion refers to the recovery of the diagonal
elements of the density matrix to their equilibrium
value governed by the first block of the kite in
Fig. 1. In the absence of RF irradiation and under
the “secular approximation”, the time evolution of
the diagonal elements is separated from that of the
off-diagonal elements. It is thus possible to discuss
the time evolution of longitudinal and transverse
magnetization independently. In this section, the
relaxation behavior of the longitudinal magnetization
is discussed. The time evolution of all the diagonal
elements is in general coupled and following Eq. (20),
is given (since there is no contribution from the
imaginary part ofl") by [65]:

W _ > Ruap(0) = 00 47

where

Ruapp = 2apap(@ap) — 2845 D Jyaya(@ya).  (48)

Y

Fora = B,

Rucaa = =2 D Jyaya(@y) (49)
yEa

and fora # B,

Ruaps = 2dapap(®ap) (50

This means that there is no adiabatic contribution to
longitudinal relaxation. However, the flip—flop term
of dipolar interaction between homonuclear spins,
which does contribute to longitudinal relaxation has
a very low or zero frequency and looks “adiabatic”.

Eq. (47) is identical to the rate equation describing
the recovery of the populations of various energy
levels (P, = o,,) to their equilibrium valuegP%)
through the transition probability approach, written
as [1,74]:

dP,,
= D Wap(P — Pp)
E

dt D
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Fig. 2. Energy level diagram of a weakly coupled three-spin system,
AMX.Herea andp correspond to the eigenstated gbr each spin
[@ =m, = (1/2), B=m,= —(1/2)] and their product represents

the various eigenstates of the three-spin system. The dashed lines

represent the four single guantum transitions of #epin, the
dotted those of spiM and the dash—dot lines those of spin

where W,; = R,,35 are the transition probabilities,
andW,,, = — > o W,p. FOr a two-spin-(1/2) system
(AX), Eg. (51), when expanded is obtained as:

P1 —(Wpp + Wiz + Wy) Wi
dl P2 | 3 Wi —(Wpp + W + Way)
dt | Py Wi3 Wo

P, W, Woy

where the various transition probabilities assuming
CSA and mutual dipolar relaxations, are given by
[45]:

W 14 2 Jaxax(w)
( 12)= 5( ) Inn(@) 53
Ws,/ 2\1 4 -4

Jaax(w)

and
W, = Wiy = 2Dpxax(20) W = Wog3 = 2Jaxax(0).
(54

The single quantum transition probabilities of the
other spin can be obtained by interchanging the labels.
The two single quantum transition probabilities of
spin A (W, and W) differ only due to CSA—dipole
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cross-correlationJa ax(w), which gives an equal and
opposite contribution toV;, andWs,. At this point, it
may be worth pointing out that while the relaxation of
the various populations is described by the above rate
equations, the result of a measurement is dependent
upon whether all the transitions of a spin are resolved
or not. In the presence dfcoupling, one can monitor
differences between the intensities of various transi-
tions yielding a “multiplet” and a “net” effect, while in

its absence, it is not possible to detect the “multiplet”
effect and only the “net” effect is observable. In the
presence of strong coupling, a clean separation of the
multiplet and the net effect is not possible and one has
to calculate the total effect on each transition. The
discussion on longitudinal relaxation is continued in
the next sections along the following lines. First, the
magnetization modes are introduced, and their utility
in cross-correlation studies is pointed out. The multi-
plet and the net effects of cross-correlations are
discussed for various spin systems, followed by a

Wis W, P, — P}
Wo Woq P, — P
—(Wyz + Wo + Wag) Ws, Py — P3|
Wiy —(Wy + Wy + Wag) ) \ Py — P}
(52

review of experimental observations. Isolation of
relaxation pathways by pulses is discussed in the
last section.

3.1. Magnetization modes

While Egs. (47) and (51) are the natural descrip-
tions of longitudinal relaxation, an elegant and much
more informative description, in weakly coupled spin
systems, is through the “magnetization modes”. One
defines single-spin magnetization modes, such,as
M,, X,..., two-spin magnetization modesAR,,
2A X, 2M,X,,..., and multi-spin modes up tiN
spins. Each mode represents the expectation value
of the products of the corresponding spin operators.
For example A t) =(l,p»®) = Tr{a(t)l,n} and
2AM (1) = 2l al (1) = Tr{ o2l ;pl i} - It is
possible to express the magnetization modes as a
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linear combination of populations of various levels.
As an example, we will discuss a three spin-(1/2)
system AMX, which can easily be reduced to the
two-spin systemAM or generalized to higher spin
systems without symmetry. Fig. 2 defines the labels
of various states in the three-spin syst&iX. The
relation between populationB; and magnetization
modes is given by [75-77]:

E 1 1 1 1 1 1 1
A, 1 1 1 -1 1 -1 -1
M, 1 1 -1 1 -1 1 -1
X, il -1 11 -1 -1 1
AaM, |81 -1 1 -1 -1 1 -1
2AX, 1 1 -1 -1 -1 -1 1
oM, X, 1 -1 -1 1 1 -1 -1
AAM,X, 1 -1 -1 -1 1 1 1

There are ? populations and as many magnetization
modes. Eq. (55) can also be written as:

M= VP (56)
where V is the transformation matrix connecting
populations to modes. Similarly inverse transfor-
mation connects modes to populations and is given
by:

P=VM.

Y

The equation of motion of the modes from Eqs. (47)
or (51) is obtained as:

m _ M@ —M°) (58)
dt

where

I'=vwv 1! (59)

and M° represents the equilibrium value of each
mode. For the three-spin systeAMX, the various
transition probabilities of thé\ spin, for CSA and
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k Paaﬂ
-1 PaaB
-1 PaBa
1 || Paoa
g (55)
1 PaBB
1 PBaB
—1/ \Ppgg

dipolar relaxation mechanisms are given by [78]:

Wi, WA 11
Ba Jamam(®n)
Ws7 WA 111 1 3
= == x(wp)
Wag weg |21 1 4| TP
Jnaa(wp)
Wsg Wf,f 1 1 4
1 -2 -2
PP Jamax(@a)
+ 1 Jnam(wp)
1 9 Jaax(wa)
Woam = 2Jamam(@wa + o)
Woam = (3)Iamam(@a — oy) (60)

with similar expressions for th# and X spins with
appropriate change of indices. It may be noted that
while auto-correlations give equal contributions to all
the W, cross-correlations contribute differentially to
various W; and make them unequal. Furthermore,
cross-correlations contribute only ¥, and not to
W, or W, terms (see Section 3.1.4). The equation of
motion for the magnetization modes (Eq. (58)) in the
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expanded form is obtained as:

E
Aj(t)
M, (1)
d| X
dt | 2AM,(t)
2A,X,(1)
2MX,(t)
4A M, X, (1)
0 0 0 0 0 0 0

Pa gam Iax daam Spax 0 Sn

Tam Pm TMx Sm.AM 0 A Mx S

Iax OMX Px 0 Oy Ax Ox mx x
aam Owam O PAM O + omx O T oax  Saax T Owwmx
dnax 0 dxax  Oat owx Pax O t oam  Saam T Oxwmx

0  Oumx Oxmx  Om T oax Ox + oam PMX dum.am T Sx ax

|
©O O o o o o o o

oa v Ox  Saax T Ommx  Oaam T Oxmx  Om.am T Sxax PAMX

At — A
M,(t) — M7
Xo(t) — X2
X (61)
2AM,(1)
2A%,(1)
2M, X, (1)

4A M X(1)

Here the varioup terms describe the s.elf—relaxatlon pam = Wanx + Woax) + (Waox + Wonx)
of each mode,o, the cross relaxation between

modes of the same order, addthe cross relaxation + rwiR + Wf,f + Wff + Wf,f)
between modes of different orders. The expressions

for these elements, for the three spin system, are + (WS + WE + Wil whBy)
obtained as:

pamx = 3 [(WiA + WfX‘ + WfAB + WfAB)
= (W. + W, + Woax + W, o o o
pa = (Wopm oam) + (Waoax oax) FOWES + WES 4+ WeB BBy

+ L OWEE + WES + Wil + W) +(WES + WA + Wi + WEB)) (62)
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or in terms of the spectral densities as:

PA 1 1 0\ /Jamam(wa — wp)
pav | = % 0 1 1] Jaxadwa— wx)
PAMX 0 0 0/ \Juxmx(wm — @x)
Jamam(@a)
10100 Jamam(@wm)
11 10 Jaxax(®n)
11111 Jaxax(wx)
Jvxmx(@wm)
Ivxmx(@x)
1 1 0\ /Jamam(wa + wy)
+2[0 1 1] Jasax(on + wx)
0 0 0/ \Juxux(om + wx)
1 0 0\ / Jaalwn)
val1 1 o] Jyulen) (63)
1 1 17\ Ixx(wx)
and
oam = Woam — Woam
= 2Jamam(wa + op) — 3 Jamam(wa — @)
Saam = 2 (—WEE + WES — WiE + wWil)
= 4Jaam(wp)
Baax = 3 (Wi — WK + Wif + WiP)
= 4Ja ax(@p)
8n = Samax = 3 (Wix — Wi — W%+ WP
= 2Jamax(wp)- (64)

It may be noted thap and o contain exclusively
only auto-correlation spectral densities. Modes of
different orders are coupled exclusively by cross-
correlations §;; and 8;). The even order modes
are connected to odd order modes by cross-correla-
tion between CSA and dipolar relaxations;
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terms); the odd order modes are connected to odd
order modes and even order modes to even order
modes by cross-correlation between different dipolar
interactions of the spin& = ;i terms). In the
absence of cross-correlations, would be block-
diagonal with off-diagonal elements only within
the modes of the same order. The block connecting
the single-spin modes yields an equation of motion
for the single-spin modes given by:

dl zi(t)
dt
wherel,(t) is the longitudinal magnetization of spin

i at time t, I,(c0) its equilibrium value and#

connects various,(t). Z is a subset of thd’ matrix
given for the three spin system by:

= gg[lzi(t) - |zi(°°)], (65)

PA Oam  Oax
R=|0oam PM  Owmx (66)
oax  OmMx  Px

Eq. (65) is Solomon’s equation [79]. This equation
describes the self-relaxatiom;} of each spin and
cross relaxation «;) of the spins with each other
(NOE) in the absence of cross-correlations. This
equation is widely used for the interpretation of
NOE in many systems including biomolecular struc-
tural studies. In such cases, coupled relaxation of a
large number of spins is analyzed by fitting the
calculated NOE to the experimental NOE assuming
a certain geometry for the molecule. When cross-
correlations are present, the higher spin modes come
into play and the longitudinal relaxation as well as
NOE predicted by Eq. (65) are incorrect. It is there-
fore necessary to take the higher spin modes into
account, even whed-couplings are absent.

3.1.1. Representation of modes

The advantage of the modes description is that they
represent various observable quantities in a conveni-
ent form. The single-spin mode&,(M,, ...) represent
the total magnetization of a spin and the higher modes
represent the differences in the intensities of various
transitions of a spin. The intensities of various transi-
tions of a spin are given by:

lag = |10 ap/ (Ps — Pp). (67)

For weakly coupled spins (each of spin 1/2) all
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(1) 5|* are equal. Therefore the relative intensities of (a)
the various transitions are given by:

IC‘B = Pa - PB (68)

For a weakly coupled three-spin system of the type
AMX; the intensities of the various transitions of the
spin A are then obtained (from Eg. (55)) as: (b)

Al = Paaa - PBaa
| |

= %(AZ — 2AM, — 2AX, + 4A,M,X,)

AZ = Paaﬁ - PBaB

C
= LA, — 2AM, + 22X, — 4AM,X,) (©)

A3 =Pup, — Ppga I | | I
= %(Az + 2AzMz — 2Azxz — 4A,M,X,)

Fig. 3. Schematic representation of the intensities of the four SQCs

Ay = Paﬁﬁ - PBBB of a spin of anAMX spin system, in the presence of (a) single- and
three-spin modes, (b) single- and two-spin modes and (c) only two-
= 1(A,+ 2AM, + 2A,X%, + 4AM,X,). (69)  spin modes.

The total intensity of all the four transitions is given the N spins are spin 1/2, or of dimensi¢@l + DN x
by A,. Any difference in the intensities of these transi- (2| + DN if all the spins are of spint. Thus for 10
tions indicates the presence of modes of higher order. relaxation-coupled spins of spin 1/2, Solomon’s
For example, ifA; =A, # A, =A; and A, # 0, equations (Eqg. (65)), require only a ¥QL0 relaxation
single- and three-spin modes are present and two- matrix, while inclusion of cross-correlations requires
spin modes are absent (Fig. 3(a)). On the other a 1024x 1024 matrix. In biomolecular NMR studies a
hand, ifAi =A # A=A, or Ai=A3 = A, = Ay 100x 100 relaxation matrix for 100 relaxation-
with A, = 0 indicates the presence of only two-spin coupled spins is often solved, neglecting cross-corre-
modes and absence of one and three spin modes (Figlations, but it will be impossible to include cross-
3(c)). However, ifA; # Ay # Ag # A with A, =0 correlations for all the 100 relaxation-coupled spins.
indicates the presence of both two- and three-spin It is therefore important to study the effect of cross-
modes. The differences in the intensities of these tran- correlations in NOE and relaxation measurements. If
sitions can be created either by selective perturbation it turns out that cross-correlations contribute signifi-
of one or more transitions of the spin system or by cantly, then one either takes into account the main
cross correlated relaxation of a non-equilibrium state. cross-correlations or designs experiments inhibiting
Before proceeding further, it may be pointed out the effect of cross-correlations.
that the inclusion of cross-correlations increases expo-
nentially the dimension of the relaxation matrix to be
handled. For example, Solomon’s equations (Eq. (65))
in which cross-correlations are neglected, consi$t of
simultaneous equations with the dimensions of the M(7) = exp(— oM7) — M. (70)
relaxation matrix being X N, whereN is the number
of relaxation-coupled spins. Inclusion of cross-corre- The time evolution of various modes is coupled and a
lation requires the use of either Egs. (47), (51) or (58), general solution of Eq. (70) requires diagonalization
with the relaxation matrix of dimensiol'2< 2V, if all of the relaxation matrix,". On the other hand, a

3.1.2. Initial rate approximation
The formal solution of Eq. (58) is given by:
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simple solution of Eq. (70) is obtained, in the initial
rate approximation for small values ofas:

M(D)|,m0 = (1 — I'D[M(7) — M. 7

Further, if atr = 0 one creates an initial state in which
only one of the modes is selectively disturbed from
equilibrium, then from Eq. (71) it is seen that in the
initial rate approximation, the rate of conversion of
this mode into other modes is directly proportional to
various elements of'. For example, in the three-spin
system described by Eq. (61), if at= 0 one inverts
the magnetization of spiA [A,(0) = —A2] and leaves
all the other modes undisturbefiM,(0) — M =
X,(0) — X2 =0 and all the multi-spin modes are
zero] then, in the initial rate approximation the growth
of all the other modes are given by:

My(7) = 20am AL, XAT) = 20 pxTAS,

2A,My(7) = 28p amTAD, 2D, X A7) = 28p pxTAL,

AAMX(T) = 2857A2, 2M, X, (7) =0, (72)
and the decay of thd, mode is given by:
A7) = —2(1 = panA;. 73

The initial rate approximation thus provides a direct
measure of the various elementsiaf

3.1.3. Magnitude of the cross terms
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18C°. Dipole—dipole cross-correlations are thus most
significant for linear geometry and are zero for magic
angles 5244’ and 125816’ [75,76]. The cross terms
between CSA and dipolar interaction depend both on
the values of these interactions as well as their
geometric disposition. The magnitude of CSA for
several nuclei such a§C, *N and *F is large and

at high fields the CSA contribution becomes a major
source of relaxation for these spins [80—86]. On the
other hand, the CSA for protons is small and hence
usually the relaxation resulting from auto-correlation
terms is negligible. While the CSA auto-correlation
terms may be negligible, the cross terms with dipolar
interaction can be quite significant. For example, if
the dipolar interaction is 10 times the CSA, then the
contribution to relaxation of the spin by CSA auto-
correlation terms is 1/100th of its relaxation by dipolar
auto-correlation terms, whereas that of the cross terms
will be 1/10th of dipolar auto-correlation terms. Thus,
although the auto-correlation contribution of CSA
may be negligible, its cross term with large dipolar
interaction will not be. The magnitude of the cross
terms additionally depends on the anglebetween
the dipolar vector and the principal axis of an axially
symmetric CSA tensor via a multiplicative factor
(1/2)(3 co€ 6 — 1) for isotropically reorienting mole-
cules (see Eqg. (42)).

3.1.4. Cross-correlations contribute only to, W
It was pointed out in Section 3.1 that in weakly

In this section, the magnitude of cross terms is coupled spins, in the absence of RF fields, cross-corre-
compared with the auto terms. For dipole—dipole lations contribute to longitudinal relaxation only
interactions, cross-correlation terms depend both on through spectral densities at the Larmor frequency,
the distances between the interacting spins and theirthat is only towW; and not toW, and W, (Eg. (60)).

geometric disposition, while the auto-correlation

This can also be explained via the following argu-

terms depend only on the distances between the ment. Longitudinal relaxation is governed by the
spins. The ratio of the geometric factors of cross first block of the Redfield matrix (Fig. 1), which

versus auto terms in the three-spin systehMX),
for dipole—dipole cross-correlation is given (using
Egs. (39) and (44)) by:

Oammx 1 ( I AM
OaM 2

3
—) (3c0$ Oapmx — 1)

74
-~ (74

where 6umx is the angle between th&M and MX
dipolar vectors anday and ryy, respectively, their
lengths. Forray = ryx, this ratio is —(1/8), —(1/2),
(2/2) and 1, respectively, fod# = 60, 90, 145 and

connects the various diagonal elementsrahrough
elements such as:

Ruapp = Jupap o (| H'O|BXal A"t + 1)|B)  (75)
with
Rozaaa == Z Rozozﬁﬁ' (76)

BFa

Longitudinal relaxation thus requires spectral density
elementsl, g,z for which « # 8. Diagonal operators
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li; andly,lj, of ' therefore do not contribute to long-
itudinal relaxation of weakly coupled spins while the
operatorl;.l;= contributes toW,, operatorsl;. and
lizlj+ to Wy andl;.l;- to W,. Cross-correlations require
that two different interactions connect the same pair of
states. This is possible only by spin operators in which
the flipping (active) spin is common and non-flipping
(passive) spin is different. Two different operators
such ad;.l;, andl;.l, can connect the same pair of

spin states. For example, in the three-spin system,

statesaaa and Baa can be connected by dipolar
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Cross-correlations thus contribute a purely differential
effect to the transition probabilities.

The contribution of cross-correlations is also sensi-
tive to the parametan .. As w . increases beyond 1,
the contributions ofV; andW, decrease compared to
W,. This has several consequences. The magnitude of
the NOE increases and tends towards its maximum
value of —1, while the effect of cross-correlations
on NOE decreases. Whil/, distributes magnetiza-
tion between the spins, the energy from the spin
system to the lattice can only be carried away through

interaction between spins 1 and 2 as well as betweenW, andW,. Thus longitudinal relaxation via intramo-

1 and 3, respectively, by termis,|,, andl;-15, where
the active spin is 1 and the passive spins are 2 and 3
Thus, in weakly coupled spins cross-correlations can
only contribute to values ofV;, while auto-correla-

lecular dipolar interaction becomes weaker. The spins

.in the rigid part of the molecule in such a case have

weaker longitudinal relaxation which is either domi-
nated by processes other than the dipolar interactions

tions contribute to the spectral densities at all the three or by migration of magnetization (through strowg)

frequencies. The auto-correlation terms contribute
equal rates to variougV; terms of a spin and cross-
correlations make the varioud/; terms of a spin
unequal. For example, in the weakly coupled three
spin system the presence of dipole—dipole cross-
correlation makes th&V;' of outer and inner transi-
tions unequal such thatVj* = Wi* » Wi2 = Wi,
while the cross-correlations between CSA and dipolar
interaction makesWs* = W{2 = Wi = W/, The
dipole—dipole cross-correlation between the spin
pairs 1, 2 and 1, 3 yields:

Wit oc (aaally |y Baa)aaally 13| Baa)
W;? oc (aaBll1: 1ol BaB)aafllis 1zl BaB) = —Wi*
W,® oc (aBallys |l BBaXaBallys IslBBa) = —Wi*

W oc (aaBlly 15, BBBY BBl L+ 15,|BBB) = WY,
an

and the CSA-dipole cross-correlation on the other
hand yields:

WlAl o< (aaa|l T3 Baa) aaall 4 15| Baa)
Wi? oc (aaBlI T4 Bap)aaBlls o] BaB) = Wi
W.° oc (aBBlITABBaXaBally: 15| BBa) = Wi

WY oc (aBBIISPA BBBY BBl L+ 12,|BBB) = —WA™.
(79

to other parts of the molecule, where they encounter
spins undergoing internal motion through which the
energy is finally exchanged with the lattice. Thus in
the rigid part of the molecule fab7, > 1, the influ-
ence ofW; andW, and hence the longitudinal relaxa-
tion and the effect of cross-correlations become
weaker. Strong coupling mixes eigenstates, which
makes allW,, W; and W, depend on cross-correla-
tions. Furthermore, in the presence of RF field (in
the so called “rotating frame experiments”) cross-
correlations come into play i, and W, as well.
This is again due to the mixing of states by the RF
field. While strong coupling mixes states within the
sameF,(= > 1,) manifold of states, the RF field
mixes states which differ in theiF, values by=+1.
The following section discusses the multiplet and
net effect of cross-correlation in relaxation of weakly
coupled spins, in the absence of RF fields.

3.2. Multiplet and net effect of cross-correlations

The effects of cross-correlation can be classified
into two types. A multiplet effect is a case in which
various transitions of a spin have different intensities.
This is obtained by the creation of multi-spin orders
from single-spin orders by cross-correlations and is a
first-order process in time. A second-order effect, the
net effect, which is a two-step process, involves
creation of multi-spin order from single-spin order
and reconversion of multi-spin order into single-spin
order, both by cross-correlations. Observation of the
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multiplet effect requires that the various transitions of
the spin are resolved via th&couplings. If theJ-

couplings are either not resolved or absent, the created

multi-spin orders are not observable. Even whenjthe
couplings are resolved, observation of the multi-spin
order (or multiplet effect) requires the use of either a
selective measuring pulse on one of the spins or a small
angle non-selective pulse on more than one spin. A
non-selective 90 measuring pulse converts the
multi-spin longitudinal order into undetectable multi-

ple quantum coherences and thus suppresses the multi-

plet effect. However, the net effect is always present

and not easily suppressed. There are several experi-

ments, which are used for the detection of the multiplet
and net effect of cross-correlations. Single-spin order
can be created by selective inversion of a spin, or non-
selective inversion of all coupled spins. The inverted
spins exchange magnetization via theéerms (NOE)
and recover non-exponentially due to the presence of
several cross-relaxation terms containing auto and
cross-correlations, giving rise to multiplet and net
effects. The selective inversion experiments are
equivalent to various cross-sections of a 2D
NOESY experiment. Each cross-section of the
2D NOESY experiment using a® measuring pulse
(90°—t;90°—r,—a"—t, experiment) is equivalent
[except for a factor of (1/2)] [72,73] to a 1D transient
NOE experiment in which the whole multiplet of a
spin is selectively inverted at, = 0 and the state of
the spin system after,, is detected by am° pulse
[87,88]. The multiplet [87-91] and the net effects
[92—-95] due to dipole—dipole cross-correlations have
been studied in detail by several investigators and are
described in detail in the following sections. The main
emphasis in these studies is to describe the effect of
dipole—dipole cross-correlations on NOE. A particu-
larly illustrative example is the weakly coupled three-
spin system, which will be described here in some
detail. Dipole—dipole cross-correlations, which couple
only odd orders (single and triple) and even orders
(zero and double) among themselves will be consid-
ered. It will be further assumed that the initial pertur-
bation creates only single-spin order.

3.2.1. Multiplet effect in three spin system AMX

The multiplet effect of dipole—dipole cross-correla-
tion, in a weakly coupled three-spin system has been
described in the literature in detail [87-91]. Fig. 4
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Fig. 4. Calculated transient NOE spectra of iandX parts of the
linear AMX spin system, for selective inversion of th spin at

7 = 0. (@) Normal spectrum; (b) and (c) are the transient difference
NOE spectra calculated with and without cross-correlations; (d) is
the difference between (b) and (c). The parameters used to calculate
the spectra arelay/8am = 0.05, Jam = 12 Hz Jax = 9 Hz and

Jux =6 Hz ray = 25A and ryx = 20A, 1, =25 wr, =01

and w/(2m) = 270 MHz [Reproduced with permission from V.V.
Krishnan, Anil Kumar, J. Magn. Reson. 92 (1991) 293.]

shows an example of the calculated NOE on spins
andX, with and without cross-correlation for selective
inversion of spirM at 7,, = 0 in anAMX spin system.
The NOE is larger at spiK than spinA, but the effect

of cross-correlations in the form of the multiplet effect
is identical. This is due to the creation of a single
three-spin-order term by cross-correlations. Since
CSA-—dipole cross-correlations have not been consid-
ered in this study, the two-spin orders are not created.
The effect of variation of the angle8 = ZMAX,
keeping the distances,y = 4.5A andray = 25A,
constant is shown in Fig. 5. The total NOE on sgin
remains practically unaffected but on spiecreases
monotonically, since g8 increasesyy increases. The
multiplet effect is however sensitive and is maxi-
mum for 8 = C°.
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Fig. 5. Calculated transient NOE spectra of fiandX parts of the
AMX spin system with dipole—dipole cross-correlations for various
geometric disposition of the three spins, obtained by changing
£MAX = B from 0 to 90. The remaining parameters and condi-
tions used for this simulation are the same as Fig. 4. [Reproduced
with permission from V.V. Krishnan, Anil Kumar, J. Magn. Reson.
92 (1991) 293.]

pu——

The time evolution of cross-correlations as a func- Tm (sec) —»

tion of mixing time Is given in Fig. 6 for theg =0 Fig. 6. Difference between the calculated transient NOE faXMdixX
case. The dashed curves show the NOE on each tran-.3:

o . . spin system with and without cross-correlatiopgy — nw,) in
sition in the absence of cross-correlations, for three percentage (continuous curves) and the NOE without cross-correla-
motional regimes namelywr, = 0.1, 1.118 and 10 tions, ny, in percentage (dashed curves), for gandX multiplets,
corresponding to short, critical and long correlation when theM spin transitions are nonselectively invertedrgt= 0,
times, respectively. In the absence of cross-correla- Plotted as a function of the mixing timey, for (a) w7, = 0.1, (b)
tions, the NOE on all transitions of a spin is equal. =18 and (¢jor; = 10. The remaining parameters and

. ) conditions used for this simulation are the same as in Fig. 4.
The difference between the NOE calculated with and [Reproduced with permission from V.V. Krishnan, Anil Kumar,
without cross-correlations is shown with solid curves. J. Magn. Reson. 92 (1991) 293.]
In the case of weakly coupled spins, considering only
dipole—dipole cross-correlations, the intensities of effect atwr, = 1.118 is particularly interesting since
inner as well as the two outer transitions of each at this correlation time, the NOE without cross-corre-
spin are equal, that igy; = Ay # A, = Ag andX; = lations is zero. FowT. = 10, the magnitude of cross-
X4 # X, = X3. Therefore only two transitions of each  correlation rate is small. But for thie 7. value, the
spin are shown. Furthermore, since in a three-spin leakage term in the self-relaxation rates is also small,
system, there is only one three-spin order term namely the magnetization remains within the spin system for
4AM,X,, its contribution to all the three spins is long times, building-up the NOE and the three-spin
identical, yieldingA; — Ay =M; — My, =X, — X, = order term, yielding significant effect of cross-
4A,M,X,. These curves show that there is a very large correlation.
multiplet effect of cross-correlations in all motional
regimes, which starts from zero, builds up to a maxi- 3.2.2. The net effect
mum value and decreases to zero, in a manner similar  The net effect of cross-correlations is the difference
to the transient NOE (single-spin order). The multiplet in single-spin orders in the presence and absence of
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Fig. 7. Pictorial representation of the magnetization evolution, in a linear threé\bpisystem, after selective inversionMfspin atr,, = 0

for the long correlation time limitwr, > 1). In this situation, the NOE on spi#vandX builds up quickly via ther terms. At the same time, the
three-spin order termAyMzX; is created via the cross-correlatiopuux. As a second-order process in time, the three-spin order term is
reconverted td; via 8 ammx, Which on further evolution is converted backApandM;. A three-spin-order term is also created frémM; and
converted back téy, M, via the smaller cross-correlations (in the linear spin system) nadiglyx anddaxux. These pathways are shown by

the dashed lines.

cross-correlations. This effect has been discussed incorrelation times is that for short mixing times, the net

detail by several workers [92—-95]. The presence of
the net effect on NOE is also noticeable in the curves
of Fig. 6, a careful examination of which shows that
the multiplet effect on various transitions, though
opposite in sign, is not completely identical in magni-
tude. This net effect arises from second-order
processes in time. If at,, = 0, one creates a single-
spin mode (sayM,), then as a function of,, it is
converted into the three-spin modeAM,X, and
back to single-spin mod®, by the cross-correlation
rate Sauvx. The single-spin mod#, thus created is
converted by cross-relaxation rategy and o ax into

A, andX,, respectively, changing the net NOE on spins
A and X and self relaxation of spiM (Fig. 7). The
magnitude of the calculated net effect in the three spin
system, AMX, after selective inversion of spiM for
linear, right isosceles and equilateral triangle geome-
tries, forwr, = 0.1, 1.118 and 10, are shown in Fig.
8(a)—(c) [93]. In these diagrams, the NOE on spins
andX are identical due to symmetry. For these geome-
tries, for isotropic reorientations, the ratio of
damvx/oam = 1, 0.5 and 0.125, respectively. It is
clearly seen that the effect of cross-correlations is
large for the linear case, and small for the remaining
geometries for all correlation times. Furthermore, for
w7, = 1.118 the total NOE on spin& and X builds

via cross-correlations, since all terms are zero for this
correlation time. A common feature of net NOE for all

effect is small and builds-up slowly to its maximum
value at fairly large mixing times, indicative of the
second-order process in time as well as magnitude.
For wr. = 10, there is little leakage and the magneti-
zation remains within the spin system for a very long
time, building up the net effect of cross-correlations
similar to the multiplet effect. From the above curves,
it seems that the net effect on NOE builds up to a
significant value for large mixing times. However,
these curves do not represent all correlation times
properly. In order to investigate the net effect on
NOE due to cross-correlations for different correlation
times, the net effect is plotted in Fig. 9 for the linear
case, at fixed mixing times of 100, 200 and 400 ms as
a function ofw 7 [93]. This figure shows that even at
Tm» = 400 msthere is a significant net effect at, ~

1.6, and that there is significant effect farr, = 2-5.
This shows that the error arising from the neglect of
cross-correlations for a given mixing time, although
small, is not negligible. The error reaches its maxi-
mum value of approximately 1, 2 and 7% of the total
magnetization for mixing times of 100, 200 and
400 ms, respectively, fow7. between 1.2 and 1.6.

It may be noted that the net NOE at. = 1.6 with
cross-correlations, for the above mixing times, is 6, 11
and 16% of the total magnetization, respectively.
Thus the error is about 16, 18 and 44% of the net
NOE at these mixing times.
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Fig. 8. (a) Calculated net NOE for theMX spin system in percentage ) on the spinA andX (equal because of symmetry), after selective
inversion of the spiM, atr,,, = 0, is shown as a function af,, on a logarithmic scale for a linear configuration of the three spijng andX,

with inter-spin distance of 2 An the left-hand diagrams, the dashed curves represent the calculated net NOE without cross-correlations and the
solid curves with cross-correlations. In the right-hand diagrams, the diffeeficbetween these two calculated NOEs are shown by solid
curves. The top, middle and bottom traces correspomg{e= 0.1, 1.118 and 10, respectively, far2w = 300 MHz The three-spin systemis

shown at the top, with the arrow representing the selective inversion ofMpat r,, = 0. (b) Same as (a), except that a right isosceles
configuration is assumed for the three spind andX. (c) Same as (a), except that an equilateral configuration is assumed for the thrée spins

M andX. [Reproduced with permission from P.K. Madhu, Anil Kumar, Conc. Magn. Reson. 8 (1996) 139.]

Since there are many biomolecules which fall in the mixing times such as 400 ms, the NOE with cross-
region wt. = 2-5 for which Fig. 9 predicts a signifi-  correlations is 24, 35 and 48% of the total magnetiza-
cant effect of cross-correlations, the net effect of tion and the error is 7, 5 and 3% of the total magne-
cross-correlations is analyzed in the three-spin systemtization, atwr, = 2, 3 and 5, respectively [93]. Hence
assuming a linear configuration farr, = 2-5, given the error is a significant fraction of the net NOE given
in Fig. 10. Itis seen that the net effect of NOE is quite by 28, 15 and 6%, respectively, for the three
large especially if it is monitored as a percentage of correlation times. At these correlation times, cross-
the total NOE. The curves show that at intermediate correlations thus have significant influence on net
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Fig. 8. (continued

NOE. The maximum error on net NOE, however, is

much larger and appears at very long mixing times,
reaching a value of 22, 23 and 24% of the total magne-
tization at mixing times of 1.8, 2.6 and 3.9 s, respec-
tively, for the three correlation times [93].

3.2.3. Spin diffusion

The above analysis of three-spin system highlights
the effect of cross-correlations in a closed system. As
mentioned earlier, fowr, > 1, there is little leakage

of magnetization from the spin system and the magne-

tization remains within the spin system for a long
time, building up the net effect of cross-correlations.
However, unless special experiments involving spin-
locking a selected number of spins are performed,
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Fig. 9. The difference in net NOE on spirfor anAMX spin system
(after selective inversion of spid at 7, = O for a linear arrange-
ment of the spin#\, M and X having inter-spin distance of 2)A
calculated with and without cross-correlations in percentage and is
plotted as a function of, for mixing times shown on the curves for
/27 = 300 MHz 7 is defined as)y = (A(1m)/Ag)% while nly =
(Maw — (Ma)w, Where (na)y is the NOE calculated with cross-
correlations andna )y, is the NOE calculated without cross-corre-
lations. Identical curves are obtained for the sKiin this case.
[Reproduced with permission from P.K. Madhu, Anil Kumar,
Conc. Magn. Reson. 8 (1996) 139.]

there are always additional relaxation-coupled spins
present. These additional spins while on the one hand
carry away the magnetization from the spins of inter-
est reducing the NOE and the effect of cross-correla-
tions, on the other hand, act as sources for additional
cross-correlations. In order to investigate the effect of
spin diffusion on the net effect of cross-correlations,
the addition of fourth and fifth spins in a linear config-
uration has been carried out fer, = 3. Figs. 11 and

12 represent the effect of spin-diffusion and cross-
correlation on four- AMKP) and five- AMKPX)
spin systems in a linear configuration [95].

3.2.3.1. Four-spin systerror the linear configuration
of spins, it is found that the addition of the fourth spin,
while inverting the second spin, reduces the net NOE,
with and without cross-correlations, on the third spin,
while the net NOE without cross-correlations on the
first spin @A) remains relatively unaffected. For
example, on selective inversion of sgif the NOE

at 7, = 400 ms on the spirK is reduced to 18, 26 and
33% of the total magnetization, while the errors due to
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Fig. 10. Calculated net NOE for akMX spin system in percentage
(n) on the spin#A andX after selective inversion of spM at 7, =

0, is shown as a function af,, for a linear arrangement of the spins
A, M and X having inter-spin distance of 2.An the left-hand
diagrams, the dashed curves represent the calculated net NOE with-
out cross-correlations and the solid-curves with cross-correlations.
In the right-hand diagrams, the differencg’Y between these two
calculated NOEs are shown by solid curves. The top, middle and
bottom traces correspond 7. = 2, 3 and 5, respectively, for
/2w = 300 MHz Identical curves are obtained for the spirin

this case as well. [Reproduced with permission from P.K. Madhu,
Anil Kumar, Conc. Magn. Reson. 8 (1996) 139.]

Fig. 11. Calculated net NOE in percentagg 6n the spin#\, K and

P in a linear four-spin systemAMKP) after selective inversion of

the spinM at 7, = O, for w7, = 2, 3 and 5 forw/2w = 300 MHz In

the left-hand diagrams, the dashed curves represent the calculated
net NOE without cross-correlations and the solid curves with cross-
correlations. In the right-hand diagrams, the differengg between

the NOEs calculated with and without cross-correlations is shown
for each spin. The interproton distance in the linear configuration is
taken as 2.0 A[Reproduced with permission from P.K. Madhu,
Anil Kumar, J. Magn. Reson. A 127 (1997) 168.]

leakage pathway for the magnetization. On the other
neglect of cross-correlation as a percentage of the hand, forwr, = 5, there is little leakage in the three-
total magnetization, remain unchanged given by 6, 5 spin system, resulting in a significant effect of cross-
and 3% forwr, = 2, 3 and 5, respectively. It may be correlation as seen from Fig. 10, which is attenuated
noted that the error as a fraction of the total NOE has when the fourth spin is added (Fig. 11). It may also be
actually increased in this case. On the other hand, at noted that though both the net NOE and the maximum
longer mixing times, the net NOE on the sgfnhas errors are reduced, the errors as a percentage of net
well as the maximum error on both spiKsandA is NOE are still quite significant [95].
significantly reduced for alb 7.. The maximum error
for wr. = 5 decreases more dramatically than that for 3.2.3.2. Five-spin systemThe effect of cross-
w7 = 2, since in the case afr, = 2 and for the short  correlations on the net NOE on various spins has
correlation limit, there is already significant leakage been analyzed for a linear configuration of an
in the relaxation process of the three-spin system, and equidistant five-spin system, when the second spin is
the addition of the fourth spin adds only an additional inverted atr,, = 0 (Fig. 12). It can be seen that the
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tively, without any leakage but with cross-correlations, after selec-

Fig. 12. Same as Fig. 11 except that a linear arrangement of five (V€ inversion of the spiM atr, = 0. In all the above calculations,
spinsA, M, K, P andX is considered, with th spin being added at ~ the inter-spin distance is taken as 2 A7, =3 and w/2m=
2.0 Afrom spinP. [Reproduced with permission from P.K. Madhu, 300 MHz [Reproduced with permission from P.K. Madhu, Anil
Anil Kumar, J. Magn Reson. A 127 (1997) 168] Kumar, J. Magn Reson.A 127 (1997) 168]

maximum errors are small in all cases and are less correlations have been compared with the three-spin
than those in the four-spin case and that the errors calculation excluding cross-correlation, but with leak-
are significantly reduced even at intermediate age terms added to the diagonal elements of the
mixing times such as;, =400 ms It can be seen relaxation matrix. If this leads to an acceptable result,
from these curves that while the calculated net NOE it will establish whether one can use Solomon’s equa-
without cross-correlations on spidsandK changes  tions, (Eq. (65) contains evolution of only single-spin
little when the fifth spin is added, the effect of cross- modes) and neglect all cross-correlations, with leak-
correlations decreases significantly. On the other age terms added to the diagonal elements. Fig. 13
hand, with the addition of the fifth spin, the net shows the calculated transient NOE as a function of
NOE calculated with and without cross-correlations mixing time, on the spirK in the linearAMK spin
on the fourth spin ) decreases significantly. These system, on inversion of the spM at r,,, = O, calcu-
calculations indicate that as magnetization migrates lated without cross-correlations but with different
along the chain, the NOE and the effect of cross- amounts of leakage added to all the diagonal elements
correlations decrease. However, the effect of cross- of Solomon’s equations, fanr, = 3 [95]. Curvea is
correlations as a percentage of NOE still continues without any leakage and curvesf are with leakage
to be significant [95]. amounting to 5, 10, 20 and 30%. The same figure
In order to verify whether spin diffusion and cross- also shows the calculated transient NOE on ggin
correlation can be mimicked by a leakage process, in the linearAMKP and AMKPX spin systems with
the four- and five-spin calculations with cross- spin M being inverted atr, =0, calculated with
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cross-correlations (dashed curves) for, = 3. It is lapping chemical shifts, only the sum mode of the
seen from these curves that for short mixing times the degenerate spins can be monitored and the modes
four-spin net NOE including cross-correlations defined above have to be transformed into a symme-
matches the three-spin net NOE calculation without trized basis [58,96—101]. The cases involviAg,
cross-correlations but with 20% leakage. For longer As, AX, and AX; as well as strongly coupledB
mixing times, the amount of leakage must be reduced, and ABX spins are discussed in the following
and at very long mixing times beyond 1 s, the three- sections.
spin NOE without cross-correlations becomes smaller
than the four-spin NOE with cross-correlations. Leak-
age then cannot account for the spin diffusion. The 3.3.1. A spin system
five-spin NOE matches the three-spin NOE with 30%  For equivalent spins, the rate equation (Eq. (58))
leakage for short mixing times and the reduced leak- should be transformed into a basis set, which corre-
age for long mixing times with the three spin NOE sponds to the irreducible representation of the symme-
without leakage becoming smaller than the five-spin try point group of the spin system. The simplest spin
case afterr,, = 3 s These results indicate that in the system of this kind consisting of two relaxation-
presence of significant spin diffusion, the effect of coupled spin-(1/2) nuclei, which are magnetically
cross-correlations on the net NOE becomes small and chemically equivalent, have been studied by
and leakage can account for cross-correlations only several workers [17,58,101]. Here it is assumed that
for short mixing times [95]. the dipolar relaxation between the two spins is the
The conclusion of this section is that there is a major source of relaxation. One must define three
significant effect of cross-correlations on net NOE normal modes to describe the longitudinal spin evolu-
especially in the regiomr, = 1-3 and unless cross- tion. These modes are defined in the following way
correlations are explicitly taken into account, the [58]:
distances obtained from NOE should be treated as
estimates rather than accurate measurements, espe; a,
cially for analyses, which go beyond initial rate ©*1
approximations.

= Tr{(1 + 12)0}

1 , ,
Sh = —=Tr{[31212 — 1*1% ]}

Ne (79

3.3. Effect of cross-correlations in equivalent and
strongly coupled spins oA 2 TH AR
_ o Wl = % {1717 ]a}

In the three-spin analysis given above, the recov-
ery of the second inverted spin has also been calcu-
lated with and without dipolar cross-correlations. It where the antisymmetric mo /142 is the only obser-
is found that there is a significant effect of cross- vable mode. In the absence of CSA—dipole cross-
correlations in the recovery of the inverted spin and correlations, only the observable mcﬁi@2 is created
that it is highly non-exponential (Fig. 14) [93]. The and it relaxes monoexponentially through the auto-
origin of this non-exponentiality is well understood correlated dipolar relaxation. In the presence of a
in the context of the above discussion. The recovery random field mechanism, the modes have coupled
is non-exponential in the presence of cross-correla- evolution [58].
tions (a sum of seven exponentials for a three-spin
system, Eq. (61)), as well as in the absence of cross-
correlation (a sum of three exponentials for three 3.3.2. A spin system
relaxation-coupled spins, Eq. (65)). This behavior = The effect of multi-spin dipole—dipole cross-corre-
is independent ofl-coupling, when the recovery of lations in systems with three identical spin-(1/2)
net magnetization of a spin is monitored. However, nuclei (A;) is discussed here. Only three irreducible
the situation requires that all the relaxation-coupled modes are coupled by dipole—dipole cross-correla-
spins have resolved chemical shifts. In case of over- tions. Their definitions and the rate equations are
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Fig. 14. Calculated net magnetization in percentage of lgpas a function ofr,,, after selective inversion of spM, atr,,, = O, for the linear

geometry of three spinAMX for three different values ofvr.. In the left-hand diagrams, the dashed curves represent the calculated
magnetization without cross-correlations and the solid curves with cross-correlations. In the right-hand diagrams, the differences between
these two calculated magnetizations are shown by solid curves. [Reproduced with permission from P.K. Madhu, R.C.R. Grace, Anil Kumar,

Bull. Magn. Reson. 16 (1994) 115.]

given by [58]:
a_ A

At = T2 + 12 +1/)a}

4

B = ETAILAM ) £ 1AM 120 M)
A %Tr{ [SAATA — AN I
HAAAY) 12X a0 (80)

S (D) Ty g Al

A R IR

HAO) Ty ol
AR5 (1)

x| 35

AL

(81)

The various elements of the relaxation matrix in Eq.
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Fig. 15. Intensity profile for the ring protobH) and the methyl proton in an inversion recovery experiment, carried out on 0.1 M acerizonate
dissolved in RO, phosphate—KCI buffer, ionic strength= 0.2, pH = 7.0 at 32C. The points represent the experimental data and the lines

show the theoretical fit to the experimental data. The relaxation of the methyl protons is non-exponential. [Reproduced with permission from
J.F.R. Miranda, C.W. Hilbers, J. Magn. Reson. 19 (1975) 11.]

(81) are given by [58]:

apAs _
Fll_
apAs _
F12_
afrAz _
F13_

afr Az _
F22_

T3 =

afp A _
F33_

HereJ,(w) = Jjjj (0) andJ.(w) = Jji (w). The indices

2[J(w) + 41,(2w)]

% [3e(®) + 43,20)]
“ff (@) — 43(20)]

%{ [G‘Ja(o) - Jc(o)] + 4[Ja(2w) + ‘]c(zw)]

+ 100,(w) — 8J:(w)}

NG
5
— 2[J,(2w) + J(2w)] + 5Jy(w) — Jc(w)}

{ - 3[\]3(0) - ‘]c(o)]

%{9 [Ja(0) = J(0)] + 6[Ja(20) + Je(20)]

+ 3003(w) + 18).(w)} (82)

equivalent spins. It is interesting to note thi(0)

and J(2w) contribute in the case of equivalent
spins, unlike the weakly coupled case. It turns out,
as will be discussed in a later section, that cross-corre-
lations from spectral densities at zero ana @ontri-
bute to relaxation in the strong coupling situations
[75,102] as well; equivalent spins being extreme
examples of strongly coupled spins.

Out of the three modes in Eq. (80), only the mode
Sv’f is observable and is coupled to the unobserv-
able modesi/4® and $i4° via the cross-correlation
terms. On the other hand, the unobservable modes
are coupled to each other by auto- and cross-corre-
lation terms. In an experiment, it is possible to
excite and observe only th%n/f3 mode, which in
the absence of cross-correlation relaxes with a single
exponential. In the presence of cross-correlations,
this mode214* converts to the unobservable modes
S5? and Sy and back to the mod@4®, giving rise
to multi-exponential relaxation (Fig. 15) [103-108].
This is the source of non-exponential methyl relaxa-
tion mentioned in many earlier analyses of cross-
correlations, along with solid-state NMR studies of
methyl and ammonium group reorientations

i, j and k are dropped since we are dealing with [36,109-118].
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3.3.3. AX% spin system

Several workers have studied tA&, spin system,
theoretically as well as experimentally [58,119-140].
For such a system, in the presence of only dipole—
dipole cross-correlations, three antisymmetric
physically observable normal modes namely,

15+ IZ')/\/E and 42 ZX are needed. One also
needs a fourth non- measurable mo&[(1 X1 X +

1 X1 X121, which is coupled to the first two modes
via dipole—dipole cross-correlations and to the third
mode via both auto and cross-correlations. The relaxa-
tion matrix elements for such a system are given by
[58]:

11 = 2[(U3)Ipxax(@a — @x) + Jaxax(@n)
+ 2axax(wa + wx)]

T 12 = V2[— (U3)Ipxax@n — @x)
+ 2Jaxax(wa + wx)]

T 13 = 2Jpxax(@n)

21" 14 = V2[(13)Iaxax (wa — wx)
+ 2axax(wa + wx)]

A 55 = (U3)Iaxax(@a — @x) + Iaxax(@x)
+ 2Jaxax(@a T wx) + Ixxexx (@x)
+ Axxrxx (2wx)

21" 25 = VBJaxxx (@x)

21 24 = 2Iaxax(@a — 0x) — (U3)Iaxax(wp — wx)
= 2Jaxxx (@x)

21" 33 = 2Jaxax(@a) — 2Iaxax(@x) + 2Jyx(@y)

: 5 [Jaxax(0) — Jaxax (0] + 3 Jaxax(@a —

Y
+ Jaxax(@x) + 2Jaxax(wa + 0x) + Ixx(wx)
(83

wy)

While the relaxation matrix elemenl%l“ll, Flz,
F22, F33 depend only on auto- correlatior®]';5,
F14 F23 and 2", only on cross-correlations.
F34 depends on both auto and cross-correlations.
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Thus in the presence of dipole—dipole cross-correla-
tions, there is differential relaxation between the outer
and the inner transitions of th& spin multiplet, but

the transitions of th-spin doublet relax identically.
However, if one considers the CSA of spidaeandX,
several two-spin modes coupled by CSA-dipole
cross-correlations have to be considered, the expres-
sions of Eq. (83) become fairly complicated and lead
to differential relaxation of th&-spin doublet as well
[134].

3.3.4. A% spin system

The methyl group**CH; belongs to this type of
four-spin case and is encountered in several systems.
The dipolar interactions among the various protons
and carbon-protons have been considered by several
authors [135-175]. The antisymmetric modes for the
AX; system consist of three measurable modes
namely: v;, the total A-spin magnetizatior(1%), vs,
the total X-spin magnetizatior(l¥ + 15 + 15) and
v3, the weighted sum of the outer components
minus the central components of thé-spin
quartet 120X + 14X +1X1X)]. Coupled to
these three measurable modes are three non-measur-
able modesv,, the quartet minus the doublet contri-
butions to the central lines in thé&-spin quartet
(111X andvs and v, two combinations of forbid-
den transitions in the-spin manifold 141 X 1X" +
XY 1 X0 24Xy 1 a4 K w14
and 12057 19X 149X 149 +10X +
1X1X)]. The relaxation matrix elements for this
system in the presence of dipole—dipole cross-corre-
lations are given in Ref. [58] and for CSA—dipole
cross-correlations are given in Refs. [134,176,177].
In the absence of cross-correlations, mode$o v,
have the same relaxation rates. In the presence of
dipole—dipole cross-correlations, the outer lines
relax at a different rate compared to the inner
lines which has been observed experimentally
[89,150,157].

3.3.5. AB spin system

The simplest case of a strongly coupled spin system
is the two-spin system AB). The rate equation
for such a systemis given by Eq. (52). If one considers
the CSA of both spins as well as the dipolar inter-
action between the two spins, the single quantum
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transition probabilities (numbering the states|as= cross-correlation spectral densities, including the
|aa), |2) = cos|laB) + sin 6Ba), |3) = —sin 6laB) + remote termJag(0).
cos6|Ba) and|4) = |BB)) are given by [178,179]:

Wys 1+cosd 2sito L -—sin2
) ) Jpa(w)
Wa, 1+cosd 2sito L +sin2g ”
- = Jes(w)
Wi, 2sif 6 1+cosd % +sin2g
NININ: ()
Way 2sif9  1+cos¥ i —sin2y
—sin20+cosP+1 —sin29+2sif 9§ 2sin2
. . . . nas(®)
—sin20+cosP+1 —sin20—2sirfd —2sin2
. . _ . Js.aB(®) (84
sin20+2sif® sin20+cosP+1 —2sin
Jap(w)

sin20—2sif® sin20—cosPH—1 2sind

In the presence of cross-correlations and strong 3.3.6. ABX spin system
coupling, all the four W; terms are unequal. The effect of strong coupling and cross-correlations
The contribution of CSA-CSA cross-correlation on longitudinal relaxation has been investigated theo-
[Jas(w)] becomes observable as a differential effect retically, for ABXspin systems [74,76,178-180]. It is
between the inner and the outer transitions ofAlse found that while the effects of cross-correlation in
multiplet. weakly coupled spins are limited to spectral densities
For equivalent spin systems, where the sum mode is at the Larmor frequency(; terms), which decrease
the only physical observable, the contribution of this in magnitude aswr. increases beyond 1, strong
remote term to longitudinal relaxation cancels out.  coupling mixes states and therefore cross-correlations
The double and zero quantum transition probabil- affect spectral densities at zero and.2

ities are given by [178,179]: Table 1 contains the contribution of dipole—dipole
Jaa(0)
<W14) 1 ( 0 0 JAA(O)
Wys)  3\4sif20 4sif20 1-sit20)|
Jagag(0)
Jaag(0) Jan(2w)
4 0 0 0 o 00 2y ™
+ 3 . . . Jsas0 | + Jge(2w)
3\ —sin29cos® sin20cosd —2sirf 26 0 0O

Jas(0) Jagas(2w)
(85

As can be seen from this equation, the double cross-correlations to various transition probabilities in

quantum transition probability is independent of the presence and absence of strong coupling. Itis seen
strong coupling as well as cross-correlations. On that under strong coupling dipolar cross-correlations
the other hand, the zero quantum transition contribute to transition probabilities at zero, and twice

probability has contributions from all auto and the Larmor frequency as well.
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Table 1
Difference between the transition probabilities with and without dipole-dipole cross-correlations

W, 5 Strong coupling Weak coupling

Zero quantum transition probabilitie@\p)

W3 2[Jaxex(0)C:5:1/3 0

Was —2[Jaxex(0)c; s 1/3 0

W, H(Insax(0) — Jneex(0)(CEs; — €. 81) — 2Jaxex(0)C3 S: 1/3 0

Wsg —4(Ineax(0) — Insex(O)(C2s_ — c_S>) + 20axex(0)c* S 1/3 0

Ws7 2[Jaxex(0)c_s_1/3 0

We7 —2[Jaxex(0)c-s_1/3 0

Double quantum transition probabilitig&\,)

Wis A Iaxex(2w)C-s_] 0

Wie —4[Iaxex(2w)C_s_] 0

Wiy, 0 0

W, 0 0

Wag 4axex(2w)Cy 84 ] 0

Was —4[Iaxex(2w)C4 St ] 0

Single quantum transition probabilitig¥\V;)

Wi, Jaxex(@) Jaxex(®)
Wiz [Jagex(@)(C3 + C1S)) + Iapax(@)(S + C1S;) + Jaxex(@)Cy S, ] Jagex(®)
Wiq [JABBX(w)(S%r —CiSy)t JABAX(w)(Ci — C+S;) — Jaxex(@)C. S: ] Jasax(@)
Was ~[Jagex(@)(C + C_S_) + Japax(@)(& — €_S_) — Jaxpx(@)C_S_] ~Jneax(©)
Whs ~[Japex(@)(S — €-82) + Jagax(@)(€2 — €-5.) + Jaxex(@)C-S-] —Jnpax(®)
Wss —[Daxex(@)(CiC- — 5,5.)] Jaxex(@)
Wse —[axex(@)(C;S- +5,C-)] 0

Wa7 —[Japex(@)(S: + CiSy) + Japax(@)(CG + €.S;) — Jaxex(@)C. S, ] —Jaeax(®)
Wis = Wag 0

Wie = Was Jaxex(@)
Wiz —[Jaeex(@)(CE — C18:) + Jagax(@)(S: — €.:S;) + Jaxex(@)C. S, ] —Jasex(®)
Wsg [Dagex(@)(S: + €_S_) + Jagax(@)(C + C_S_) + Jaxex(@)C_S_] Jasax(®)
Wes [Jagex(@)(C2 — C_S_) + Japax(@)(S — C_S_) — Jaxex(@)C_S_] Jnex(®)
Wog Jaxex(®) Jaxex(®)

& ¢, =c0g6,); s, =sin(0,); c_ = cog6_); s_ = sin(h_).

NOEs onA and B spins have been calculated for modes,X,, 2AX,, 2B,X, and 4B, X, become zero.
non-selective irradiation/inversion of all transitions of The three-spin calculation then reduces to a pseudo-
X spin. While in a transient experiment, the effect of two-spin system [75,178]. Since in a weakly coupled
cross-correlations is significant in both weak and case, the dipole—dipole cross-correlations connect
strong coupling situations, it is found that for a single-spin orders only to three-spin order, the effect
steady-state experiment, the effect of cross-correlation of dipolar cross-correlation becomes analytically
is absent for the weakly coupled case and small for the zero. If CSA—dipole cross-correlations were included,
strongly coupled case [75,76]. The absence of the they would affect the steady-state NOE. In a weakly
effect of cross-correlations for a steady state experi- coupled four-spin system, saturation of the fourth
ment in the weakly coupled case is because, irradia- spin, reduces the relaxation dynamics to a psuedo-
tion of a spin saturates the single-spin mode three-spin system and the dipole—dipole cross-corre-
(magnetization of the spin) as well as all modes lation also affects the NOE to the remaining three
containing that spin. If theX spin is saturated, then spins.
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Recently, the effect of CSA along with dipolar
contribution has been calculated for &BX spin
system [178,179]. While the dipolar contribution to
relaxation is given in Table 1, the remote CSA—dipole
and CSA-CSA cross-correlation contributions are
given here. For the single quantum transition prob-
abilities of theAB spins, the remote cross-correlations
contribute in the following manner [178]:

Wi, sin 26, sin20, —2sin29,
W4 sin 20, sin20, —2sin29,
Wog sin 26_ sin 26_ 2sin 29_
Wag —sin29_ —sin20_- —2sin2h_
W3- N sin 26, sin20, —2sin29,
W, sin 20, sin20, —2sin2,
Wsg sin 26_ sin20_ 2sin 29_
Wss —sin29_ —sin20_- —2sin2h_

Japx(®)

X | Jsax(®) (86)
Jap(w)

It may be noted that the remote CSA—dipole cross-
correlation termslagx andJg ax and CSA—CSA term
Jag also contribute to the varioudV,'s. These
contributions vanish in the weak coupling approxi-
mation. The single quantum transition probabilities
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3.4. Experimental observation of longitudinal cross-
correlations

There are many experiments in which the presence
and the utility of cross terms have been demonstrated.
We classify them into the following types: (i) non-
exponential recovery in longitudinal relaxation; (ii)
direct detection of multi-spin order as a multiplet
effect in inversion recovery and NOE experiments
with or without multiple-quantum filters; (i) multi-
plet effectin 2D NMR experiments (mainly NOESY);
(iv) creation of multi-spin order and its recovery and
conversion to single-spin order.

3.4.1. Non-exponential recovery in longitudinal
relaxation

One of the early observations of cross-correlations
originating from cross terms between proton—proton
dipolar interactions is the non-exponential recovery of
methyl magnetization in solids as predicted by
Hubbard [105,106] and observed by Hilt and Hubbard
[36], Anil Kumar and Johnson [118], van Putte and
others [157,158] and Buchner et al. [159-164]. There
have been several observations of non-exponential
relaxation during the early 1960s and 1970s, which
have been attributed to cross-correlations. As briefly
indicated in Section 3.3.1, non-exponential proton
spin—lattice relaxation, which is a signature of
cross-correlations, was observed in powder samples
containing CH groups [109-118]. It has been pointed
out that, in powder samples, the methyl relaxation can

of the X spin are unaffected by these remote cross- be non-exponential due to several reasons, namely

correlations. These remote terms however, affect the cross-correlations,

zero quantum transition probabilities between the
mixed states 3-4 and 5— 6 in the following
manner [178,179]:

anisotropic reorientations and
overlap of multiple sites [37]. One of the unequivocal
experiment, for the observation of non-exponential
relaxation due to cross-correlations was performed

W (1-cos®,) (L—cos®,) —2(1—cos4H,) Jnex(0)
( 34) — E( + + + ) \]B’AX(O) @
Wsg 3\-(1-cos®_.) —(1—cosd_) —2(1—cosd.)
Jas(0)

These terms which have contribution at zero
frequency drop out in the weak coupling approxima-
tion. All the other zero- and double-quantum transi-
tion probabilities are unaffected by these remote
cross-correlation terms.

by Mehring and Raber by studying the relaxation
behavior of F in a CRCOOAg single crystal,
where the three-fold axes of all the molecules in the
unit cell are collinear [37]. The experimental results
agree well with the prediction of the Hubbard—Hilt
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theory and is a definitive experimental confirmation of decoupled*C relaxation was investigated in detail in
the same. In a series of articles published between BCH, and °CH, systems by Werbelow and
1967 and 1972, Blicharski and coworkers made an coworkers [138,165]. They obtained in these systems
extensive theoretical analysis of interference between a biexponential recovery of magnetization, the reason
dipolar, quadrupolar and CSA interactions in systems for which was attributed to cross-correlations. It may

of 2—4, like or unlike spins along with an experimen-
tal study of the non-exponential longitudinal relaxa-
tion of *F in C,F,Cl, and BR; [17-20].

From a spectroscopist’s viewpoint, the utility of
cross-correlations in yielding finer details of molecu-

be noted that cross-correlation effects play a minimal
role in CH; where the effects are masked by motional
criteria that are rather unlikely to be satisfied except in
unusual cases [153]. However, variability in the
motional geometries, disappearances of proton—

lar structure and dynamics than conventional relaxa- proton influence, and the possibility of zero eigen-
tion parameters was noted in the early years itself and values in the relaxation equations are realistic

the inclusion of cross-correlation spectral densities
was attempted to exploit nuclear spin relaxation to
its maximum. For example, in a series of papers,
Vold et al. clearly demonstrate the usefulness of
cross-correlations in the study of planar molecules
[24—29]. Alternatively, the exploitation of non-axially

symmetric interactions proved useful as elegantly illu-
strated by the pioneering work of Huntress [181], and
Dolle and Bluhm [182]. While auto-correlation is

responsible in thermalization and/or dissipative

problems in the Chkl case where cross-correlations
are more significant [167-171]. An observation of
non-exponentiality in'H-coupled**C-methyl relaxa-
tion was reported by Brown et al. in enriched
CHaHgO,CH; in D,0 [166]. Contribution of CSA

to *C relaxation in this system was ruled out by lack
of asymmetry in the relaxation of the fully coupled
quartet and by observing the same NOE values in two
different magnetic fields.

processes, and can be associated with the measure3.4.3. Multiplet effect in inversion recovery and NOE

ments ofT,, T,, T4, or cross relaxation, cross-correla-

tion initiates polarization and coherence transfer and

is manifested in higher forms of transient spin orders
[183,184].

3.4.2. Non-exponentidfC relaxation

There have been several studies involving non-
exponential recovery of’C magnetization due to
cross-correlations in the presence of proton

experiments

There have been many investigations involving
recovery of *C magnetization in the presence of
proton couplings. In this case, the cross-correlations
show up as differential relaxation of the lines of the
multiplets, yielding direct evidence of the presence of
cross-correlations. Notable among the early studies
are by Daragan et al. [39—41], Vold et al. [24—29],
Fuson and Prestegard [124-127], Nery et al.

decoupling. Notable among these studies are those[185,186] and Grant et al. [187,188]. One of the

by Buchner et al. [159—-164], Werbelow and Marshall
[165], and Brown et al. [166]. Buchner and Emmerich
in 1971 observed a multiplet effect in the dynamic
nuclear polarization of'C nuclei in the methyl groups

of toluene and similar compounds. A difference in
relaxation times of**C depending on whether the

earliest observations of multiplet effect was reported
in 1966 by Mackor and Maclean, where they have
observed differential relaxation &fF and its dipolar
relaxation with the attached proton [189]. Another
clear experimental evidence of cross-correlations is
the observation of differential NOE on tHeC triplet

protons are in a quartet or in a doublet state has of “*CH,l, in benzene-g on inversion of protons by
been found to be the reason for the observed multiplet Mayne et al. [190] (Fig. 16). The intensities of the

effect [159]. This difference if°C relaxation times is
shown to give rise to non-exponential longitudinal
relaxation of the methyl group®C line in proton-
decoupled spectra [160]. Further, it has been

theoretically shown that cross-correlations between

spin rotation interactions in methyl groups can give
rise to non-exponential®C relaxation [160]. Proton

carbon-13 triplet deviates from 1:2:1 ratio as a func-
tion of the recovery time, except at very short and very
long times, clearly establishing the creation of multi-
spin order in thisAX, spin system.

Fuson and Prestegard observed differential relax-
ation in polyethylene glycol by using the pulse
sequence 186C,*H)—r—90(*C)-Acquisition [125]
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Fig. 16.°C NMR time resolved spectra ofC-enriched methylene iodi

de obtained at various titesown in the figure, subsequent to the

complete inversion of the proton doublet. [Reproduced with permission from C.L. Mayne, D.M. Grant, D.W. Alderman, J. Chem. Phys. 65

(1976) 1684.]

(Fig. 17). With the help of this sequence, the magne-
tization mode, which is the difference in the intensities
of the outer and inner lines of the triplet of GH
carbons, could be observed. The differences in inten-
sities arise due to CH-CHand CH-HH dipole—
dipole cross-correlations. An interesting study is the
unequal recovery of the proton doublet in &iN-
enriched sample of a substituted uridine (Fig. 18) by
Gueon et al. [191]. They observed that the proton
doublet exhibited differential relaxation behavior
after selective inversion. This was explained as due
to cross-correlation between the CSA of H and H-N
dipolar relaxation. This study marks the beginning of
several observations of CSA and dipolar cross-
correlations through unequal multiplet relaxation as
direct evidence of cross-correlations.

Another important development in the observation
of CSA—-dipole cross-correlations in coupled protons
was published by Dalvit and Bodenhausen [45] in a
system having two ortho aromatic protons mutudHy
and relaxation-coupled. Selective inversion of each
doublet followed by a small angle (20measuring
pulse, showed differential recovery of the two lines
of the doublet, indicating the creation of two-spin-
order terms during the recovery period (Fig. 19). An
interesting remark by the authors of this paper is, “the
use of 90 measuring pulse is the reason for the non-
detection of cross-correlations in 20 years of inversion
recovery T, measurements in homonuclear coupled

spin systems”. Following this work, Dalvit [192] did
selective inversion-recovery experiments [using a
small-angle (30) observation pulse] on amide protons
of the undecapeptide cyclosporine-A, that aje
coupled to their respective-protons (Fig. 20). The
observed differential relaxation of each amide doublet
was attributed to the cross-correlation term between
the CSA of the amide proton and the+H, dipole—
dipole interaction [192].

Similar experiments have been performed in
heteronuclear spin systems 6€, °F and>'P [193-
202]. Unlike the homonuclear spin systems, there is
no need for a small angle measuring pulse in the
heteronuclear case. Heteronuclear dipolar cross-
correlation was observed by Daragan and Mayo in
13C relaxation measurements in the form of unequal
relaxation of individual multiplet lines [51,203]. Typi-
cal examples fol°C are given in Fig. 21 [89]*°F in
Fig. 22 [197] and®P in Fig. 23 [198]. Several groups
have conclusively shown that the analysis of cross-
correlation spectral density terms obtained from the
relaxation of**C multiplet of CH, and CH groups can
give additional information for molecular rotational
motions. Fuson and Prestegard have used this metho-
dology to analyze motions executed by a fatty acyl
chain in phospholipid vesicles [127]. This was
followed by Daragan and Mayo where they showed
that the differential relaxation oFFC multiplet in a
peptide [51,203] can be correlated to the order
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Fig. 17. (i) Inversion recovery spectra for a 20% polyethylene glycol sampl€@t Spectra were recorded on a Bruker CXP200 spectrometer

using a phase-alternating pulse sequence with a repetition rate of 3 s. Each spectrum is the average of 120 scans. Pulse sequence used wa
180(3C, *H)—r—90(°C)—acq. (ii) The 0.2 s spectrum of (i) is reproduced in B. A is the 0.2 s delay spectrum obtained with the additioh of a 90
proton pulse along with thEC-9C° observation pulse. The two 9pulses suppress the two-spin order term giving rise to spectrum A containing

only single-spin®C order. C is the difference between A and B, containing exclusively the two-spin order terms. [Reproduced with permission
from M.M. Fuson, J.H. Prestegard, J. Magn. Reson. 41 (1980) 179.]
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Fig. 18. Inversion-recovery proton NMR spectra for the two compo-
nents of the imino doublet of $N-substituted 2 3/, 5'-tri-O-
benzoyluridine. The difference in the relaxation rates is ascribed
to CSA—dipole cross-correlations. The relative differential in the
relaxation rate ig11 =+ 2)%. A value of 5.7 ppm is derived for
the proton chemical shift anisotropy. [Reproduced with permission
from M. Gueon, J.L. Leroy, R.H. Griffey, J. Am. Chem. Soc. 105
(1983) 7262.]

parameter or local correlation time along a hydro-
carbon chain.
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triphenylsilane and trehalose using initial rate 1D
and 2D experiments, in which the two-spin full
relaxation matrix3 X 3) has been analyzed. Attention
was paid to careful experimentation, in terms of
normalization of 2D experiments to zero mixing
time and to the influence of insufficient relaxation
delay in such studies. The various rates have been
measured to a high accuracy.

3.4.4. Multiplet effect in NOESY experiments

A widely used method for the observation of cross-
correlations is the conversion of multi-spin longi-
tudinal order created by cross-correlations into multi-
ple quantum coherences, which in turn, are detected
via multiple quantum-filtered NOESY. Dalvit and
Bodenhausen have combined the principle of double
quantum filtration with 2D spectroscopy for the study
of homonuclear spin systems [45]. This experiment is
referred to as DQF NOESY, which is employed to
measure the build up of longitudinal two-spin order
[45]. This also provides unequivocal evidence for the
presence of the cross terms between CSA of proton
and the proton—proton dipolar interactions particu-
larly for the aromatic protons. In this experiment,
the initial longitudinal single-spin order af, = 0 is
converted duringr, into two-spin longitudinal order
by CSA—dipole cross-correlations, which in turn gets
converted into two-spin transverse coherence contain-
ing both double- and zero-quantum coherences of

Keeler and Ferrando have shown that the presencewhich only double-quantum coherence is detected

of CSA-—dipole cross-correlations can give rise to by the double-quantum filter. The diagonal and the
different NOE enhancements for the different lines cross peaks in this experiment imply the presence of
of a weakly coupled multiplet [42]. In some special CSA-dipole cross-correlation terms (Fig. 24). This
cases, the effect is sufficiently large that some lines of experiment is similar to the triple-quantum filtered
the multiplet can show positive enhancements and NOESY [206,207], which monitors the build-up of
some negative. Similar effects can also occur due to the longitudinal three-spin order created from
cross-correlations between separate dipolar relaxationthe longitudinal single-spin order by dipolar cross-

pathways [42]. An earlier study by Nery et al.
also considered the effect of CSA-dipole cross-
correlations on the NOE [102,185,186].

correlations in three-spin systems (Fig. 25).
Oschkinat et al. have used a small angle NOESY
experiment (90-a—B with a = g = 20°), which

Cross-correlation effects have also been observedallows observation of the multi-spin order created
in nucleotides. It has been observed that cross-corre-from single-spin order via cross-correlations during

lation betweer®P CSA and®*P-*'P dipolar relaxa-
tion gives rise to differential longitudinal relaxation in

the mixing time of NOESY [87]. A modification of
this experiment has been suggested by Grace and

adenosine triphosphate (ATP) and diphosphate (ADP) Kumar in which the second pulse is ®9@nd the

[204]. Batta et al. [205] have recently measured
B¥c_H dipolar and ¥*C CSA cross-correlation
contributions to longitudinal relaxation iffCHCI,,

third is a small angle pulse or vice versa [208]. This
suppresses the direct pumping effects and renders the
differences in the intensities of various lines of a
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Fig. 19. Selective inversion-recovery spectra, at 500 MHz corresponding to each doublet of the two-spin system of ring protons of Adlone
recorded with a 20measuring pulse. The differential relaxation of the doublets of each proton arises from creation of the two-spin-order term
during the recovery period by the cross terms between CSA of the aromatic proton and its dipolar coupling with the other aromatic proton.
[Reproduced with permission from C. Dalvit, G. Bodenhausen, Chem. Phys. Lett. 161 (1989) 554.]

multiplet as entirely due to cross-correlations. Since ments, where the various multiplets of a spin are
resolution alongw, is usually better than that along well resolved vyield direct evidence for cross-
w1, the NOESY 90-9C0—-«a experiment is preferred.  correlations.

Hence, these flip-angle-dependent NOESY experi- Several sensitive pulse sequences have been
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Fig. 20. Selective inversion-recovery spectra of the amide proton
region of cyclosporine A (30 mg in 0.6 ml CD{lrecorded at
300 K with a 30 detection pulse. The spectra were recorded on a
Bruker AM-500 spectrometer. The two doublets correspond to the
NH proton resonances for the residues Val-5 (left) and Ala-8 (right).
The time indicated on the left of each spectrum is the interval
between the 180pulse and the detection pulse. [Reproduced with
permission from C. Dalvit, J. Magn. Reson. 95 (1991) 410.]

developed to monitor the CSA-dipole cross-
correlations such as polarization transfer [183,184],
2D Soft NOESY [209], Ortho ROESY [210],

SLOESY [211] and Overbodenhausen [212]
experiments.

3.4.5. Observation of antiphase magnetization
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Fig. 21. Proton-coupled®C inversion-recovery spectra showing
relaxation in the multiplets of°C spins in a peptide and in a
small molecule. (A) Measurements of selectively enrichédo€
Gly-10 in the hexadecapeptide GVKGDKGNPGWPGAPY
recorded at 283 K at the carbon resonance frequency of 150 MHz.
Time intervals are 2, 0.025, 0.05, 0.075, 0.1, 0.15, 0.2, 0.25, 0.3,
0.35 and 0.4 s. (B) and (C) give comparative data, respectively, for
methylene and methyl carbons of ethanol, recorded at 299 K. Time
intervals are 20, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 5 and 6 s. For the
glycine, the inner line relaxes faster than the outer lines (A); for
the CH, group of ethanol, the outer lines relax faster than the inner
line (B). For the ethanolic methyl carbon, the inner lines relax faster
than the outer lines (C). All these differential relaxations demon-
strate the presence of cross-correlation between the CSA of carbon
and its dipolar relaxation with the attached protons. [Reproduced
with permission from V.A. Daragan, K.H. Mayo, Chem. Phys. Lett.
206 (1993) 393]

single-spin order to two-spin longitudinal order term
via the cross-correlation between CSA and dipolar
interactions by converting it into antiphase magneti-
zation by a small angle pulse acting on both spins or
by a selective 90acting on one of them [213]. The
antiphase term could also be detected by suppressing

Jaccard et al. have shown that in heteronuclear spinthe single-spin order term. The growth and decay of
systems one can selectively observe the conversion ofantiphase *C magnetization was observed as a
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Fig. 22. (a)'°F inversion-recovery spectra of 1-fluoro-2,4-dinitrobenzene using Bruker AMX-400 spectrometer and the pulse sequence
180°—r—90—Acquire, recorded for recovery times indicated in the spectra. The differential relaxation &fFtheultiplet reveals the
creation of a two-spin order terni2A;S,), which reaches a maximum value of about 12% of the single-Spirorder and is created by

the cross-correlation between the CSA S and its dipolar relaxation with the proton ortho to it. (b) Normalized build-up of the two-spin
order (2A,S,)(S) derived from experiment (a). [Reproduced with permission from R.C.R. Grace, Anil Kumar, J. Magn. Reson. A 115
(1995) 87.]

function of recovery time (Fig. 26) [213] in a sample 3.5. Isolation of longitudinal relaxation pathways

of methyl formate, where there is cross-correlation using RF pulses

between the carboxyli¢®*C CSA and the*C—'H

dipolar interaction. The experiment used the pulse Levitt and Di Bari [214,215] recently demon-
sequence 1867-90;(90,90.,), and the difference  strated a remarkable experiment in which multi-
of the spectra gives the magnitude of the two-spin spin longitudinal orders, created by cross-correla-
order 2,S,. By this difference method, it is possible tions, are “spin-locked” for very long times (steady
to detect very small two spin orders of the order of state). This is obtained by isolating the relaxation
0.1%. pathways by the use of a series of selective and
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Fig. 23. (a) Schematic diagram of the hypophosphite (HP) ion showing the relative orientation of the chemical shielding tensor with respect to
the molecular frame. The subscript m, denotes the molecular frame. (b) Norm@}ige)it)/I2, two-spin order relaxation profiles of HP, at
various temperatures (filled circles—276 K, filled triangles—294 K and open diamonds—329 K), obtained by inversion recovefyPof the
nuclei. The solid curves were calculated at the respective temperatureg, withhi3.9, 7.6 and 3.1 ps. The two-spin order is created by the
cross-correlation between the CSA®P and its dipolar interaction with the protons coupled to it. (c) Normalitg®, Sy (t))/12, three-spin

orders, for various temperatures (same as (b)), obtained with the inversion ét@atidH nuclei. The three-spin order is created due to the

dipole—dipole cross-correlations. Theoretical calculations used the same parameters as that of (b). [Reproduced with permission from C.L
Tsai, W.S. Price, Y.C. Chang, B.C. Perng, L.P. Hwang, J. Phys. Chem. 95 (1991) 7546.]
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Fig. 24. Double-quantum filtered NOESY proton spectrum at 500 MHz of Adlone recorded with the pulse seq@@nt;eglﬁ,z—(frm +
Mtl)—90‘353—A—900¢4—t2 with a mixing time of 2.6 s angk = (1/3). The spectrum contains four multiplets (peaks inside the circleg)atwa),

(wa, wx), (wx, wp) and(wy, wy) because of longitudinal two-spin order. These multiplets have pure absorptive phase in both dimensions and
are in-phase im; and antiphase im,, with respect tdx. The remaining eight multiplets arise from zero-quantum terms and can be identified
because of their displacementdn. The zero-quantum multiplets are antiphase in both dimensions; they have pure absorptive phasetin

they feature a mixture of absorptive and dispersive phasg which depends on the duration of the mixing time. [Reproduced with permission
from C. Dalvit, G. Bodenhausen, Chem. Phys. Lett. 161 (1989) 554.]

non-selective 180pulses. They also demonstrated 3.5.1. The Homogeneous-Master-Equation (HME)
that this method can be used for the detection of approach

very small cross-correlations. The explanation of  The equation of motion of the density matrix (Eq. (21)):
the experiment is through the Homogeneous-

Master-Equation (HME) approach which is outlined do . _

in the following. o = Heam ol * Mo = oeq), 88)
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Fig. 25. Parts of triple-quantum filtered (A) NOESY and (B) COSY proton spectra eftB@egion of the cyclic undecapeptide cyclosporin-A

in CDCl,, recorded at 400 MHz. The zero-quantum peaks in (A) have been shifted using the mixing time &g with k = (1/3) and have

been identified. In COSY, peaks are doubly antiphase in be#ndw, dimensions. In NOESY, the peaks arise due to cross-correlations and

are antiphase im,, but in-phase inv;. A large number of such peaks are present indicating the presence of significant dipole—dipole cross-
correlations in several residues. Circled peaks are strong in one spectrum and weak in the other. The peaks missing in NOESY and present ir
COSY are due to spins which have resoldecbuplings but weak cross-correlations. On the other hand, peaks presentin NOESY and absent in
COSY are due to spin systems which have no resalveauplings, but show cross-correlations. Weak alanine peaks (circled) in COSY are due

to violation of coherence transfer selection rules. Negative contours have been filled in for clarity. [Reproduced with permission from C. Dalvit,
G. Bodenhausen, J. Am. Chem. Soc. 110 (1988) 7924.]

The master equation (88) has a peculiar asymmetric
form in which the coherence part applies to the full
density matrix and the relaxation part only to the
deviation from equilibrium. It is possible to isolate
the various relaxation pathways of a spin system by
applying radio frequency pulses, but theoretically one
runs into difficulty, because of the inhomogeneous
nature of Eq. (88). Levitt and Di Bari have solved
this problem by homogenizing the master equation
[214,215]. Following Jeener [216], they showed that
instead of adding are, term, the relaxation super-
operatorl” can be “improved” such that, in Liouville

is an inhomogeneous differential equation, in which
the inhomogeneous termi, has been added in an
adhoc manner to conform to the equilibrium mag-
netization My) in the presence oBgk field. Here

H conrepresents the coherent part dnthe relaxation
part of the Hamiltonian. The equilibrium density
matrix is given by:

Oeq = z™ eXP(— A ¢onTp) (89

whereZ is the partition function. The temperatufE)(
of the lattice is introduced through a time constant:

Ty = % (90) space the new master-equation has the form:
do A N . N
Using the high temperature approximation 5 = (A + Y)o=—i[H onol+ Yo (92
| A conTol < 1, oeq reduces to:
1 where
Oeq = ﬁ(l = H conTo) 9 Y=[+6. (93)

An expression fol® can be derived by the following
argument. The matrix elements 6f(P,|I"|Py)) are

the transition probabilities\W,,. For a lattice at
temperaturel, W differs from W, by a small factor

wherenis the number of states of each individual spin
system. Since#’.,, commutes witho, the master
equation leads to the correct convergenceooto
Oeqat long times.
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Fig. 26. Intensity of the longitudinal, two-spin order

(—(21,$)/AS,) as a function of the recovery delayfor an experi-
ment on the®®C-enriched carboxylic carbon of methyl formate,
where two spectra withp = +x were recorded and stored sepa-
rately for each value of the delayr in the sequence

180F°-—9fS(9d! 903 »-Acquire. The difference of the spectra

gives the two-spin-order term,1:%;,. This difference method
allowed detection of very small two-spin orders (0.1%). The insert
shows the difference spectrum observed after a relaxation delay of
6s. The spectra were recorded at 100 MHz carbon frequency.
[Reproduced with permission from G. Jaccard, S. Wimperis, G.
Bodenhausen, Chem. Phys. Lett. 138 (1987) 601.]

given by exp(w, — ws)79] Where 7, = A/KT. This
suggests the following form for the adjusted
relaxation superoperator
Y=r exp{®d T4} 9%
where® = 3, w,P,. Assuming the high-temperature
approximation, the thermal correction term @ =
f“wrg. The effect of adding this correction term is to
expand the equation of motion of various longitudinal
magnetization modes by adding the normalized unit
operator%l. For example, for a two spin systel§,

the equation of motion in the absence of RF is given
by:

(31) 0 0 0 0\/ <

dl (2 [_[&6 —»a —os —8 (I2)

dl (s [ |6 —os —ps 8 (&)
(2:%) bs —& —8 —ps/ \(2:S)

(99

233

A
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Fig. 27. Physical interpretation of the Homogeneous Master equa-
tion (Eq. (95)) for the two-spin system. The expectation values of
the four spin-operators (1/2)L;, S, and 2,S; constitute reservoirs.
The three term$,, 6sand6,s represent the creation of spin order by
polarization from the environment. Theterms represent the self
relaxation rate of each mode the cross-relaxation arlthe cross-
correlation rates, respectively. [Reproduced with permission from
M.H. Levitt, L. Di Bari, Bull. Magn. Reson. 16 (1994) 94.]

The three new elements of the relaxation matrix are:

6 =—3(p o) + 01507y

0s = — 3 (15w + pswdTy (96)
1,50 0

Os= — 5 (80 + dswg)Ty

where o and w2 are the Larmor frequencies of the
two species. The zeroes in the top row indicate that the
expectation value of11), which represents the
amount of spin disorder, does not change with time.
A pictorial representation of the dynamics of Eq.
(95) is shown in Fig. 27. The relaxation dynamics
appears as a unidirectional flow from left to right in
the picture. The physical significance of this “flow” is
as follows. The “reservoirs” enclosed by the dotted
line contains “spin-order”, which can be redistributed
internally by o and 6 terms. The object on the left
contains the Iargé% 1) term, that is the disorder of the
spin system. The three arrows labelgd 65 and 6,5
indicate conversion of spin disorder into spin order,
that is a decrease in spin-entropy due to the polarizing
influence of the finite temperature molecular environ-
ment. These three terms therefore take into account
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Fig. 28. Relaxation dynamics in the presence of rapidulses on
thel-spins. The effective relaxation superoperator is factored into a
gerade subspace ({% 1),(S;)} and an ungerade subspace
{{12),(21;S,)}. [Reproduced with permission from M.H. Levitt,
L. Di Bari, Bull. Magn. Reson. 16 (1994) 94.]

the spin-bath correlations. The three wiggly arrows
marked p,, ps and p,s indicate dissipation of spin

order, that is creation of spin entropy. These arrows

do not need to “go anywhere” since the destruction of
order is an irreversible process. Thermal equilibrium
is established when the expectation valdes, (S;)

and (21,S,) reach steady-state values such that as {

much spin energy is created as is destroyed.

3.5.2. Isolation of coupling networks by application of
RF pulses
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Fig. 29. Experimental results féfC-labeled chloroform at a proton
frequency of 200 MHz. (a) The experiment uses two phase-cycled
/2 pulses on thé spins: These select the contribution from initial
(Iz) polarization at the beginning of the mixing peried A =/2
pulse on thé&-spins at the end of theperiod allows the detection of
($) and(21;S;). As there is a singler pulse on the spin, there is

no manipulation of the relaxation network. (b) Téspin 7 pulses

are added at/4 and 3/4, which isolates theingeradespace with

2y and(21;S;). [Reproduced with permission from M.H. Levitt, L.

Di Bari, Bull. Magn. Reson. 16 (1994) 94.]

independently of each other breaking the links
between them. For example as shown in Fig. 28,

The advantage of the above picture becomes clearunder rapidsm pulses onl spin, thegeradesubspace

when 7 pulses are applied rapidly to the system. If
evenly spaced strong pulses are applied rapidly (in

times shorter than the relaxation time of the various
spin orders), Levitt and Di Bari have shown that the

contains only the terms%l) and (S;), which are
coupled to each other b§s and ungeradesubspace
(Iz) and{21;S;), which are coupled to each other By
and not connected to thgerade subspace. The

spin operators transform under these pulses, yielding, dynamics in thegeradespace is thatS;) gets polar-

for example, formr pulses only orl spins, the follow-
ing transformations [214,2151 — 11; 1; — —Iz;
S — S 2;S — 21;S,. These operators are then
separated out into two subspaceggrade subspace
(operators which do not change sign) ambperade
subspace (which change sign). For rapid pulsing

with interval 7 < T4, these two subspaces evolve

ized at the rateds and dissipates at the rape. The
dynamics of theungeradespace is thatl,) and
(21,S;) are coupled bys, and dissipate vigp, and
pis, respectively. The evolution of the two-spin
order (21;S;) has been measured by two seperate
experiments: (i) in which there are no pulses on
spin during relaxation and two pathways namely,

(1) 23(5)3(21,S,) and (1) (21,S,) contribute
[Fig. 29(a)]; (i) in which only the later pathway
contributes as thaingeradespace is isolated by a
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0.4 series of = pulses onl spin during relaxation
<I,>o [Fig. 29(b)]. The observed maximum magnitude and
<Sz>o the rates of build-up of21;S;) in the two experiments

<2I,5,> are clearly different.

The case whenr pulses are applied to both the

0 spins, thegerade space containg31) and (2;S,)

and theungeradespace containgl;) and(S;). The

dynamics of thaingeradespace is purely dissipative.

Order is transferred fronl;) to (S;) with the cross-

relaxation rater,s accompanied by dissipation of both

the Zeeman orders by rate constants and ps

(Fig. 30). This describes a normal transient nuclear

Overhauser experiment, with the difference that

cross-correlation is eliminated in the dynamics of

Fig. 30. Experimental results fofC-labeled chloroform ataproton  the ungeradespace. This experiment thus can be

frequency of 200 MHz, on rapid application of simultaneowus used for monitoring NOE, without cross-correlations

pulsgs on both protori)(an_d 3%C (9 spins. Theungeradespace in two-spin systems.

consists oflz) and(S;), which are coupled byrs. {Iz) and(S,) The dynamics of thgeradesubspace is also quite

saturate from their equilibrium value to zero, wit§,) showing . . . .
NOE transfer at intermediate times. Theradespace consists of Interesting. The two spin OrddQIZSZ> instead of

((1/2)1) and(21;S,), which are coupled by,. The two-spin order building up and decreasing, is created and spin locked
gets polarized from{(1/2)1) and decays by,s reaching a steady  to a Steady-state value (Fig. 31), governed by the input

state value. [Reproduced with permission from M.H. Levitt, L. Di  rgte 6,5 and dissipation ratg;s yielding:
Bari, Phys. Rev. Lett. 69 (1992) 3124.] '

o
N

normalized intensity
]
o
N

!
o
o

0 10 20 30 40

time (sec)

6
(2,5,)%%= = (97)
2pis
HO O g
HO. OH
HO @ H H OH
OH

Fig. 31. ExperimentalH spectra for exifone at a frequency of 300 MHz, whenhgulses are applied to all the protons with a cycle period of

7= 50 ms The normal'H spectrum (lowest plot) shows a four-liéX pattern from the ortho and meta protons on one of the aromatic rings

and a strong singlet from the two equivalent ortho protons on the other ring. The topmost spectrum is in the steady state, after the application of
many hundreds of- pulses. The two-spin order due to CSA—dipole cross-correlation is small, but not negligible. [Reproduced with permission
from M.H. Levitt, L. Di Bari, Bull. Magn. Reson. 16 (1994) 94.]
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Using 6,5 from Eg. (96) and the fact thaS,)*? = are discussed in detail. Differential line broadening
—(U/4)7,, one obtains: (DLB) is the earliest signature of the effects of
s 0 0 cross-correlations on transverse relaxation [217—
225" _ dor + dsws (98 221]. From the “kite” structure of the Redfield relaxa-
()% PSS tion matrix (Fig. 1), as stated in Section 2.1.1, the time
evolution of the diagonal and off-diagonal elements of
the density matrix are completely decoupled in the
absence of RF fields. Each single- or multiple-quan-
tum order of the off-diagonal elements also evolves
independent of the other orders. In general, the time
evolution of the off-diagonal elements can be written,
neglecting the dynamic frequency shift as:

Such steady-state two-spin orders have also been
observed in a three- [178] and four-spin systems
[197] and are shown in Figs. 32 and 33, respectively.
In some cases (for example, Figs. 31 and 32), very
small cross-correlations have been detected by this
method [178,214].

In this section, we have discussed the effect of
cross-correlations on longitudinal relaxation. Cross- dot(t) _ (—i# + Ro(t) (99)

correlations have a first-order multiplet effect onlong-  dt

itudinal relaxation, such that different lines of a wherec(t) is a vector for the off-diagonal elements of
resolved multiplet have differential relaxation as the density matrix, # the time-independent
well as NOE. Cross-correlations also have a second Hamiltonian andR the relaxation superoperator. The
order (both in time and magnitude) net effect, which formal solution of Eq. (99) is given by:

exists even for unresolved multiplets (or ndn- _(Cix+Ry

coupled spins) and which cannot be suppressed easily."(t) =€ o(0). (100

The net effect of cross-correlations, in general, leads However, the solution is not straight forward#f and

to non-exponential or multi-exponential longitudinal R do not commute since it requires diagonalization of
relaxation. The net effect on NOE has been analyzed non-Hermitian complex matrices. Eq. (100) simplifies
in detail. It is also found that cross-correlations contri- under the condition that the differences in the diagonal
bute to longitudinal relaxation of weakly coupled elements of# are large compared to the off-diagonal
spins, in the absence of RF fields, via the spectral elements oR. Under the secular approximation, tRe
densities only at Larmor frequency. Therefore, for matrix, becomes block diagonal, as represented by the
biomolecules for whichw 7 tends to be greater than dashed lines in Fig. 1, such that the time evolution of
one, the effects of cross-correlations decrease progres-all coherences of same order are coupled within them-
sively. For this reason, experiments have been selves, but decoupled from coherences of different
designed to monitor relaxation in presence of RF order. Further simplification is obtained when all
fields which will be discussed in Section 5. Alterna- coherences within the same order are also well
tively, attention is being focused on effects of cross- resolved such that:

correlations in transverse relaxation, where cross- |, ., .,

correlations also contribute via spectral densities at (A o = Howrar) = A g = H )
zero frequency, which become significant for, > = |0 — wpg/| > Rowpp (109
1. In the next section, we discuss the effect of cross-

correlations on transverse relaxation. Insuch caseR,, g can be neglected and one obtains

single- exponential decay rate for each coherence of
frequency w,,, given by the diagonal elements
4. Cross-correlations in transverse relaxation Rua/aa- This is known as the simple-line approxima-
tion. Transverse relaxation thus strongly depends on
It has been known from the early days of NMR that whether the simple-line approximation holds or not.
cross-correlations affect longitudinal as well as trans- When it does not hold, the evolution of various coher-
verse relaxation [106,121,217,218]. In this section, ences of the same order remain coupled and leads to
the effects of cross-correlation on the transverse multi-exponential transverse relaxation. In the case of
relaxation of single-quantum coherence (SQC) and partially resolved multiplets, the situation is complex.
multiple-quantum coherence of coupled spin systems In Section 4.2, we will be discussing the linewidths of
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Fig. 32. (a) ExperimentalH spectra at 400 MHz for 1,2-dichloro,4-fluoro,5-nitrobenzene dissolved in ¢B&lorded whenr pulses are

applied on both°F and*H nuclei with ar delay of 500 ms between the pulses. The last trace shows the steady state spectrum. The two-spin
order for theM-spin is large whereas that of tiespin is small, due to the weak dipolar interaction betwaeamd X spins. (b) Normalized
buildup of the two-spin ordgi2A; M) for the M-spin. (c) Same as (b) for thespin. The steady state value of this two-spin order is small, but

not negligible. [Reproduced with permission from Kavita Dorai, Anil Kumar (unpublished results).]
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plots on an expanded scale. [Reproduced with permission from R.C.R. Grace, Anil Kumar, J. Magn. Reson. A 115 (1995) 87.]
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various coherences of several spin systems under theyielding the time evolution of the sum mode,, +

“simple-line approximation”. However, before

o3, =A, and the difference moderi, — 034 =

discussing these linewidths, a brief description of 2A.X, as:

transverse relaxation in the absence of the simple-

line approximation is given in the following section.

4.1. Time evolution of transverse coherence in the
absence of simple-line approximation

For a two-spin systerAX, the time evolution of the
four SQCs from Eq. (99) is given by:

o12(t) OP)
dfo 34(t) _| w3y
dt [ oya(t) w13
024(1) w4
Ri12 Rizss Riziz Rizzg o12(t)
N Raa12 Rsazs Rsarz Raszg o34(1)
Riziz Rizas Riziz Risza o13(t)
Roa1z Roazs Roars Rosza T24(1)
(102

HerEwlz = QA + %J, w34 = QA - %J, w13 = QX +

1J andwyy = 0y — $J and in general the evolution
of each coherence is multi-exponential. However, if
|2p — Ox| > Ry, Ragj, for i, j = 1,3 and 2,4, then
the above equation takes the block structureffand

X parts by neglecting the off-diagonal elementsRof
between theA and X parts, namelyR 513 Riso4 Rizas
andRy43, The time evolution of thé\ part, for exam-
ple, can then be written as [222,223]:

d(‘le(t)) [ _(wlz ) (Dl C)]
— = -i +
dt\ oa(t) w34 C D,
( oot )
X
a34(t)

with a similar equation for theX part. HereD; =
R1212, D2 = R3434 and C = R1234. Eq (103) can be

further transformed into normal modes of spin
using the transformation

1 /(1 -1
U_ﬁ(l 1)’

(103

(104

d A
dt\ 2A, X,

1Dy + Dy +C—if2y
%(Dl — Dy — in

Al
X
2A, X,

1(D; - Dy — 13
1(Dy +Dy) —C—if2

(105)

The time evolution of this equation can be examined
under the following conditions.

e Case (i)J = 0. In this case, the twé\ spin coher-

ences are degenerate and only the sum modes can
be excited by a RF pulse applied to the system in
equilibrium. If in addition cross-correlations are
absent therD; = D, and the sum mode cannot
be converted into the difference mode and decays
with a single time constant given byDl +Dy) +

C. If however,D; # D,, the difference mode can
be created and both the sum and the difference
modes remain coupled, with their relaxation
being biexponential. Since the difference mode
2A.X,, is a “A spin coherence antiphase with
respect to spinX”, a 9¢° pulse onA and X can
convertitinto 2A,X, , which is a “X-spin coherence
antiphase with respect to spii. Such coherence
transfers have been observed and given the name
“relaxation allowed coherence transfers (RACT)”
[222,223]. These will be further discussed for the
AX case in Section 4.2.1.1.

Case (ii)J > |D; — D,|. In this case, while the sum
mode can be created by a selective pulse on one of
the spins, the difference mode can be created by
either a selective pulse on one of the transitions or
by time evolution of the sum mode. Even when one
of the modes is created, both the sum and differ-
ence modes oscillate rapidly between each other
due to larged and decay with an average time
constant, given by the average of the diagonal
elements of Eqg. (105), that is b§p; + D,) and

the termC can be neglected. Going back to Eq.
(103), it is seen that in such a case (in whiCh
can be neglected) each off-diagonal elementrof
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decays exponentially with a single time constant. 4.2.1. Cross-correlations in the heteronuclear AX spin
This is the justification for the simple-line approx- system

imation mentioned earlier. In this case, the Redfield  The linewidths of various coherences of a hetero-
matrix has a ‘kite’ structure with each off-diagonal nuclear two-spin system under the simple-line
element of o,, evolving independently of all  approximation [196,217,219,224-229] in which all
others with a single time constaR,, .., Which the coherences (single- and multiple-quantum)
has contributions also from cross-correlations. are well resolved, can be written in a compact
However, the sum and difference modes will notation developed by Kumar and Kumar [232,233]

relax biexponentially like case (i) above, ¥ as:
coupling to the other spin is removed by decou- )
pling. —R=Y {an0)Jy(ne) + cnw)enw)} (106)

e Case (iii) J=|D; —D,|. This is the case of
partially resolved multiplets. In such cases Egs. _
(103) and (105) do not simplify and have to be whereR is a column vector representing the line-
solved numerically with the effects of cross-corre- widths of various coherencesy(nw) are column
lations as an integral part of the solution [223]. vectors of auto-correlation spectral densities at

various frequenciesn(= 0 for zero frequency and

difference between two Larmor frequencies= 1

for Larmor anch = 2 for sum of two Larmor frequen-

cies), andJ.(nw) are the column vectors of cross-
In the following sections, the linewidths of SQC correlation spectral densities. The matrica@w)

and multiple-quantum coherences of various spin andc(nw) connect the spectral densities to the various
systems under the simple-line approximation in the linewidths. For the heteronucle&iX system, consid-
presence of cross-correlations are outlined. The spin ering CSA and dipolar interactions as the relaxation
systems considered are: (i) heteronucleax mechanisms, the linewidths of the twé spin

[196,217,219,224—-229]; (i) homonuclearAB SQCs Ryp1o=Ri and Rgyzs= Rﬁ), the AX zero

[129,230]; (i) heteronuclea®MX [230,231]; (iv)  (Resos= Ray) and the DQC Ry414 = RRY) are given

homonucleaABX [232—-234]; (v) heteronucleakX, in the notation of Eq. (106) 5[232]:

n=0

4.2. Time evolution of transverse coherence under the
simple-line approximation

Risi2 Ra 4 1 16 O Jaxax(0) 1 1 4 4\ /[Iaxaxwn)
R | | R 1]4 1 16 0] daxaxon— o0 Y BRI | RREN
RS, Re| €lo 2 16 16 Jan(0) 211 1 4 4| Jna(wn)
RPQ, ROQ 0 0 16 16 Jex(0) 11 4 4)\ Jedewp
1 00 -1 0 -1 0 O
10 0 Jaxax(wa + wx) o 0 Iaax(0) 0 0 Jaax(wp)
+ Jaa(2wp) + 5 Ixax(0) | +2 Jxax(wx) | (107)
000 3 0 - 00
’ 0 0 Jxx(2wx) 0 Jax(0) 0 0 Jax(wp)

[121,128], and (vi) heteronucle&Xs [121,129]. The
cross-correlations, which are considered are CSA—
dipole and CSA-CSA for two-spin systems and —5 - Negative si . -
egatlve signon transverse relaxation rates indicate decay rates.

additionally ] dip0|e_dip0|e_ cross-correlations  for In this review, this sign has been shifted to the left-hand side in all
three- and higher-order spin systems. equations.
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The auto-correlation spectral densities (first three
terms on the right-hand side) contribute equal widths
to all the SQCs, but contribute unequal widths to the
zero-quantum coherence (ZQC) and double-quantum
coherence (DQC) via Jaxax(wa = wy). While
Jaxax(wp — wy) contributes to zero- and not to
double-quantum linewidthsJaxax(wa + wy) contri-
butes to double- and not to zero-quantum linewidths.
While Jaa(0) contributes equally to all SQC and MQC,
Jyx(0) contributes toAX ZQC and DQC but not té\
spin SQC. CSA4)-dipole@X) cross-correlations,
Jaax(0) and Ja ax(wa) contribute equal and opposite
differential effects toA spin SQC. On the other hand,
the CSAQ)—CSA(X) cross-correlatiod x(0) does not
contribute to the time evolution of SQC but contributes
a differential effect to the ZQ and DQ coherences
[235]. It may be noted that there is no adiabatic dipolar
contribution to ZQC and DQC, ak ax(0) andJy ax(0)

do not contribute to ZQC and DQGy ax(0, wx) does
not affect theA spin SQC as well as ZQC and DQC. It
will however affect theX-spin SQC. Furthermore, the
linewidths of the twoX spin SQC can be obtained from
the above equation, by interchanging the spin laBels
andX in the spectral densities.

It may be mentioned here that while the cross-
correlations add to the linewidth of one of the compo-
nents of theA doublet, they subtract from the other,
decreasing its linewidth. Thus in an isolat&d spin
system in large molecules, where only the spectral
densities at zero frequency contribute (for example,
in ®™N-'Hy pairs, with complete deuteration of all
non-labile protons in large proteins), if the cross-
correlation contributiorn(8/3)J, ax(0) is nearly equal
to the auto-correlation contributioft5/6)Jaxax(0) +
(8/3)Jaa(0)], the narrow component will become
extremely sharp. This extremely interesting line-
narrowing feature of cross-correlations is present in
all the spin systems to be discussed in later sections
and has recently been exploited by ihiiich et al.
[369] to detect exclusively the narrow components
in large proteins, via an experiment named TROSY,
which will be discussed in detail in Section 7.6.

Under the break down of the simple-line approxi-
mation, there are two situations to be considered. Case
(i) |24 — 2x| > RandJ = 0; in this case, thé and
X spins are two singlets, respectively,@f and Q.
Case (ii))25 = y; in this case, théX spin system
reduces td\,. In both these cases, the above analyses
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are not valid. In case (i), Eq. (102) is factored into two
2X 2 blocks, one for eact\ and X spin (see Eq.
(103)). The various relaxation elements for the
spin are obtained as:

1(D; + D) = D= 1(Rizi2 + Razd) = (R} + RY)/2

=1

= — 315 Jaxax(0) T 3 Jaxax(@a — @x) + 2 Ipa(0)

+ Jaxax(@a) + Jaxax(@x) + 4aa(wa)

+ Ayx(wx) + 2Iaxax(wa + wx)]
1Dy — Dy) = 1[28Jpax(0) + Apax(wp)]
2 2 L737YAAX AAX\ WA

C = Rizza= — 2 Jaxax(wp) + 2Jpa(wp) (108)

In case (ii) where thé\X spin system collapses £,

only the sum modeAy + Xy can be created and
observed. One has to retain all the terms in Eq.
(102) and transform the equation to sum and differ-
ence modes and the sum mode decays multi-exponen-

tially in the presence of cross-correlations [236].

4.2.1.1. Coherence transfer via cross-correlatiofs.
stated earlier, cross-correlations can lead to coherence
transfer from one spin to another. In order to examine
the coherence transfer from spito spinX either by
J-coupling or by cross-correlations, it is best to recast
the density matrix analysis into “Product—Operator”
form. One can define product operators suchAgs
Ay, 2AX; and 2AyXz;, which are related in a
straightforward manner td;, A_ and 2. X,. If one
createsh magnetization at= 0, it evolves under the
chemical shift(2, and theJ coupling and decays due
to transverse relaxation. Assuming the simple-line
approximation (neglectingC in Eq. (103)) Ay
evolves into [222,223]:

o(t) = Ax 3 [exp{Dst} + exp{D,t} JcogmIaxt)cog2at)
+ 2AyXz 3 [exp{D;t} + exp{D,t}]sin(mIaxt)cOL2at)
+ 2A¢Xz 3 [exp{Dst} — exp{D,t} cosmIaxt)CO2at)
+ Ay 1 [exp{D1t} — exp{D,t} Isin(mIaxt)cog2at)

+ sin modulated terms (109)
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whereD,, D, are defined by Eqg. (108). This shows that 4.2.1.2. Operator method for description of
Ay will evolve into 2A X, the well known antiphase  relaxation. The case of cross-correlations in a
term created byd-coupling, as well as into &Xz, heteronuclear two-spin system (with special
arising from cross-correlations and ints, by the emphasis td®N—'H spin system) has been treated in
combined effect of the two. The interesting part is detail by Goldman [238], who has shown by explicit
that cross-correlations also contribute to antiphase calculations that the doublet components of each spin
terms (which can give rise to coherence transfer). relax differentially due to cross-correlation between
The antiphase term created by cross-correlations is CSA of N spins and the dipolar relaxation with
90 out-of-phase with that created Bycoupling. the protons attached to it. Goldman has utilized the
In the absence od-coupling and the presence of elegant “operator” method of Abragam [1] for
cross-correlations, the above analysis is not valid and calculating the expectation values of various
one has to retain the off-diagonal terms in Eqg. (103). operators and in turn the linewidths of various

The result is obtained as [223]: transitions or time evolution of transverse modes
L ) and the longitudinal relaxation of various transitions
o(t) = Ax 3 [(1 + sin ap)exp{Aat} or longitudinal modes. This method has been utilized

by several workers to measure the CSA of amide
nitrogen-15 [239], amide proton [240,241] aMiC,-
carbon [242], in enriched proteins, as well as to study
local anisotropic motions involving nuclei of peptide

+ (1 — sin ap)exp{uat} JcOL2,t)

+ 2AxXz $ cosan[exp{Aat}

— exp{uat} 1cog2,t) backbone [243-245]. These and many other studies
utilizing the Goldman operator method form a
+ sin modulated terms (110) significant use of cross-correlations in labeled

biomolecules and will be reviewed in Section 7.2.
The operator method, which is applicable not only

where
for heteronuclear systems, but also for weakly
A=D+ %(Dl — D,)cosap + Csinag coupled homonuclear systems, is discussed briefly in
Appendix A.
pa =D — (D1 — Dy)cosap — Csinay
tana, = 2C/(D; — D) (111) :fyzséng:'r;;s correlations in strongly coupled two-spin

] _ The effect of cross-correlations in the presence of
This shows that the antiphase term can be createdgiong coupling has been investigated for a homonuc-
even in the absence dfcoupling, but in the presence  |aar two spin-(1/2) systenAB) [234]. There are four
of cross-correlations. An antiphase term easily leads SQCs, one DQC and one ZQC, in this spin system.
to coherence transfer by the use of appropriately The |inewidths of the two A’ spin SQCS(RE‘??B,
phased non-selective 9pulses on both spins. Such Ri?m) and the ZQC and DQCGRSSH Ri?m) under

coherence transfers have been observed experi-the simple-line approximation (all coherences are
mentally using 2D NMR and have been termed as ;g resolved, 8,5, Jag > R) can be written in a

relaxation allowed coherence transfer (RACT) compact notation as [234]:
[222,223,237]. They point out that one could observe

a cross-peak in a COSY experiment arising from . 2 , -

cross-correlations even in the absence-abupling. —R= Z {[a(nw) + a(nw)Ja(nw)

The antiphase term can also lead to multiple-quantum n=0

excitation and gives rise to relaxation allowed multi- + [c(nw) + ¢/ (Nw)]3c(Nw)} (112

ple-quantum coherences in the absencé-obupling

[237]. Such peaks have also been experimentally The vectorR represents the linewidths of various

observed and exploited, the details of which will be non-degenerate SQCs as well as the ZQC and
outlined in Section 4.3.4. DQC and the right-hand side contains the auto
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[J.(nw)] and cross J.(nw)] correlation spectral  From the above equation the following conclusions
densities for two relaxation mechanisms namely are derived:

mutual dipolar interactions between the two spins
and the CSA relaxation. The coefficient matrices
a, a’, ¢, and ¢’ connect the spectral densities to
the linewidths.a and ¢ contain, respectively, the
auto- and cross-correlation coefficients under weak
coupling anda’ and ¢’ contain additional contribu-
tions to these coefficients arising exclusively from
strong coupling. Thus under weak coupling= 0)

all elements ofd’ andc’ are zero. This notation thus
clearly separates out the contributions of auto- and
cross-correlation spectral densities at each frequency
and that of the strong couplings to the linewidths of
various coherences of the spin system. The result is
obtained as [234]:

(i) The DQC, which is the highest quantum
coherence in a two-spin system is not influenced
by strong coupling.

(i) Weak coupling without cross-correlations
(only first three terms contribute).

The two SQCs of spimA have equal linewidths
while ZQC and DQC have unequal widths from
the spectral densitieslagag(0) and Jagas(2w).
Jaeae(0) contributes to ZQC but not to DQC
whereasJapas(2w) does not contribute to ZQC
but contributes to DQC (in conformity wittAX
analysis given by Eq. (107)) [224-229].

(iii) Weak coupling with cross-correlations (only

Risis RY 5 16 o) 12 2 e
w
RS, R: | 1|5 16 3BABO) 12 2 3‘BA
_ - — == ( + (w)
REQ,, RS | 6|2 16 - 12 2| M
5 o Jes(0) Jea(w)
RPQ, RS 0 16 12 2
1 00 ] 20) —sin20 2(cosXdP—1) —2(cosdH—1) ] 0
w
100 jBA(BZ ) ol sin2s 2cosm-1 —20cosB-1) jBA(BO)
+ w + =
00 0 JAA(Z | 3| sif20 2cof20-1) 2cof 26— 1) JAA(O)
w
2 0 58 0 0 0 B8
—sin29 0 O 3 @) -1 0 JraO) -1 0 O Inna(@)
w w
1| sin2e o of sl 1 o AAB o off™®
+ 35 Jpa(w) |+ 5 Jeas0) | +2 Jg as(®)
2 0 ooJ() 3l o 0 - 300 ooJ()
w w
o oo 0 Ae o o)
—(2cosdH+sin20—2) (2cosdH+sin20—2)
. . Jaas(0)
2| 2cosP+sin20—2) —(2cosd+ sin20—2) 0
+ 5 , i i Jg.s(0)
3 2sin20cos » —6sin20cos D 8 sirf 260
Jae(0)
0 0
sif9 —sinf —sin29 rs(o)
AABlW
—sif9 st sin2o
Jg ag(®) (113)
0 0 0
Jap(w)
0 0 0
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-Ras=ap+car + a'ps + Clax

an = (5/6)Tasn(0) + (8/3)Tar(0) + Japan(®) + 2 Jar(®) + 2Jnp(0)

Cax = -[£(8/3)Ja aB(0) % 2T ap(©)]

a'ps = -[#(2/3)sin26 Jaap(0) + (4/3)(c0s20-1) Jon(0) — (4/3)(c0s26-1) Jp(0)

+ (1/2)sin20 Jxpan(®)]

C'as =% (2/3)[-(2¢0526 + $in20 - 2)J ap(0) + (2c0526 + sin20 - 2)J Ap(0)]
+ 2[sin’0 Ja an(0) - Sin’0 Jp ap(0) - 5in26 Japan(®)]

Fig. 34. Schematic diagram showing the differential line broadening in a homonudiespin system. Linewidths oB, andB_ can be
obtained by interchanging the labéisB. a, andc, are the contributions from auto and cross-correlations, respectively, in the weak coupling

limit. a), andc, are the contributions from auto and cross-correlations, respectively, exclusively from strong coupling. In the weak coupling

limit, the primed quantitiesaly andcy) do not contribute to the linewidths [234].

the first three terms and the sixth and seventh
terms contribute).

In this case, the two SQC of spihave unequal
linewidths due to the equal and opposite contribu-
tion of cross-correlation spectral densiti&sag(0)
and Ja ag(w) which do not contribute to DQC and
ZQC. Cross-correlation spectral density between
the two CSA,J,g(0) contributes equal and oppo-
site (differential) linewidth to ZQC and DQC
without contributing to SQC (as i®X case as
well; Eq. (107)).

(iv) Strong coupling without cross-correlations
(only the first five terms contribute).

Strong coupling brings additional linewidths to
the various coherenceslpgag(0) and Japag(®)
give differential linewidths to the two SQC
while Jaa(0) and Jgg(0) cause equal broadening.
Only spectral densities at zero frequency give
additional contribution to zero-quantum linewidth.
(v) Strong coupling with cross-correlations (all
terms contribute).

SQC have additional unequal contribution to the
linewidth from all cross-correlation spectral
densities at zero andw frequencies except

Jap(0). ZQC has contributions from all zero-
frequency cross-correlation spectral densities.

From the above, it may be concluded that either
strong coupling or cross-correlation makes the line-
widths of the SQC unequal. This is shown schema-
tically in Fig. 34. The linewidths of the other two
SQC Ry212 and Ras39 Which may be termed as spin
‘B’ coherences are obtained by interchanging the
labels of spinA and B as well as the sign of the
0 terms in Eq. (113). It is noticed that the cross-
correlation between the CSA of the two spidgs
makes a differential contribution under the weak
coupling approximation to ZQC and DQC, and
under strong coupling to the two SQCs. This
cross-correlation term is independent of the distance
between the two spins and therefore has been
termed as a “remote” and is discussed in detail in
Section 4.4.1 [234].

4.2.3. Cross-correlations in heteronuclear three-spin
system (AMX)

The presence of dipole—dipole cross-correlations
requires a minimum of three coupled spins and its
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effect on the decay rates (linewidths) of SQC and SQC and multiple-quantum coherences are treated
multiple-quantum coherence has been investigated in two subsections.

by several workers [222,228-230]. In the following

section, the results for dipole—dipole, CSA—dipole 4.2.3.1. Single-quantum coherenc@$e linewidths
and CSA-CSA cross-correlations are summarized or the decay rates of the fouA” spin SQCs of the
using a weakly coupled heteronuclear three-spin AMX spin system under the simple-line
systemAMX [each spin-(1/2)]. The labeling of the approximation are obtained in the notation of Eg.
states and the coherences is given in Fig. 2. The (107) as [234]:
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1 090 1 1 000 Jxax(0)
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+2 -11 0 1 0 -1 mau(on) i
1 =10 -1 0 1| dwmxion)
1 0 1 01 Jx ax(wx)

Jx mx(@wx)
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The first three terms represent, respectively, the remote auto-correlations. If one of the couplings is
zero, single- and double-quantum dipole—dipole zero (say,Jax = 0), then one of the remote CSA
auto-correlation spectral densities. The next two auto-correlation termJgx(wy)] drops out.
terms represent zero- and single-quantum CSA 2. Cross-correlation contributionsCross-correla-
auto-correlation spectral densities, respectively. tions contribute only differential linewidths (equal
These terms are followed by the zero- and single- and opposite) to the SQCs with no net contribu-
guantum dipolar cross-correlation spectral densities. tion. While dipolar cross-correlations maintain
The last two terms represent the zero- and single- symmetry between outer and inner coherences,
guantum CSA-—dipole cross-correlation spectral each CSA-—dipole cross-correlation has pairwise
densities. CSA-CSA cross-correlations do not symmetry for different pairs. Thus in the presence
contribute to the linewidths of the SQC of weakly of several cross-correlations, all the four coher-
coupled spins. The linewidths &l and X SQCs can ences may have different linewidths. Dipole—
be obtained by symmetry, by interchanging the dipole cross-correlations in which is the common
labels. From Eqg. (114), the following results can spin, only contribute to the linewidths &f spin SQC
be summarized. in the three-spin system. CSA—dipole cross-correla-
1. Auto-correlation contributionsAll the four A tions at zero frequency only have contributions invol-
spin SQCs have equal contributions from auto-corre- ving the CSA of spinA and dipolar of AM and
lation spectral densities, except the remote zero AX Four out of the possible six single-quantum
[Juxmx(oy — wx)] and the double[Jyxmx(wy + CSA-dipole cross-correlations contribute equal but
wy)] quantum spectral densities, which contribute opposite linewidths to the variousspin coherences.
different linewidths to the inner and the outer The last two cross-correlation spectral densities
SQCs, retaining pairwise symmetry in the line- namely Jyux(wy) and Jxwx{wx) can be termed as
widths. Zero frequency remote auto-correlations “remote” and have a first-order contribution to the
[namely Juxux(0), Jum(0) and Jx(0)] do not resolvedA spin multiplet. There is no contribution
contribute to the decay of-spin SQCs. On the  of cross-correlation spectral densities at b these
other hand, remote single-quantum auto-correlation linewidths [234].
spectral densities atw [Juxmx(®m), Ivxmx{(@x),
Jum(wn) and Jyx(wy)] contribute equal widths to
all the linewidths of the SQCs. These remote auto- 4.2.3.2. Multiple quantum coherencée linewidths
correlations are present only in the presence of of two ZQCs, two DQCs oAM spins and the triple-
J-coupling and the secular approximation. Jf quantum coherence (TQC) contain the totality of
couplings are absent, the transitions become degen-information on MQC of this system. The linewidths
erate and the secular approximation is no longer of the remaining ZQC and DQC can be generated by
valid. In such situations, only the sum mode can interchanging the spin labels. These linewidths are
be excited, the time evolution of which is free of given by [234]:
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RPQ. Row 0 440101 JAMAM(O)
RS, RQA 044011 JAXAX(O
1 )
| R |= | R =50 4 42 11| M(XMX |
wp — W
RS, 208 0 4 4 2 1 1] tAvamlen= om
M Jaxax(wa — wx)
R'Q RIQ 0 0 0 0 0 0
1818 AMX

Ivxmx(om — @x)



N S N
N A
[ = S S T

w| o
[ S = N SN
s
» O O O o

L O O O O
O O O O

O O O O

A. Kumar et al. / Progress in Nuclear Magnetic Resonance Spectroscopy 37 (2000) 191-319 247

J (wp)
11 1 JAMAM( A) 2 1 1
(0]
R | Bt 2 1 1|/ Jnuau(@n + @n)
Jaxax(wp)
1 1 1 3 X( ) + 0 1 1 ‘]AXAX(wA + (l)x)
w
11 1 JAXA X 0 1 1|\ Jusux(on + ox)
(wm)
11 MxMx (@M s 2 2
JImxmx(@wx)
1 1 1 0 0 1
Jan(0) 1 1 1]/ Jaa(wn) 0 0 1 Jamax(0)
‘]MM(O) +2 1 1 1 ‘]MM(wM) +g 0 O _1 ‘]AMMX(O)
JIxx(0) 11 1)\ Jux(wx) 0 0 —1]\Jaxmx(©
1 1 1 0 0 O
Jaam(0)
0 -1 0 -1 0 O
Jaax(0)
JAMAx(wA) 0 1 0 1 0 0
I |+ &l 0 =1 0 =1 0 0 man(©)
AMMX WM a5 - -
Inscux(@x) 3010100JM’MX(0)
AXMX WX
Jx ax(0)
0O 0O O O O o
Jx.mx(0)
Jaam(@a)
0 0O -1 0 -1 0 O Tneaon)
w
0| /Iamx(© o 1 0 1 o off ™™
Iv.am(@n)
ol Juax® | +2]0 -1 0 -1 0 0
Immx(@m)
0 | \ Jxam(0) 0 1 0 1 00O
Iy ax(@x)
0 0O 0 O O 0O
Jx mx(wx)
0
0| /Jam©
0] Jax(O (115)
0| \Jux(©O)
1



248

From this equation the following results are obtained:

1. Auto-correlation contributionsAll dipolar auto-
correlation spectral densities at the Larmor frequen-
cies of various spins contribute equal widths to all
multiple-quantum coherences (second term on
RHS). At zero frequency (first term)Jaxax0),
Jwxmx(0), and Jyxwx(om — ox),  Jaxax(wa — wx)
contribute equal widths toAM DQC and ZQCs
whereaslayam(wa — wy) contributes only to ZQCs.
Jamam(0) does not contribute t&M DQC and ZQC.
None of the dipolar spectral densities at zero
frequency contribute to TQC. At the sum of the two
Larmor frequencies (third term), auto-correlation
dipolar spectral densitiesJaxax(wa + wx) and
Juxvx(wm + wx) contribute equal widths to thaM
DQC and ZQC withJapyam(wa + wy) contributing
only to DQC. TQC has equal contribution from
all the three spectral densities at the sum of the
two Larmor frequencies. All the three CSA auto-
correlation spectral densities at zero and Larmor
frequencies (fourth and fifth terms) contribute equal
widths to all the multiple-quantum coherences except
that there is no contribution fromyy(0) to AM DQC
and ZQC.

2. Cross-correlation contributionsDipolar cross-
correlation spectral densitizxux at frequencies zero
and wy contribute equal and opposite widths to the
AM DQCs and ZQCs, respectively, with no contribu-
tion from the other two cross-correlation spectral
densities (sixth and seventh terms). TQC, on the
other hand, has equal contribution from all the three
spectral densities at the three Larmor frequencies.
Similarly CSA-CSA cross-correlation  spectral
densityJa v(0) contributes equal and opposite widths
to the AM DQCs and ZQCs, respectively (last term).
TQC has equal contribution from all the three
CSA-CSA cross-correlation spectral densities at the
zero frequency. Only two CSA—dipole cross-correla-
tion spectral densitiedaax and Jymx at zero and
Larmor frequencies contribute differential widths to
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the AM DQCs and ZQCs with no contributions from
the remaining spectral densities (eighth and tenth
terms).

4.2.4. Dipole—dipole cross-correlations in a strongly
coupled homonuclear three-spin system ABX

In order to study the effects associated with strong
coupling in the presence of dipole—dipole cross-
correlations, an analysis has been reported in the
literature, calculating the complete transverse relaxa-
tion matrix for a homonucleakBXspin system [232].
Only dipole—dipole cross-correlations have been
included in this study and these results are given in
Sections 4.2.4.1-4.2.4%.

4.2.4.1. Single-quantum coherence$he decay
rates for the various coherences in tA8X case
contain contributions from auto-correlation spectral
densitiesdagas Jaxax and Jgxex and cross-correlation
spectral densitieSIagax Jagex and Jaxsx each at
frequencies Ow and 2v. The notation and labeling
of states used in the preceding section for the
heteronuclear case is continued here with
replacing M. The number of spectral densities is
reduced since wp = wg = wx = w. The strong
coupling parameter®). has the usual definitions
[246]. Separating out the contributions of strong
coupling into primed quantities (see Eq. (112)), one
can write the contribution of the various spectral
densities to the linewidths of the fourA*
coherences (mixedB in strong coupling situation)
as [232]:

> 2 -
—Ra =D {[aa(w) + ax(Nw))Ja(Nw)

n=0

+ [ca(N®) + CA(Nw)]e(Nw)} (116

This equation, when expanded in terms of the spectral

® The decay rates of the various SQCs and multiple-quantum coherenceABXapin system, wherX is a heteronucleus and considering

relaxation via both CSA and dipolar interactions have also been calculated [Rangeet Bhattacharyya, R.C.R. Grace and Anil Kumar, unpublished

results available on request via e-mail].
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densities, is given by:
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From this equation it is seen that for

(i) Weak coupling without cross-correlations (only
the first three terms contribute).

This part is identical to the weakly couplegMX
case (Eq. (114)) and restates that the linewidths are
unequal due to the contributions from remote auto-
correlation spectral densitiesJgxe0) and
Jexex(2w). All the other spectral densities have

* The results given in Ref. [232] have errors in strong coupling
contributions from spectral densities at zero frequency, which are
corrected here. Some of the coefficient matrices have also been
simplified. The conclusions of Ref. [232] remain unchanged.

equal contribution to all the four coherences.
Jexex(0) andJgxey(2w) contribute equal amount to
the outer and inner lines in such a way that they
have symmetrical widths.

(if) Weak coupling with cross-correlations (the first
five terms contribute).

This is also identical to thAMX case and confirms
that the linewidths are additionally unequal due to
the unequal contributions from the spectral densi-
tiesJagax(0) andJpeax @) (EQ. (115)). However, the
symmetry is maintained in the outer and inner line-
widths. All the other dipole—dipole cross-correla-
tions have zero contribution to the linewidths
[223,228-232].
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(i) Strong coupling without cross-correlations (the (iv) Strong coupling with cross-correlations (all the
first three and the sixth, seventh and eighth terms  terms contribute).

contribute).
An additional contribution from strong coupling lation spectral densities at zero andfrequencies,
comes from all the auto-correlation spectral densi- and at 2», only Jaxex2w) contributes. All line-
ties at zero frequency, but the spectral densities at widths are unequal and there is no symmetry.

contribute only via Japag(w) and at 20 via

Additional contribution comes from all cross-corre-

Jaxaq20) and Jexex2w). Here all the linewidths The linewidths of B’ coherences are obtained by
are unequal without any symmetry. Strong coupling interchanging labelsA’ and ‘B’ in Eq. (117) and in

is known to introduce differences in linewidths of  the definitions off.. and a consequent substitution of
AB spin system making the inner and outer line- ¢, = —c- in the primed matrices of Eq. (117) assum-
widths unequal [Ref. [1], p. 509]. These results ing that the four B’ transitions are arranged in the
indicate that the introduction of the third spin order 1-3, 2-5, 4-7 and 6-8.

makes all the linewidths unequal under strong  For ‘X spin SQCs, an equation similar to Eq. (117)
coupling, even in the absence of cross-correlations. can be written having [232]
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® See footnote 4 following Eq. (117).
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where s, =sin(0, + 0_), sq=sinf, — 0_), Ccs= between the pure states 1,2 and 7,8 being the first
cog6, + 0_)andcy =cog6, — 0_). and the fourth.

The linewidth vector on the LHS here isarranged in ~ Under various limits, the results yield the following
such a way that in the weak coupling limit the last two analyses. In the weak coupling limit, without cross-
three-spin-one-quantum coherences namely 3,6 andcorrelation the first fourX’ coherences have finite and
4,5 have zero intensity and the remaining four SQCs equal intensity and have linewidth differences coming
have equal intensity and are arranged in the order of only from the remote auto-correlation spectral
increasing frequency with the two coherences densities Jagae(0) and Japas(2w) whereas all the
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other spectral densities have equal contribution to the

four ‘X' coherences [232,234]. This results in symme-
trical differential linewidths for the outer and the inner
lines.

In the weak coupling limit with cross-correlations,
the linewidths are additionally unequal due to contri-
butions from the spectral densitied\g0) and
Jaxe{(@) with no contribution from all the other
cross-correlation spectral densities. Symmetry is
maintained between the outer and the inner line-
widths. The last two coherences namely-36 and
4 — 5 have unequal widths due to auto and cross-
correlations [228-232]. However, they have zero
intensity in the weak coupling limit.

In the strong coupling limit without cross-correla-
tions, strong coupling brings unequal contribution
from all auto-correlation spectral densities at zero
frequency and the spectral densitiekhgag®),
Jaa{2w), Jexe2w) to the linewidths of the
mixed X' coherences. The twoX coherences
between pure states namely412 and 7— 8 have
no contribution from strong coupling. The last
two coherences have finite intensity and unequal
widths.
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Under the situation of strong coupling with cross-
correlations, all the linewidths of the mixed coher-
ences are unequal due to all the cross-correlation spec-
tral densities at the frequencies 0 and and the
spectral densityaxsx(2w) contributing to them. The
two coherences involving the pure states<12 and
7 — 8) have no contribution from strong coupling and
have identical widths, which are different from the
other mixed transitions.

4.2.4.2. Double-quantum coherencésr the ABX
case, there are six DQCs. Linewidths for these
coherences have also been obtained in a manner
similar to SQCs. Contribution from strong
coupling and cross-correlation can be separated out
as before and the relaxation matrix elements can be
expressed by an equation similar to Eq. (117) as
[232]:

-

2
Rog = — D {[8po(N®) + apg(Nw)}3a(Nw)
n=0

+ [Cpo(Nw) + Cho(Nw)1Jc(Nw)} (119

This equation when expanded, yieltis:
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¢ See footnote 4 following Eq. (117).
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Here the coherences are arranged a8'(1-7, spectral densities at «2 contribute to the

2-8), BX(1-5, 4-8) and AX(1-6, 3-8) DQCs,
respectively (Fig. 2). The twoAB DQCs are
between pure states and hence have

contribution from strong coupling. An analysis of
the linewidths of these DQCs reveals the following:

() In the weak coupling limit without cross-
correlations This is identical to theAMX case,

except that a homonuclear spin system is
considered. Linewidths are not equal but follow
a symmetry pattern. All the auto-correlation
spectral densities at the Larmor frequency
contribute equally to all the DQCs. Only two
out of the three auto-correlation spectral
densities at zero frequency contribute to the
linewidth of each DQC WithJABA&O), JA)(A)(O)

and Jgxex(0) not contributing toAB, AX and BX

DQCs, respectively. While all the auto-correlation

no

linewidth of all DQCS,Jagag2w), Jaxax(2w) and
Jexe(2w) contribute a larger amount (twice as
large) to AB, AX and BX DQCs, respectively.
Thus both the DQCs of each pair of spin have
equal widths, not equal to the widths of the
coherences of the other pairs of spins in this
case [227].

(I Weak coupling with cross-correlations
Inclusion of cross-correlations within the weak
coupling approximation adds additional widths
to the various DQCs with the above mentioned
symmetry pattern preserved, the same way as in
the AMX case. Only one cross-correlation spectral
density each at zero and contributes to the
linewidths of each pair of the DQCs such that
only Jaxex contributes toAB, Jagax to BX and
Jagex t0 AX DQCs, respectively. None of the
cross-correlation  spectral densities atw 2
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contribute to the linewidths of the DQCs of
weakly coupled spins [227,232].

(I In the strong coupling situation without
cross-correlations, the four DQCs between the
have additional

mixed

change

states

in the

spectral

contributions
compared to case (I) to linewidths with no

densities

linewidths of theAB DQCs
(namely 1,7 and 2,8 coherences). While all the
auto-correlation

at

Zero

frequency contribute, only one spectral density
at w, namely Japax(w) and two at frequency @
namely Jaxax2w) and Jgxex(2w) contribute
additional and unequal widths to the remaining

four DQCs. Thus in this limit the two DQCs
between pure states have equal widths with all

others being different.
(IV) Inclusion of cross-correlation with strong
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+

coupling does not affect the linewidths of the
DQCs between pure states but brings additional
and unequal contributions to the remaining four
DQCs from all the cross-correlation spectral
densities at 0 and and from Jaxey2w) at 2w.

4.2.4.3. Zero-quantum coherencé&sr the three-spin
ABX case, there are six ZQCs whose linewidths can
also be expressed as [232]:

2
Ry = D {[az0(Nw) + abg(Ne)]Ja(nw)

n=0

+ [Czo(Nw) + CroNw)13c(Nw)}

(122

This equation can be rexpressed in terms of spectral

densities a<:

+

N T e e
N N e T e T e
L =

Jagax(0)
Jaeex(0)
Jaxex(0)

O O O O o o

" See footnote 4 following Eq. (117).

0
0
0
0
0
0

Jnsas(®)
Jaxax(w)

Jexex(®)

Jnsas(@)
Jaxax(w)
Jexex(®)

Jnsax(w)
Jnsex(®)

Jaxex(®)
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0 0 O —dcis () —§5)  4deis(cl - ) 8Es
0 0 0 4c_s (2 — %) —4dc_s. (> —F) 82
Jagas(2w) Jaeax(0)
0 -8 ¢ 1| —2si(cy —2s))  —25.(cy +25,) Sy
+ Jaxax(2w) | + 3 Jagex(0)
0 -& & 2s_(c_ +2s_) 2s_(c.—2s.) —c_s_
Jexex(2w) Jaxex(0)
0 && -5 2s,(Cy — 2s4) 2s.(Cy +2s4) —Ci 84
0 & < -2s.(c_.+2s) —2s(c.—2s.) C_S_
0 0 0 0 0 0
0o o0 0 o) 00 O D2
w w
Si —Si C.s, JABAX( ) , 0 0 C.s, JABAX(2 ) (122)
+ w) | + )
£ -$ -c.s JABBX( | 0 0 —c_s_ JABBX(Z )
w w
_ Si S%r —c.s, AXBX! 0 0 —c.s. AXB
-&£ &  c.s_ 0 0 c.s_
Here also the coherences are arrangedAds “ BX It has contributions from auto-correlation spectral

and ‘AX ZQCs, respectively. All the six coherences densities atw and 2» and from cross-correlation
are between mixed states and hence they all havespectral densities ab only. The linewidth of this
strong coupling character in them. From these coherence is free from strong coupling effects even
matrices, it is seen that in the weak coupling limit in the presence of cross-correlations.

each ZQC of a pair has equal width and not equal to
the other pairs, both with or without cross-correla-
tions. In the strong coupling limit, all the widths are
unequal. While none of the cross-correlation spectral
densities at & contribute to the linewidths in the
weak coupling limit,Jaxex(2w) alone contributes in
the strong coupling limit. In the weak coupling
limit, the contribution of cross-correlations to the line-
widths of ZQCs is equal and opposite to their contri-
bution to DQCs [sinc&;q(Nw) = —Cpo(Nw)].

4.2.5. A% spin system

Such a spin system is often formed by isolated
methylene carbons with their directly attached
equivalent protons. The carbom (spin) spectrum
consists of a 1:2:1 triplet with three equispaced
transitions between symmetric eigenstates and a
transition between two antisymmetric states overlap-
ping with the central symmetric transition. While

4.2.4.4. Triple-quantum coherencthe linewidth of the decay of the outer isolated transitions follow

the TQC of theABX spin system is obtained as [232]: the simple-line approximation and are given by
single exponentials, the inner overlapped transitions

Jngag(®) decay as two independent exponentials, which
Riox=Rigis=(1 1 1| Jaxax(®) cannot be independently observed. For the central
transition, one can monitor the sum and difference
Jexex(®) modes.
Jasas(2w) Jagax(®) Several workers have treated this case and have

included the dipole—dipole cross-correlations
(22 ) Jwax@e) [+ (L1 DI Jagex(@) [121,228,229,247]. The decay rates for the two outer
Jexex(20) Jaxex(®) transitions (1,2) and (7,8) are equal and are given by

(123 Rio1,andRyg;g respectively. For the central transitions
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(3,6) and (4,5) one obtains:

()= 2)G)

whereM, gives the sum mode arMd _ the difference
mode, ancp and o are given by [229]:

p1 = (V/2)(Rag3s + Rasas + 2Ragas)

M.
M_

M.
M_

d
dt

P1 012

(124

012 P2

p2 = (U/2)(Rag36 + Rasas — 2Rgeas) (129

012 = (V2)(R3636 — Rasas)

The expressions for variol®s are obtained as:

Jaxax(0)
Ri212 4 13 3 Jaxax(wa — wx)
1
—| Raszs | = 3 213 36 Jaxax(wp)
Rusa5 21 3 3 6 Jaxax(wx)
Jaxax(wa + wx)
4 0 3 0 0 3
+% -2 1 -3 -3 6
-2 -1 -3 -3 -6 0
Jaxax (0)
Jaxax(wp — wx)
Jaxax (wa)
X Jaxax (@x) (126)
Jaxax (wa + wx)
JIxxrxx (wx)
Jxxixxr (20x)
and
Rasas5 = Raszs = — 3 [Jaxax(0) — Jaxax(0)]. (127

The first term on RHS of Eq. (126) contains the dipo-

lar auto-correlation and the second term the dipole—
dipole cross-correlation spectral densities. The two
outer transitions have identical decay rates, due to
dipole—dipole auto and cross-correlation contribu-
tions. They are different if CSA—dipole contributions

are included [228]. For the inner transitions, the sum
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mode decays biexponentially sind®gzs and Rysas
differ due to auto-correlation spectral density
Jxxixx(wx) and cross-correlation spectral densities,
Jaxax (wa — wy) and Jaxax (wa + wy). However, in
the long correlation limit, when only(0)’s survive,
the difference disappears and the sum mode of inner
transitions decays with a single exponential. Under
this condition, the inner and outer lines become
Lorentzians, whose linewidths differ only due to
cross-correlatiodaxax (0). (Under this limit,Ry51, =
(413)[JIaxax(0) + Jaxax (0)] and the decay rate of

is given by(4/3)[Jaxax(0) + Jaxax(0)].)

4.2.6. AX% spin system

A typical AX; spin system which is often encoun-
tered is the methyl group’CHs. The A spin carbon
multiplet is a quartet, in the intensity ratio, 1:3:3:1.
The complete analyses for such a system is given in
Refs. [175,228—-230,248-251]. In the long correlation
limit, where Jaxax(0) spectral density terms dominate
the transverse relaxation, the relaxation rates for the
outer and inner transitions are given by [229]:

Rinvout = —[2Jaxax(0) + 4daxax (0)] (129

Here Jaxax(0) is the auto-correlation spectral density
for the internuclearH-"3C vector evaluated at zero
frequency, andJaxax(0) is the three-spin cross-
correlation spectral density, whe¢ X' share the
sameA spin. Hence from these equations, it can be
seen that fowr, > 1, the inner and outer lines decay
with single exponentials which differ from each other
due to cross-correlations.

In the presence of CSAYC)—dipole cross-correla-
tions, all the four transitions of th& spin have differ-
ent linewidths. The linewidths of the two outer
transitions are given by [252]:

(%)

1
T2

= £Jpa(0) + 2Jaxax(0) + 4Jaxax (0)

F 8Jaax(0) + 2Jpn(wp) + 3 Iaxax(@p)
+ 3 Jaxax (wp) F 6Iaax(wp)

+ $Iaxax(wa — ox) + 3 Iaxax(ox)

+ Bdaxax(wa + wx) + 3wy (wx)

+ 3‘]XX’XX”(wX) + 6‘JXX’XX’(2wX) (129)
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The differential width between the outermost com-
ponents(1/T,)_ — (1/T,), depends upon the cross-
correlations and equals 3gux(0) + 12Ja ax(wa). In

the absence of CSA-dipole cross-correlations, the
outer components are identical in width and shape,
yet they differ in width and shape from the inner
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4.3. Experimental observation of transverse cross-
correlations

As seen from the above analyses, cross-correlations
lead to DLB/line narrowing. The same effect can lead
to coherence transfer from one spin to another, also

erate transitions, and have multi-exponential relaxa-
tion with only the sum mode being observable.

4.2.7. Spin-(1/2) coupled to spin (1/2) system

Consider the scalar coupled two-spin system where
spin | = 1/2 and spinS > (1/2). Assuming that the
relaxation of spinS is governed by an axially
symmetric quadrupolar interaction, and spinis
relaxed directly by thd—S dipolar interaction and
an electronic shielding anisotropy, the relaxation
rate, (1/T,)sm, Of each transition of thé [spin-(1/2)]
spin, is given by [64,253—-255]:

(%)~

T,
— mPAn? + 5)13%we) + {[s(s + 1)

2

2
-1 ] {[s(s+ 14’ + 1)

—(m? + )] + 3n? — 1}I°%Q2ws)}
8m

i [ 25— 1)
— 2 — 1]3°%CA(wy)

][Zs(s +1)

+ 8[mPIsi(0) + 3 (0) — 2mJ 45(0)].
(130

Here J? are the quadrupolar auto-correlation terms,
JOCSA the cross-correlation between quadrupole
and CSA ofS spin, Jigis is the IS-dipolar andJ, the
CSA of thel spin auto-correlation terms, whills is

the CSA()—dipole(S) cross-correlation term. In Eq.
(130), only adiabatic (zero frequency) terms have
been included for the CSA and dipole auto and
cross-correlations. While the CSIA@uto-correlation
contributes equal widths to all the transitions of sipin
all other auto and cross-correlation terms contribute
differentially. The cross-correlation between quadru-
polar and dipolar relaxation contributes to the
dynamic frequency shift (see Eq. (188)) and not to
the linewidth ofl spin transitions.

DLB observations and later with RACT. The same
effect also leads to transverse relaxation optimized
spectroscopy (TROSY), which will be discussed in
Section 7.6.

4.3.1. Direct observations of differential line
broadening

The possibility of observing DLB in coupled spin-
(1/2), spin-(1/2)AX systems was discussed first by
Shimizu [3]. An effort to observe this effect was
done by Mackor and McLean, where they used
CHFCL as a model compound [217,219]. They
found that the longitudinal relaxation is different for
the two lines in the high-resolutidfiF NMR spectrum
but could not see any DLB effects.

Quantitative evidence of DLB was given by Farrar
and Quintero-Arcaya, where they observed DLB in
both the F and *P spectra of fluorophosphate
anion, PF(§_ [256,257]. Fig. 35 summarizes their

31p
81 MHz

p
188 MHz

T°C

3p
202 MHz -54.4°C

(O}
«—

Fig. 35.5!P and'°F NMR spectra of fluorophosphat@FG ) anion

at different temperatures and magnetic field values. The peak
heights for the various doublets are quite different, but in each
case the integrated intensities of each of the pair of lines are
equal. The DLB is due to cross-correlation between the CSA and
dipolar relaxation mechanisms. The DLB increases with the
strength of the magnetic field. [Reproduced with permission from
Ref. [256].]
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Fig. 36. Coupled carbon-13 NMR spectra of the acetylenic carbon
of phenylacetylene in a 1:1 mixture of acetoneathd ethylene
glycol-ds, at +25, —18 and—28C. The spectra were recorded at
90 MHz. The high frequency line is broader than the low frequency
line due to CSA-dipole cross-correlations. The DLB effects

increase as the temperature decreases. A similar DLB effect was

also observed for theara carbon in the ring, but the effect is more

pronounced for the acetylenic carbon. This is because the principal

axis of the CSA tensor is coincident with the dipolar vector for the
acetylenic carbon. [Reproduced with permission from T.C. Farrar,
B.R. Adams, G.C. Grey, R.A. Quintero-Arcaya, Q. Zuo, J. Am.

Chem. Soc. 108 (1986) 8190.]

results. They further concluded that the observation of

differential transverse relaxation is made possible if
the following criteria are satisfied:

e The magnitude of the CSA must be comparable to
the intramolecular dipolar interaction [256,257].
Hence, nuclei having a wide range of chemical
shifts, such as'P, 1%pt, ""Se, °F, 2°Si, >N and
13C [252,258-260] are expected to display DLB
in their coupled NMR spectra.

e The DLB will increase with the strength of the
magnetic field.

e The observation of DLB requires relatively slow
molecular motions or long correlation times
(wte > 1). Therefore, spin systems embedded in

macromolecules or absorbed on high surface area CSA—dipole

materials are likely candidates to exhibit DLB.
e DLB will be masked by the presence of inter-
molecular dipolar interactions.

Some other early observations of DLB involve the
observation of such effects for protons in slowly
moving large biomolecules (such as t-RNA) by
Gueon et al. [191]. Another instance is the differen-
tial line widths in the phosphorous doublet in the
phosphonium ion[HP(CH;)3 ] when absorbed in
H-Y zeolite [256]. Farrar et al. have showed
that the linewidths of the variou$’C doublets in
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2 ICH,OH/silica
260 K
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Fig. 37. Inversion-recovery’C spectra of methanol adsorbed on
silica recorded using Bruker CXP-200 spectrometer with magic-
angle spinning (MAS) at 260 K. The 0.5 s spectrum is multiplied
by 2 to emphasize the difference in the recovery of the inner and
outer lines. The differences in the linewidths of the multiplet result
from the effects of cross-correlation on the transverse relaxation.
The differential recovery results from the effects of cross-correla-
tion on longitudinal relaxation. [Reproduced with permission from
C.J. Hartzell, P.C. Stein, T.J. Lynch, L.G. Werbelow, W.L. Earl, J.
Am. Chem. Soc. 111 (1989) 5114.]

phenylacetylene are differentially broadened due to
cross-correlations and they also
observed an increase in the DLB with decreasing
temperature (Fig. 36) [258]. Hertzell et al. have
observed both DLB and differential longitudinal

relaxation effects arising from cross-correlations in
the *C spectrum of methanol adsorbed on silica
(Fig. 37) [252]. These cross-correlation effects can
provide a detailed description of molecular dynamics
and anisotropic interactions at the molecular level.
The relative magnitudes of dipolar and CSA inter-
actions as well as the degree of CSA-dipole and
dipole—dipole cross-correlations have been deter-
mined. It has been shown in this paper that the
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cross-correlations which give rise to both DLB and predictions, in systems with magnetically equivalent
longitudinal multi-spin orders, can be used to deter- spins AX,, AXy) it is not possible to transfer SQC of
mine the absolute signs of various spin couplings and the X spins into multiple-quantum coherence invol-
position the principal axes of the spin interaction. The ving more than one& spin. Muler et al. have found
evolution of multi-spin order is extremely sensitive to that in contrast to the prediction based on these selec-
motional anisotropies and can be used to study highly tion rules, SQCs of thX spins inAX, groups can be
anisotropic systems where conventional NMR relax- transferred into multiple-quantum coherence invol-
ation studies normally would not work. There are ving severalX spins, due to the unequal transverse
many recent DLB studies which will be discussed in relaxation of degenerat¥ spin SQCs in the course
Section 7. of the evolution period [261]. This multi-exponential
T, relaxation, arising due to cross-correlations, can
4.3.2. Motional information from non-axial CSA and lead to the appearance of forbidden cross peaks in

dipole cross-correlations 2D NMR spectra, which have been observed, for
Fischer et al. [243], have carried out a detailed example in the 4QF-COSY spectra of the protein,
study of motional aspects of the protétncoli, flavo- BPTI as shown in Fig. 38 [261]. Mier has suggested

doxin. In an earlier study, they had measured several a new multiple-quantum 2D NMR method to monitor
relaxation parameters for the peptide-plane carbonyl the combined effects of multi-exponential relaxation,
and nitrogen nuclei, and a poor correlation between due to longitudinal and transverse cross-correlations
the general order parameters dfC, vector and the [264,265]. The experiment employs the pulse
N—-NH vector was interpreted as evidence for local sequencew—r—ﬁd,—tl—ﬂ’d,,—acq In this experiment
anisotropic motion [244]. In the present study [243] the non-selectiver pulse inverts the magnetization
the cross-correlation between thé CSA and C-C, which relaxes multi-exponentially during- and
dipolar interaction was measured from the differences creates multi-spin longitudinal orders due to cross-
in the intensities of the single-quantuni @oublet correlations. At the end of period,8-pulse converts
split by Jusciisc_, in @ constant time 3D experiment,  these multi-spin orders into multiple-quantum coher-
for several residues of thEC—"N labeled protein. ences, which evolve durirtgand are reconverted into
The fomalism of Daragan and Mayo [245], has been detectable SQCs by &’ pulse. The experiment was
extended to include cross-correlation between non- performed on BPTI. Skew-diagonal peaks exhibit
axial CSA and dipolar relaxation to account for the lineshapes characteristic of multi-exponenfialand
dynamics of the G-C, vector and N—NH vector and T, relaxation along the two frequency axes. The
the CSA tensor components, which behave differently appearance of remote peaks in coupled spin systems
under anisotropic motion. A detailed motional model requires only longitudinal relaxation to be non-expo-
has been fitted to this data to characterize the internal nential. Fig. 39 shows the cross-sections of selected
motion along the G-C, and N—NH axes for each  peaks from the 2D spectrum of BPTI obtained with

residue [243]. the pulse sequence listed above which is a 3Q-
MERCY (multi-exponential relaxation spectroscopy)

4.3.3. Break down of coherence transfer rules in spectrum (only three-quantum coherence is selected

equivalent spin systems during t;). These cross-sections clearly demonstrate

Coherence transfer rules have been introduced in the manifestations of multi-exponential longitudinal
2D NMR, assuming that transverse relaxation can be and transverse relaxation. Mer has further observed
ignored [49]. These rules remain valid in the presence multiple-quantum coherences up to an order of 5 in
of auto-correlated transverse relaxation but break the As spin systems of the organometalliccomplex
down in the presence of cross-correlations, becauseferrocene in the absence dfcoupling via multi-
of the unequal decay of degenerate coherencesexponential relaxation due to cross-correlations [266].
[261-263]. The transfer rules imply that inpequan-
tum filtered correlation spectroscopg@F-COSY) of 4.3.4. Relaxation-allowed coherence transfer
AX; and AX; spin systems, no cross peaks should be  Another important development in the experi-
observed foip > 2. This is because according to the mental observation of cross-correlations in transverse
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Fig. 38. Phase-sensitive (a) 2QF-COSY and (b) 4QF-COSY spectra
of basic pancreatic trypsin inhibitor (BPTI, 20 mM in®, pD =

4.6, T = 36°C). The regions shown contain the cross-peaks between
H, and H; of (A) alanine-25, (K) lysine-26, (R) arginine-53, (V)
valine-34 and (E) glutamate-49, as well as theaAdd H, cross peak

of (T) threonine-54. In (b), all these cross peaks should disappear,
but the signals due to A and T survive because of multi-exponential
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induced by a single RF pulse between two spins that
are not scalar coupled which in turn gives rise to cross
peaks in COSY spectra [222]. This phenomenon
arises from multi-exponentidl, relaxation that can
arise from cross-correlations between two dipolar
interactions. Fig. 40 shows schematic spectra that
correspond to (a) a conventional 1D spectrum with a
four-line multiplet of spinA in a linearM—A—K spin
system withday > Jak > 0; (b) the same multiplet
antiphase with respect to sgfy which corresponds to
the appearance of the multiplet in a cross-section
through a COSY spectrum if it had arisen from a
non-zero J-coupling, Jak; (¢) the same antiphase
multiplet for Jax — 0 in which the outer and inner
lines do not have the same line width due to dipole—
dipole cross-correlations and it is this multiplet struc-
ture that one expects for a cross-section through a
relaxation allowed cross peak: two lines in antiphase
with respect to a spin that would merely play a passive
role in normal coherence transfer. The experimental
COSY spectrum of umbelliferone (Fig. 41) reveals a
cross peak between the spiAsand K although the
scalar couplinglak is much less than the linewidth
[222]. They have further discussed the implications
for COSY spectra by considering a four spin-1/2
system M—A--K-X where the dotted line indicates
the presence of a time-dependent dipolar coupling
without scalar interactions and solid lines indicate

transverse relaxation effects, due to cross-correlations. The inserts .
show the sign patterns of the cross peaks of A (filled and open theé simultaneous presence of a resolved scalar

symbols representing positive and negative signals, respectively). coupling and a time-dependent dipolar coupling
The pattern of the forbidden cross peak in (b) is in antiphase with [223]. Experimental evidence for such RACT peaks

respect to all multiplet components. The spectra were obtained with is shown in Fig 42 [223] These cross peaks appear
a Bruker AM-360 spectrometer; spectral width 3030 Hz in both ' )

dimensions, data matrices with 204&00 points before and
4k x 4k after zero filling; 32 and 256 scans pigrvalue for (a)
and (b), respectively; filtration with shifted sine-beff &€ w/16 in

w; and /8 in w,). (c) Simulated antiphase doublet, where each
component consists of the difference of two Lorentzians with

due to dipole—dipole cross-correlations. However,
CSA—dipole cross-correlations can also lead to
RACT peaks.

Even if cross-correlations were not present there
could be differences in the linewidth of the various

time-constants of 0.2 and 0.125 s. (d) Same as (c) but with limited t it f th ltiplets of Kl led spi
digitization and sine-bell multiplication as in the experiment. (e) ransitions ot the muiltiplets of a weakly coupled spin

Cross-section taken from the experimental “forbidden” alanine SyStém with three or more relaxation coupled spins
cross peak in 4QF-COSY parallel t0,, as indicated by dashed [see Eq. (114); contributions adyxux(wa = wx)].

line in (b). Note the qualitative agreement of (d) and (e). In these cases RACT peaks can appear in the absence
[Reproduced with permission from N. ‘Mer, G. Bodenhausen, of cross-correlations

K. Withrich, R.R. Ernst, J. Magn. Reson. 65 (1985) 531.]

. ) i 4.4, Remote cross-correlations
relaxation was that connected with RACT peaks in 2D

spectra, particularly COSY type of experiments, even  Cross-correlations between two interactions that
in the absence ad-coupling. Wimperis and Boden- do not explicitly depend upon the distance from
hausen observed that coherence transfer can bethe spin of interest have been termed as “remote”
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Fig. 39. Cross-sections of selected peaks from then2iDi-exponentialrelaxation spetroscoy (MERCY) proton spectrum of BPTI at

400 MHz (36C, 18 mM in?H,0, pH = 4.7). Three-quantum coherence is selected duirgor these plots, the spectrum was re-transformed
without window multiplication. In (a), the vertical cross-section of the Met-52 singlet exhibits sidelobes, of a sign opposite to the central lobe,
that are obvious manifestations of multi-exponential longitudinal relaxation darifige horizontal cross-section (b) is also flanked by such
lobes, which however reflect multi-exponential transverse relaxation. The antiphase doublet between the metpybtoms of Ala-58 is

shown in (c) along the; dimension. The sidelobes are due to the longitudinal relaxation. [Reproduced with permission fromheN.Ghem.

Phys. Lett. 131 (1986) 218.].

[222,233,235]. The term “remote” is not confined to the orientation of the two tensors (see Eq. (43)) and
cross-correlations since there are also “remote” auto- dipole(j)—dipolekl) cross-term depends on the angle
correlations. The “remote” terms affect both longitu- between the two dipolar vectors (see Eqg. (44)). Simi-
dinal as well as transverse relaxation. In this section, larly CSA()—dipole(jk) cross-term depends on the
we confine the discussion to contributions of “remote” angle between the orientation of the CSA tensor
cross-correlations to transverse relaxation. Like all with respect to the dipolar vector (Eq. (42)).
cross-correlations, “remote” terms also contribute It has been shown [233,235] that the remote cross-
differential line broadening to various transitions of correlations have a first-order contribution, which is a
a spin, in the case of resolved transitions and to multi- differential effect between SQC or multiple-quantum
exponential transverse relaxation in the case of unre- coherence. To excite the multiple quanta as well as to
solved, overlapping or degenerate transitions. observe the first order differential effect, well resolved
Examples of “remote” cross-correlations are cross J-couplings are needed between the spins of interest.
terms (i) between CSA of two different spins in a In the absence af-coupling, the first-order contribu-
molecule, (ii) between CSA of spirand dipolar inter- tion cancels and the remote cross-correlations give
action between spingandk, (iii) between CSA of rise to a second-order effect, which becomes observa-
spinsj or k and dipolar interaction between spips  ble only in the presence of some direct cross-correla-
and k, affecting the linewidths of spim, (iv) cross tions. In the following, some results are reproduced to
terms between two pairs of dipolar interactions with highlight the above conclusions [233], by specific
no common spin among them and (v) cross-terms examples ofAX, AMX and AMKX spin systems.
between two dipolar interaction among spingand
i, k affecting spinm. While such cross terms do not 4.4.1. Remote CSA-CSA cross-correlations
depend explicitly on the distance of the spins fromthe  The possibility of a CSA-CSA cross correlated
spin of interest, they do depend on the geometric relaxation was first mentioned by Vold and Vold
disposition of the spins. For example, the CBA( [59]. Later Werbelow [83], Konrat and Sterk [227]
CSA(j) cross-term depends on the angle between and recently Kumar and Kumar [233] showed that
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Fig. 40. SchematicA-spin multiplets for a linear three weakly
scalar-coupled spin-1/2 nuclei, with the four lines labeted,

a B etc., according to the states of the coupling partners. In (a), it
is assumed thakyy > Jak > 0; the linewidth differences are due to
the (positive) cross-correlation spectral densifya. In (b), the
multiplet is shown in antiphase with respect to sginbut with

the same linewidths. In the limit afax = 0, case (b) is converted
into case (c). This corresponds to a cross-section through a relaxa-
tion-allowed cross-peak in a 2D correlation spectrum (“COSY?”).

These schematics are also applicable to the case where the linewidth

differences would arise from the remote auto-correlation spectral
densityJukmk- [Reproduced with permission from S. Wimperis, G.
Bodenhausen, Chem. Phys. Lett. 140 (1987) 41.].

the CSA—CSA cross-correlations contribute a DLB
effect on ZQC and DQC. This contribution to DLB
is contained in Egs. (107), (113) and (115). The spec-
tral densities J x(Nw) the remote CSAK)—CSAX)
cross-correlations, do not contribute to the linewidths
of SQCs in weakly coupled spins, but contribute a
DLB effect to the ZQC and DQC through x(0) in

AX spin systems (Eq. (107)), and to D&M) and
ZQ(AM) through Jam(0) in an AMX spin system
(Eg. (115)). Since the excitation of the ZQC and
DQC requires the presence of a resoiedoupling
between the spins, the cross terms between CSA of
spinsi andj can contribute only when they are nearby
in a covalent network and have a resohedoupling.
This ensures that only “scalar coupled” spins have a
contribution from CSA-CSA cross-correlations
[233].
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The cross-correlation betwee™N and **CO
chemical shift anisotropies has been recently observed
while measuring the differences in the relaxation rates
of the ZQC and DQC of these two spins in a constant
time 2D HNCO experiment in a doubly labeled
protein binase (12.3 kDa) [267]. Two experiments
were performed. In experiment (A) (Fig. 43), at the
beginning of the constant period42, the two spin
coherenceN,C, is created, which is the sum of ZQC
and DQC. The ¢carbon is decoupled by a selective
18C pulse in the middle of th&l period. Each ZQC
and DQC is split into doublets by the coupling to the
amide proton. The evolution of each doublet is inter-
changed by a 18(ulse in the middle of th& period
and an average relaxation of each coherence order is
obtained, retaining the simple-line approximation.
From Eg. (115), it can be seen that the CSA-dipole
cross-correlations, which give differential relaxation
of the doublets of ZQC and DQC cancel out and the
average decay rates of ZQC and DQC differ by the
CSA-CSA and a dipole—dipole cross-correlation at
zero frequency. In addition, the difference contains
some auto- and cross-terms from high-frequency
spectral densities. Retaining only the zero-frequency
spectral densities, one obtains, from the ratio of ZQC
and DQC in a decoupled HNCO experiment

(24 ln(:;—‘;) — JnncH©) + @, (13D

In the second experiment (B) (Fig. 43), the above two
contributions, have been separated out by creating a
TQC 4H,N,C, at the beginning of the 2 period, but

the evolution of only the ZQC and DQC between
N-15 and C-13 is monitored. The generation of
TQC ensures that the adiabatic contribution involving
the dipolar interaction between the three spins
[InhcH(0)] is eliminated [267]. Consequently in
experiment (B)

|
1|n _Q
IDQ

From these experiments (Fig. 44), bdth(0) as well
as Jyu,cH(0) were obtained for all the residues in the
protein (Fig. 45). The CSA—-CSA cross-correlation
rates were found to vary betweer-1.2 and
—5.2s %, with an average value of23+ 1.4s %,
andJyy cx(0) varies between-0.1 and—3.8 st with

(24)" ) = Inc(0). (132
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assigned to local anisotropic internal motion as well
as variations of the magnitude of the CSA tensors and
the angles between them [267].

Norwood et al. have also measured the cross-
correlation betweertHy and N CSA tensors, by
measuring the differential relaxation of the ZQC and
DQC of the amide proton and nitrogen in perdeuter-
ated, 'N-labeled human-dynamic-light-chain-1
a b protein [268]. They have also considered only the
zero-frequency spectral densities, sinee, > 1 is
satisfied. Their experiment has the additional advan-
tage that the zero frequency dipole—dipole cross-
correlation terms with all other non-bonded protons
are negligible since all other spins (protons as well as
Q- - : S ®N) are far away from the"N—'H bonded pair.
M- . Therefore the difference in the zero- and double-
o ] quantum relaxation rates is exclusively due to CSA—
CSA cross-correlations. This has been measured for
® o the "H—'"N group of Glutamine 27 of the protein and
a value of 101+ 0.14 s ! is obtained for this cross-

i 7 correlation. UsingAoy and the angle between the
* d orientation of the two tensors as measured by Tjandra
s e & et al. [239] a reasonable estimate X, = 5.06 =
s 0.73 ppm has been obtained.

K- * o 2 %o}
s 4.4.2. Remote CSA—dipole cross-correlations
These cross-correlations show up in three-spin
Fig. 41. (a) Partial 2D COSY proton spectrum of an isotropic solu- systems and can be analysed from the results for the
tion of umbelliferone in a mixture of ED, (CDy),SO and (CB),CO AMX spin system contained in Egs. (114) and (115).
(2:2:1 by volume). The spectrum was recorded with the usual proce- The linewidths of A-spin SQCs (Eqg. (114)) have a
dures r/2 mixing pulse)hat 2f3 K aff‘d at 400 MEZ on a Efuksf differential contribution from remote cross-correla-
AM-400 spectrometer. The relevant four-spin subsystem has been .: ;
emphasizzd by dotted envelopes in thep molecalle. The scalar Flons JM*MX(wM) and J.X’MX(wX)’ both of which are
coupling Jak is negligible with respect to the linewidths, bility independent of the distances of spMsand X from
andJx are not. The cross-correlation spectral densiliggx and spinA. The result of Eq. (114) is valid only under the
Jaxx are large due to spatial proximity and a roughly linear arrange-  condition of simple-line approximation, which
ment. The relaxation-allowedi—K cross-peak multiplet centered at requires resoh/edAM and Jax Coup“ngS, as shown in
@1 = (25 andw, = (O (framed in ()) is enlarged in (b), where it yho Anpendix of Ref. [233]. In the absence of these
can be compared with the schematic pattern expected for RACT . . . .
shown in (c). The signals in this rectangular pattern are separated by‘]'COUplmgS’ the first-order c_:ontnbutlo_n cancels and
Jaw in @1 and Jex in w,. The pattern that would result from a  these remote cross-correlations contribute a second-
hypothetical well-behaved transfer duelig is shown in (d). Posi- order effect, but only in the presence of direct cross-
FF\{/e Siggals za\/?hbee” "?”C_iefefd byglevc\i/ _Conto_lﬂsci;n gb):d(c) r?”d (@)- correlationsJaam Or Jaax [233]. Similarly for the
eproduce witl permission from o. imperis, G. Bodenhausen, H H :
Chem. Phys. Lett, 140 (1987) 41 mu_ltlple-quantum co_herences, the_ linewidths of
which are contained in Eqg. (115), it is seen that the
AM ZQC and DQC have a first-order differential line
an average value of2.0 + 0.8 s 1. While the aver- broadening contribution from remote cross-correla-
age values for both the cross-correlations are within tions Ja ux(0), Ju.ax(0) andJa m(0).
expected theoretical values, the variation is outside In a recent experiment using doubffC, **N) and
experimental error. These variations have been fully enriched human ubiquitin, Brutscher et al. have
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HM)  (A) g(X) (K)

Fig. 42. Stack plot of a double-quantum filtered COSY proton spectrum at 400 MHz of 9-phenanthrol showing relaxation allowed cross-peaks
resulting from cross-correlation between dipolar interactions. Two symmetrically dispesédross-peak multiplets can clearly be seen,
indicating RACT betweei andX. The diagonal multiplets centered(at;, w,) = (24, 2,) and 2x, 2x) show passive splittings because of

the scalar couplingd,y andJky, respectively. The relaxation-allowéd-X cross-peak multiplets centered at;, w,) = (24, 2x) (in the back)

and (2, 2,) (in front) appear even though the scalar couplingis negligible. The antiphase splittings of the relaxation-allowed cross-peak
multiplets also result from the passive couplings. Thus, the multiplet centet@g, ai,) = (2, 24) is split byJkx in w; and byJayin w,. The

intensity of theA—X cross-peak multiplet is approximately 25% of that of the diagonal peak, indicating a large effect of cross-correlation on the
transverse relaxation of tiieand X spins. [Reproduced with permission from S. Wimperis, G. Bodenhausen, Mol. Phys. 66 (1989) 897.].

utilized the differences i®N-'C’ zero- and double- R, o = Runn, + Rorcoy

quantum decay rates to measure “remote” cross-corre-

lations, involving the three spin§N and**C’ and the 2ag = Ruchy + Re/nmy- (133)
amide proton nuclei of the peptide plane [269]. The

spectral densitiesJyyn, and Jocw, have been  pFrom Eq. (115), it is seen that
termed as direct andy cn, and Jony, as remote

cross-correlations. It is shown (also follows from Rk = —$Jx(0) + 2J; k()
Eqg. (115)) that the decay rates of the two ZQCs and _ g 0

two DQCs differ due to CSA—dipoledSA d) cross- Rk = = 3%.k0

correlations which in turn differ from each other by - ;5 hy measuring the relative intensities of the ZQ
remote” CSA-dipole cross-correlations and are 5.4 DQ doublets in a constant time experiment (Fig.

(134)

given by: 46), they obtaine®33>*andRES™S the difference and
sum of which then yields information on the direct
(d) )
Rbq = Resad + Resad cross-correlation, @Ad and remote cross-correla-
tion, R&gq. These rates have been measured for 48

Rt () . . . .
Req = RCCSAd SAd peptide planes in the protein. It is found thﬁg}*d
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Fig. 43. (A) Pulse sequence for the determination of transvE® and®N CSA-CSA cross-correlation ratefy(c) and *H"-**N and
HN_CO dipole—dipole cross-correlation ratdg(.c). Narrow and thin bars represent’@hd 180 pulses, respectively. Unless specified
otherwise, pulse phases are alongxtkaxis. The durations of thECO and**C, pulses have been optimized not to interfere with each other.
Pulsed field gradients are half-sine-bell shaped with 1 ms duration and strengths=-&#0 G/cm, g, = 40 Gicm, g3 = 30 Gcm andg, =

50 Gcm. The delays arer=2.7ms T = 110 ms andA = 22 ms States-TPPI [8] quadrature detection is achieved by incremettihgo

that cross peaks af, + wy were observed. To reduce the resonance overlap between double- and zero-quantum cross plksyrthes
frequency was shifted to the edge of fild spectral envelope during the chemical shift evolutiN.decoupling during, was achieved with a

1.25 kHz WALTZ-16 decoupling sequence. Water suppression was achieved with a WATERGATE scheme. (B) The pulse scheme is identical
to (A) except for the two delays/A = = 2.7 ms) and two 90proton pulses just before and after the chemical shift evolution perid@gtails of

phase cycling are contained in Ref. [267] [Reproduced with permission from M. Pellecchia, Y. Pang, L. Wang, A.V. Kurochkin, Anil Kumar,
E.R.P. Zuiderweg, J. Am. Chem. Soc. 121 (1999) 9165.].

varies between 0.7 and 6.3'swhereasRi0,, varies  During an evolution step;’C*~'*C’ DQC and ZQC
between—3.0 and 0.5 8". The four smallesR‘é(g)Ad are allowed to evolve withr pulses on*N, decou-
are found in the flexible C-terminus region. From the pling the *®N spin with splitting due to protons being
rather weak overall correlation betwe&@(g)Ad and active. The linewidths of the two DQC and ZQCs
(gAd, it has been concluded that these two cross- (following Eq. (115)) can be written as:

correlation parameters carry complementary informa- DO bo @ o
tion about CSA tensors and about anisotropic internal Rawv™ = Ra ™ + Raxmx(0, @x) + Resag + Resad
and overall motion of the protein [269].

Remote CSA—dipole cross-correlations have also + Resacsa0)
been measured by Yang et al. [270], involving the 505  _po ) "
13c__'H_ dipolar interaction and th&C' (carbonyl) ~ TaM — Ra~ Raxwx(0: @x) — Regag — Resag

CSA. The method relies on measurement of the peak + Re )
intensities of the mrlTJJ:giplet (:lgmponents of the zero- SACSA

and double-quantum®C* — *°C’ coherences, in a Qa _ pZQ _ O =0)
manner identical to the above described experiment. Rari" = Ra® — Ruoanx(0. @) + Regag ~ Resag
The experiments have been carried out on the fully — Resacsa(0)

doubly labeled ¥¥C, N) protein ubiquitin. The

experiment is a HN(CO)CA scheme, in which the RE2F = REQ — Ryyux(0, wy) — Rggkd + th:(rs)Ad
proton magnetization is transferred t™N and then

to C' and C' carbons and back to proton via nitrogen. — Resacsa(0) (135)



266 A. Kumar et al. / Progress in Nuclear Magnetic Resonance Spectroscopy 37 (2000) 191-319

> A > "B}
tieerd > <> k> > <> | 0)1(13C0+/-15N)
1 > > i
- 170.0
> = D> L I
P > P <D |
L 1750
=) = T ’
’ Al31/Leu32 Al31/Leu32 |
- 180.0
Luce ) =D <D D -
—~a> —> L
% <D B % <D |
> < | 1850
<Oy Tz - oo
ey RS Lo -
7.60 7.40 7.20 7.60 7.40 7.‘20
w2(*HN) (ppm)

S It

1850 180.0 1750 1700 D
DQ_ _ _ _ _ _ _ __ __ _ L

1850 1800 1750 1700
0P CO+/- B5N)(ppm)

Fig. 44. (A) and (B) are, respectively, parts of the spectra of the double-zero quantum and modified triple quantum 2D-constant time
experiments recorded with two different pulse schemes given in Fig. 43. (C) and (D) show traces atakgn at the resonance of the
residue Leu-32 from the spectra in (A) and (B), respectively. The spectra were acquired at 303 K on a Bruker AMX-500 spectrometer, with a
1.0 mM sample of*N, **C-labeled binase (12.3 kDa) froBacillus intermediugReproduced with permission from M. Pellecchia, Y. Pang, L.
Wang, A.V. Kurochkin, Anil Kumar, E.R.P. Zuiderweg, J. Am. Chem. Soc. 121 (1999) 9165.].

whereX is the proton spin and andM are*C’ spins. Taking the logarithm, one obtains:
The intensity ratios of the DQC and ZQC in the
constant time T) experiment are obtained &s: 1 In( IDQ’a-IZQ,B) e
T ™ ooplge ) €Al
(IDQ,a'IZQ,B) _ &XPRoq.aT)expRzqsT) DA 2Q
lDQ,B"ZQ,a eXFxRDQ’BT)'eXFxRZQaT) = &Scl’ISCa_lH + R13Cn’l3cl_1H. (137
= eXpl(Roga ~ Roop) TIeXpl(Rzqa — Rzp) Tl (136) The cross-correlation Rice o1y has  been

neglected in this study, since the CSA bt is
8 All R's are negative numbers, see footnote following Eq. (107). small and**C’-*H distance is large. The measured
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(A) 2.0 geometry and the CSA tensor as measured in a solid
IncHz) | | state study by Teng et al. [271], the angles have been
0.0l A related to the dihedral anglg. The measured cross-
1ol | l ‘ correlation rate and the derived dihedral angle
correlates well with the calculated values in the two
20 ] proteins. In the case of the glycine residue, each ZQ
30¢ 1 and DQ coherence is split into triplets and the
-4.0 1 ratio of intensities of most upfield and downfield
5.0 lines have been used to measure the cross-correlation
-6.0 rates.
0 10 20 30 40 50 60 70 80 90 100

sequence In a subsequent study, Yang et al. [272] have
utilized the idea of measuring the average relaxation
rate of DQ, and ZQ; components which resonate at

(B) rNH,C!io 9

(Hz) o wc T we« — ey and the average rate of RGnNd
’ ZQ, components which resonate aiz *+ wce +
20 wJcn. This is achieved by simultaneous interchange
of DQ, < ZQg and DQ, «~ ZQ, by application ofr
30 pulses on'H and *C* midway between th& period
of the experiment. It is claimed that since the cross-
-4.0¢ ] correlation rate has been obtained from the ratio of
two, rather than four terms, the precision of the
0010730 30 4050 50 75 50 55355 experiment has been improved.
sequence

Fig. 45. Dependence of (A) theN-*CO CSA—CSA cross-corre- ) . .
lation rates {yo), and (B) the'H"—""N and HN-%*CO dipole— 4.4.3. Remote dipole—dipole cross-correlation

dipole cross-correlation rateg’{y ) for the various amino acid
sequence measured for the protein binase (12.3 kDa) for well- 4 4.3.1. Single-quantum coherencedhe presence

resol\{ed cross peaks. The error bars were est|mated from the_5|gnalOf remote dipole{)—dipolekl) cross-correlations
to noise ratio as well as from spectral density terms at higher

frequencies and from magnetic field inhomogeneities, are also indi- reqUireS a COUpled four—spin SysteMKX [233]- It
cated in the figure. [Reproduced with permission from M. Pellec- has been shown that the eightspin SQCs differ in
chia, Y. Pang, L. Wang, A.V. Kurochkin, Anil Kumar, E.R.P. linewidths due to diredtJamak(0, ), Iamax(0, @) and
Zuiderweg, J. Am. Chem. Soc. 121 (1999) 9165.] Jakax(0, )] as well as remot@yux(®), Ivkrx(@)
and Jyxkx(w)] dipole—dipole cross-correlations,
Riscr1scx 1y has been directly related to a non-axial nder the simple-line approximation when all the

CSA tensor (following Goldman [238]), assuming ejght coherences are resolved. The result can be
rigid and isotropic overall tumbling with a correlation  g;mmarized by the following equation:

time 7, as:

_ _ ) (d ¢
Rucsc iy = shogyeylnatef(ox, ov,07) (139 Rhcaa = Rigss = TRauak + Ramax T Rakax

where + (EMX + Rﬁ/I(QKX + (QKX
f(Ux, Oy, 0'2) = %[Ux(g C0§ 0)( - 1) + Uy(3 CO§ Oy - 1) Rﬁaaﬁ = Rﬁﬁﬁa == +R§E&)AK - R,Cﬁf&)AX - RZ(E)AX
+07(3 cos 6; — )] (139) — Rifimx — Rk + Rifex

where 6y, 08y and 6, are the angles that the principal R/C\aga = Rﬁgag = —Rm)AK + R(,;(&)AX - R;(E)AX
axes of the CSA tensor make with the internuclear 0 0 0
13c*'H axis. Assuming a standard peptide plane — Rukwx + Ruikkx — Riikx
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Fig. 46. Experimental results of the 2D ZQ/DQ HNCO(H) experiment applied to human ubiquitin at 300B; fiettl strength of 14.1 T.
Quadrature detection ofiN was used inw; and the*C’ demodulation frequency was shifted to 182.5 ppm by time-proportional phase
incrementation. In (A), contour plots of ZQ and DQ cross-peak doublets are shown for the peptide plane between Lys 29 and lle 30 and between
Ser 65 and Thr 66 with the constant period of time evolutibs; 80 ms wherew; corresponds to the ZQ/DQ dimension amgto the H

frequency. Projections are drawn along the cross correlated relaxation-active ZQ/DQ frequencydwiofttaipm scale). (B) Plot of ratio of
intensities of the doublets of double and zero-quantum peaks as a function of the constant evolution. leepdoduced with permission

from B. Brutscher, N.R. Skrynikov, T. Bremi, R. Bruschweiler, R.R. Ernst, J. Magn. Reson. 130 (1998) 346.].

contributions of RZ® . REY, . RN and RS,

AMAX + RCAKAX
yielding:

() _ Pt _ Pt
+ Rukmx — Rvikix = Ruix:

(140)

d
Rﬁ aa = RZaBB = AM)AK -

Riaaa = R%BBB = Rﬁaaﬁ = RZBBO(
(d) (r)
RﬁMAK XKX

= Rﬁﬁaﬁ = Rﬁ o — R%aﬁﬁ

Both the remote and direct cross-correlations give rise Rias
to first-order differential line broadening, while main-
taining the symmetry of the pattern. If one of the =R RO (141)
couplings is zero, the first-order contribution cancels.

For example ifJax = 0, transitions in which theX Differences in the linewidths yield a sum of these
spin changes state will overlap and cancel the two cross-correlations one of which is the remote
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contribution for spinA. However, this contribution is
also observable only under the condition that b
and Jak are unequal and yield well resolved quartet
[233].

4.4.3.2. Double-quantum coherencése linewidths
of °N;="*C; DQCs have been studied in a four-spin
system conS|st|ng of H°N-CO-3C_—H. There are
four DQCs whose linewidths are given by [273]:

Roa = R+ Resag, + Resag + Rig
Rea = R — Résag, + Resag — Rig
(142
R.p = R+ Résag, — Resag — R
Rgg = R — Resag, — Resagq + Rig

where the subscriptg andp reflect the spin states of
the protons attached to nitrogen and carbon,
respectively, the indiced; andd; refer to N-H' and
C—HC dipolar vectors, respectivelR* contains the
auto-correlation contribution to the double-quantum
linewidths, which are all identical. ThB¢saq and
R«C:sAd,- terms describe the sum of all interactions
due to CSA-dipole cross-correlated relaxation for
the dith anddith dipolar vectors, respecuvelf{g 4

is the cross- correlatlon contribution from NNand
C—H° dipolar vectors. This cross-correlation is
strongly dependent on the angte between these
two dipolar vectors (Fig. 47). Experimental
observation of these four DQCs in a constant time
experiment has been carried out by Reif et al. [273],
which yields intensities strongly dependent on this
angle (Fig. 48). The various rate constants have
been calculated by measuring the intensities of the
four DQCs by the following equations:

R |(aB)|(Ba)
G 4T | ()l (BB)

_ 1 Tiepien

Resag = aT In[ I(aa)[(Ba)] -
_ L[ it

R%SAd, T aT In[ I(oza)|'(01/3)]

The dipole—dipole cross-correlatiolﬁf,‘,dj is given

269

-2

where 0a, ¢, is the angle between the two dipolar
vectors d and d. Assuming the planarity of the
peptide bond, angleﬁdi,dj depends on the torsion
angle ¢ according to the equation, cog ¢ =
0.163+ 0.819 cosyy — 119). The torsion angley
has been estimated from this methodology for
rhodniin, a 11 kDa protein, for all the peptide
planes along the backbone. The extracted torsion
angle ¢y agrees very well with the various known
secondary structure elements of this protein. This
new methodology has proved quite useful in
extracting the structural parameters of proteins in
solution.

In the above study, four values ¢f are consistent
with the measured value @ 4. It has been recently
shown by Yang and Kay [274,275] that, if in addition
to measuring the cross-correlation betwé&f—H®
and ®N-'Hy, dipolar interactions, one also measures
the cross-correlation between th&C*~'H* dipolar
interaction and**C’ (carbonyl) CSA, the ambiguity
in ¢ can be reduced to two from four. In order to
derive this rate, the ratio oIRCCSAdi and RCCSMJ as
given by the second and third equations of Eq. (142)
has to be used. The other dipole—dipole cross-correla-
tion between Iy—C, and H,—N has been found to be
negligible in both these studies.

Pelupessy et al. [276] have recently proposed a
pair of complimentary 2D experiments which enable
one to determine the effects of cross-correlation
between®*C*~H* and *>N-H" dipolar interactions
on the relaxation of the antiphase multiple-quantum
coherence 4NCSC.. This allows one to reduce the
constant timeT, in the experiment by Reif et al., thus
making these schemes applicable to larger biomole-
cules. In the 3D experiments, however, short constant
time evolution periods lead to limited digital resolu-
tion in the zero- and double-quantum dimension, thus
hampering their actual use. By this method, the dura-
tion of the relaxation intervarl is not dictated by the
necessity to resolve the lines of the multiplet in the
third dimension. Furthermore, if the signals overlap
in HSQC spectra, the dispersion of the cross peaks

2
YHYC h) %(3 coé fa.q — 1)

oM

YHYC
3
Ieh,

)(Mo

4
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Fig. 47. (A) Pictorial representation of the anglebetween the dipolar vectorsf€Hg and N, ;—HL. ;. (B) Calculated €N, double-
quantum spectra (a) in the absence of dipole—dipole cross-correlations; in the presence BEHEENG ;—HY,; dipole—dipole cross-
correlation with angle (bp = 9¢° and (c)9 = 0°. The signal in the double-quantum dimension is split due tddpgand the'J,-couplings.
aa, af, Ba andBB denote the proton spin states of khd H', respectively. [Reproduced with permission from B. Reif, M. Henning, C.
Griesinger, Science 276 (1997) 1230.].

can be improved by inserting an additional evolution 4.5. Cross-correlations involving quadrupolar nuclei
period to allow precession of the carbonyiC’

nuclei, which have favorable relaxation properties  The interference effects involving the quadrupolar
[276]. interaction are documented in the literature
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Fig. 48. Experimentally observed peak shapes for selected residues in rhodniin® €herhical shift (600 MHz) of residue+ 1 is given on

the horizontal axis. Double-quantum coherences which evolve between the ritialed G ; are represented on the vertical axis. Deviations

from the intensity ratio (1:1:1:1) that would be found without cross-correlated relaxation can clearly be seen. Two residuesavttiiicah

(T28 and C80) as well as two residues withi-aheet (G70 and K96), together with one residue from a turn motive (S88) are shown. The mean
relaxation rateﬁ q in Hz as extracted according to Eq. (142) and their standard deviations are given below each residue. [Reproduced with
permission from B Reif, M. Henning, C. Griesinger, Science 276 (1997) 1230.]

[277-294]. An early experimental study that observed in a spin-1 coupled to spin-(1/2) system,
observed the presence of quadrupolar—quadrupolarin a nematic phase is shown in Fig. 49 [286]. The
cross-correlation was by Vold et al. in 1980 in recovery of the two lines with different relaxation is
which they monitored deuterium relaxation in a ascribed to dipole—quadrupolar cross-correlation.
10 mol% solution of CICl, in Merck liquid crystal The detailed theory for the longitudinal relaxation
phase V [284,285]. The experiments involved using normal modes in the presence of both dipolar
measurements of spin—lattice deuteron relaxation and quadrupolar relaxation mechanisms, including
in a CD, group, combined with 2D measurements their cross-correlations is given in this paper. It
of single- and double-quantum spin-echo decay may be noted that dipole—quadrupolar cross-correla-
rates. Six spectral densities, three for auto-correla- tions do not gives rise to a differential line broad-
tion and three for cross-correlation, could be deter- ening and only gives rise to a differential
mined in this experiment. Another example in which longitudinal relaxation [287,288].
dipole—quadrupolar cross-correlations have been Cross-correlation between CSA and quadrupolar
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Fig. 49. Initial rate inversion recovery experiments of CHPi@lthe nematic liquid crystal ZLI-1167 obtained on a JEOL FX60Q FTNMR
spectrometer at a temperature of@6The experiments were performed selectively on one part of the quadrupole doubleffih MR
spectrum. [Reproduced with permission from J. Voigt, J.P. Jacobsen, J. Chem. Phys. 78 (1983) 1693.]

interactions can give rise to DLB, in spin-(1/2) 5. Cross-correlations in the presence of a radio
nuclei coupled to quadrupolar nuclei, as theoreti- frequency field
cally shown by Gutowsky and Vold [289], and
Werbelow et al. [290,291]. Granger et al. have It was shown in Section 3 that cross-correlations
observed in tetrahedral clusters with a phosphorus contribute to longitudinal relaxation via spectral
ligand bound to a cobalt atom, HFe{l8O),,L, that densities only at the Larmor frequency. Thus the
the 3P spectra of some clusters exhibit a remark- effect of cross-correlations in longitudinal relaxation
able asymmetry in the line shapes [292]. This as well as on the NOE of slowly tumbling molecules
asymmetry was the first experimental confirmation for which w7, > 1 is minimal. However, in Section
of the CSA-quadrupole cross-correlations. Since 4, it was shown that cross-correlations contribute to
the CSA-quadrupole cross-correlations depend ontransverse relaxation via spectral densities also at
these two tensor orientations, Elbayed et al. other frequencies, including zero. Bull [61,295,
have calculated the linshapes for three different 296], therefore suggested that the relaxation experi-
cases, namely coincident-axially symmetric, non- ments be performed in the presence of large RF fields
coincident-axially symmetric and general non-coin- (the so-called rotating frame experiments). The RF
cident quadrupolar and CSA tensors in such systemsfield mixes the evolution of longitudinal and trans-
[293]. verse relaxation enhancing the effect of cross-corre-
Recently, Werbelow et al. have measured the lations. Such experiments have gained popularity
guadrupolar—quadrupolar cross-correlation in a from several other considerations as well and many
spin-(1/2) coupled to spin-1 system, via ‘spying’ experiments have been developed such as TOCSY
spin-(1/2) nuclei [294]. In the®C multiplets of [297,298], HOHAHA [299], CAMELSPIN [300]
deuterated ethylene glycol, it was observed that and ROESY [301], exploiting both the coherence
the apparent heights of the multiplet components transfer and the relaxation studies in the presence
do not obey the simple pentet pattern due to DLB. of strong RF fields. A detailed review on relaxation
This broadening in the pentet was attributed to in the rotating frame in liquids has been published
the cross-correlation between the two quadrupolar recently by Bull [61], which includes in detail the
interactions. effect of cross-correlations. We will therefore restrict
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this review to a few introductory remarks and some The time evolution of the longitudinal spin operators
simple cases to illustrate the effect of cross-correla- in the rotating frame then follows an equation of
tions in the presence of RF fields and refer the reader motion similar to the laboratory frame case except
to the above review for further details of various spin all the quantities are replaced by primes [295]. For
systems. The discussion here closely follows the example, for a two-spin systemAX), the equation
ideas contained in Bull’s original article [295] and of motion is given by [211]:

an experimental study by Burghardt et al. [211].

q (|§/> P/A o /AX 5/A,Ax
5.1. Theory & 1% —| oax  Px Fkax
Application of a steady off-resonano®ffset= (2151%) Saax  OxAx  Pax
Aw) RF field of strengthw; = yH; along theX-axis,
yields an effective field in th&XZ plane in the rotating (A1%)
frame given by: N
X (AlZ) (148
et = \(Aw)? + (01) (145 (2A1215)
at an angled from theZ-direction given by: whereA represents the deviation from thermal equi-
librium and the relaxation parameteg$, ¢’ and8’,
0= tan—l(ﬂ) (146) respectively, represent the self-relaxation rate of
@ each mode, the cross relaxation rate between

modes of the same order and the cross-correlation
rate between modes of different order, in the respec-
tive rotating frames. While the RF field is assumed
to be strong enough to redefine the secular and non-
secular terms (by decoupling the longitudinal and
transverse operators in the rotating frame), it is
assumed to be not strong enough to perturb the
" fundamental relaxation process. This later assump-
tion holds if (yH))7, <1 [295], a condition
satisfied for all practical purposes. Under this
assumption, all the spectral densities defined earlier
(Section 2.2.5) remain unchanged. However, the
way the spectral densities influence the dynamics
of the magnetization is modified. They need to be
transformed into rotating frame along with the spin
operators. The following sections provide a discus-
sion of the dynamics of the various spin systems

If wefr > R, the various relaxation matrix elements,
then it can be shown that the total magnetization can
be resolved into two components, one spin-locked
along the effective field and the other perpendicular to
it and that the dynamics of the magnetization locked
along the effective field is decoupled from the magneti-
zation transverse to it [211]. Under this assumption
the density matrix is described by the product of
nuclear spin operators directed along and perpendicu-
lar to the corresponding effective fields. The magne-
tization components transverse to the effective field
perform Torrey oscillations about the effective field
and decay (if the RF field is sufficiently inhomoge-
neous) and can be ignored [302]. The magnetization
of each nucleus is thus locked along its effective field,
whose relaxation becomes a mixture of the relaxation
of the longitudinal and the transverse components. : .

The transformation to the effective field of each ' the .rotatmg frame in the presence of cross-

. ; correlations.
spin also leads to the transformation of the operators
and one can define spin operators in the rotating frame

(with primes) for each spin as [211]: 5.2. Effect of CSA—dipole cross-correlations for an

AX spin system
1% cosfy 0 —sinfa) (1% pin sy
A | = 0 1 0 1A (147 For the homonuclear two-spin systéxX, when the

v I two spinsA and X are selectively spin locked along

|ZA/ sinfy 0 co0SOp IQ the 6, and 6y the various elements of Eq. (148), are
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obtained as [211]:

o [1sin® 6 + 11 Esir? 0a 0
, 1 L . Jaxax(0)
PX [ESII’IZ 0)( + é] 0 §S|n2 HX 3 (O)
= AA
PAX 1[4 sirf (05 + 6y) + coS O, sin’ O + Sit 9a cos O] Ssirf 6, Esin oy 10)
XX
OAx 1[2 sin 6, sin 6 — cos O, COSby] 0 0
[1sir? 6 + 1] 2(cos G + 1) 0
N [1sir? 6x + 1] 0 2(cog 6y + 1)
1[1 4+ 2 cog(0a + 6x) + COKbp + O)COK O — )] 2(COS fp + 1) 2(coS bk + 1)
sin OASin Oy 0 0
cos O, + 1 00 Sin? 6, 0
Jaxax(®) Jaxax(2w) ,
cod 6y + 1 00 0  sirf 6x | Ia0)
(1—cog gscos ) 0 O sin? 6, sir? 6 |\ Ix(0)
Jxx(®) Ixx(2w)
2 €c0sf, Ccos by 00 0 0
1+ cos 6, 0
0 1+ cog Oy | Ia(w)
+ X ( A ) (149)
1+cod 6y 1+ cog by |\ Ix(w)

0

0

The last two termg;(nw) represent spectral densities HereBﬁ,ij represents the cross-correlation rate between
arising from random field mechanisms, while the even and odd order modes arising from cross terms
other spectral densities have their usual meaning. It between CSA of spinwith the dipolar vectoij. The

is noted that botlp’ and o’ continue to depend on  above equation shows that the spectral densities at zero
auto-correlation spectral densities even in the rotating frequency also contribute to the cross-correlation rates
frame. The cross-correlation rates which connect the and their contribution disappears féx = 6x = 0 (lab
single spin operators to the two spin operators are frame). The CSA of spirA contributes to the CSA—
obtained as [211]: dipole cross-correlation ra ax, which connects the

( SAnx ) 4 ( (2 sirf @, cosby + Sin B, sin By COSO,) 0 )( Jaax(0) )
8% ax 3 0 (2 sir? B,co, + Sind, Sin By cos by / \ Ixax(0)
2( (COZ 6, COSOy + COSBOy — SiN B SiN By COSH,) 0 )(JA,Ax(w) )
0 (c0F 6y cOSO, + COSO, — SiN O, Sin By cosby) / \ Ixax(®)

(150
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single spin order of spiAto the two spin order, but not 1 00 1

to 8% ax» Which connects the single spin order of skin Jaxax(2w)

to the two-spin order. Similarly, the CSA of spi + 2.0 InRw) |+ 00 (‘]A(O))

contributes toS% ax and Not tosx ax- 1 00 1 0|\ 3o
If the spin-locking field has different values at JIxx(2w)

different spins, then either a spin or a group of spins 000 0

can be selectively spin locked [296]. In the case of 1 0

homonuclear spins, this requires careful adjustment of

the frequency and the amplitude of the RF field. The 0 2|(Ialw

above description using the prime notation has the 1 2 |\ 3w (151)

dual advantage that (i) it is similar to the longitudinal -

relaxation description, (ii) it can be continuously
taken from the rotating frame description to the
laboratory frame by continuous change of anglgs ~ and
a_ndex. Indeed this descriptipn is qompletely valid.for Srax 8(1 0Y/JIanx0
different values of, and 6y including selective spin ( ) _< )( . )
lock of different spins. Some special cases of selective 3 Jx.ax(0)
spin locking are discussed below.

1 0)/(Janx(w)
—2 (152
5.2.1. No spin locking 0 0/\ Jxax(w)

This corresponds to a situation in whigg = 6x = It can be seen from these equations that the cross-
0. The above parameters reduce to laboratory frame rg|axation rateo’sx and the cross-correlation rate

values and relaxation is purely longitudinal and Eqg. 8 ax are zero and only the cross-correlation rate
(149) reduces to the truncated Eq. (61) describing the s/ hax is finite. It does not vanish even in the slow
longitudinal relaxation ofAX spin system in the  nation limit (since Jaa0) contributes). Since in
absence of RF field [42,45]. this case,o’ax = 0, the transfer of magnetization
from one spin to another is exclusively by cross-corre-
5.2.2. Selective spin locking lation which can be measured accurately [211].
When the magnetization oA spin is selectively
spin locked, that ig9, = 90° and GX = 0, then from 5.2.3. Spin locking both spins A and X
Eq (149) it is seen thaty =I1%,1% =15 and For this casef, = 0x = 90, and as seen from Eq.
2121% = 21417 and relaxation is a m|xture of long-  (149), relaxation is purely transverse. This state is
itudinal and transverse relaxation. Furthermore, Egs. obtained by applying a high power spin locking RF
(149) and (150) given above simplify, respectively, to field on both the spins. The different relaxation rates,

8% Ax 0 0

[211]: given by Eqg. (149) reduce to:
/ !
PA 5 16 0 Pa 5 16 O
Jaxax(0) Jaxax(0)
p,x 1 2 0 0 AXA plx 1 5 0 16 AXAX!
== Jan(0) = — Jan(0)
Plax 615 16 0 Plax 610 16 16
. Jxx(0) . Jxx(0)
O-AX 0 0 0 O'AX 4 0 O
340 o) 340 »
w w
L1|2 08 ’;XA(X) L1304 3XA(X)
2148JAAw 2244JAAw
(w) (w)
000 X 2 00
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1 0
10 Iaxax(2w)
+ 10 0 Jan(2w)
00 0 Ixx(2w)
1 0 1 0
01 (JA(O)) 01 (JA(w))
+ + ,
1 1|\I0 1 1|\ I(w)
0 O 0 O

(153)

and the cross-correlation rates go to z&kgence in
the rotating frame, when all the interacting spins are
spin-locked, the partial conversioniéf to 215,15, and
vice versa is not possible. On the other hand, it has
been shown that by spin-locking all the spins along
the magic angléd, = 0y = 54°44’), the contribution

of J(0) to the cross-correlation rate is maximum.
Therefore, one can choose this value for for obtaining
the maximum contribution of cross-correlation in
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biomolecular NMR. Such experiments have been
carried out using double quantum filtered tilted
ROESY [192].

In the above analyses, it is assumed that Jhe
coupling is small compared to the RF field strength
and that the effective field direction and magnitude are
equal for all the transitions of a spin multiplet. The
cases where different transitions of a multiplet have
different effective field value and direction have been
treated by Bull [61].

5.3. Effect of cross-correlations for an AMX spin
system

The general case of selective spin locking of
each spin of anAMX spin system with different
angles of spin-lockf,, 6y and 6y is treated here
in order to study the effect of CSA-dipole and
dipole—dipole cross-correlations in the presence of
RF fields. Following the method outlined above for
the two-spin case, the equation of motion of the
longitudinal modes in the rotating frame is obtained
as:

E 0 0 0 0 0 0 0 0
AL (1) 0  pa Oam OaAx Saam Saax 0 Samax
MZ(t) 0 ohwm P o S\.Am 0 SM.mx SAMMX
_d X5(t) B 0 oax  owx P 0 8% ax 8% mix Saxnx
at| 2AZM5(b) 0 OShav  OSmawm 0 Pam Samax T olux  Sammx T Tax  Saax T Swmx
2AL X5 (1) 0 Saax 0 8%ax  Samax + Tux Piax Saxmx T Tam Saam + S mx
2M% X5 (1) 0 0 Swmx  Oxmx  Sammx T Oax  Saxmx T Tam Phax Swam + 8% ax
AAZMEX5(t) 0 Samax OSammx  Saxmx  Saax T Smmx  Oaam + Sxmx  Omam + Skax Pamx
E
2(t) — A7
MZ(t) — M7
N 2 — X7 154
® The absence 03 ax in the case when both the spins are spin- X 2AL ML (1) (154)
locked with 65 = 6x = 90° is in agreement with Section 3.5.2; zhz
where also the CSA-dipole cross correlations do not come into LX5 ()
play, when pulses are applied to both the spins, decoupling the 2MLX (1)
dynamics of the gerad@(21;S;), %1) and the ungeradgl;),(S;)) znz

spaces.

4AZM7X7(1)
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The various self- and cross-relaxation rates stated in
the above relaxation matrix are given by [61,211]:

Pa 1+ Lsir’ 9, 1+ Lsir® 6, 0
/ / 14 1w 11 Jamam(0)
PAM {am(0) 1+ 3singy 5+ 3sinby
= Jaxax(0)
/ /! /! !/
PAMX am(0) {ax(0) Imx(0)
Imxmx(0)
, Lim o .
TAM 5[2 Sin6a sin 6y — cos O COSOy ] 0 0
1+ 3si 6y 1+ isirf 6, 0
. _ Jamam(w)
Cam(w) 1+ isir 9 1+ sir® oy
+ . ) , Jaxax(®)
Cam(w) Iax(w) Emx (@)
. . Imxmx(@)
Sin 6,SiN 6y, 0 0
1+cof gy 1+cos b, 0
, Jamam(2w)
Ian(Cw) 1+cos 6y 1+ cos 6y
+ , , , Jaxax(20)
{am(2w) {ax(2w) mx(2w)
Juxmx(2w)
2 C0Sf, COS Oy 0 0
sifgy O
) _ Jpa(0)
8| sir® 65 sir? 6y 0
B , - Jum(0)
3| siP g, sin? 6y  Sir? Oy
Jxx(0)
0 0 0
1+ cog 6, 0
Jan(w)
1+cos 6y 1+ cos 6y
Jum (@) (159
1+cos 6y 1+cos 6y, 1+ cos by
Jxx(w)
0 0
where The cross-correlation rates are given by:
{am(0) = L[4 sirf(6p + Oy) + cOS O,SirT by Sham = — 2(2sirf 6, cosfy

+ sin? 6, cos 6
A ] + C0S 04 SiN Op SiN Oyy)Ip am(0)

{am(@) = 2[1+ 2 cod(6a + 6y)

—2 +
+ €O t Om)COL b — On)] (COS 6 COSBy + COSby

IamCw) = 1 — cog 0, cog 6y (156) — COS 6, SiNb SIN Oy)JIa am(@) (157
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Amax = 5 (2 Sin6a cOSfy + COS B, SN Oy) given by [211]:
X (2 Sin B cosby + coSba Sin Oy)Iamax(0) oam =0
+ [cosHy cosby + coS6p + Oy) 8/A,AM == %JA,AM(O) — 2p am(@) (160
X Cog O + 6x)1Iamax(®) Samax = 5 Jamax(0) + Jamax(®)
+ 5iN By Sin By(1 + co2 1) aax(20) These equations 'show that yvhile cross—relaxation
rates from the spin locked spin to non-spin-locked
(158 spins are zerod,x is also zero) the single spin-

The expressions for the other auto- and cross-corre-order of the spin-locked spin, can be converted to
lation rates can be obtained by changing the the two- or three-spin orders by the cross-correlation
subscript indices appropriately. The effect of rates atzero frequency. Thus these cross-correlation
various selective spin-locking experiments is rates can be observed even when > 1.
discussed in the following:
5.3.3. Case (iii): wherf, = 6, = 90° and 6y =0

5.3.1. Case (i): wher, = 6y = 0y =0 This_ is a sitl_Jation in WhiCh the spims_andM are

This condition reduces the relaxation to purely Selectively spin locked, while th&-spin remains
longitudinal relaxation and the expression for the unaffected by the spin locking field. The self-relaxa-
various relaxation rates reduces to the lab frame tion rates are given by:
expression given in Eqgs. (63) and (64):

PA 1 1 0\ /Jamam(©
5
! = —
5.3.2. Case (ii): wherd = 9C°, 6y = 6 = 0 Pam | =50 1 L[ JaxaxO)
This situation corresponds to a selective spin lock \ plux 0 1 1/ \Juxmx(0
of the A-spin and the other spins are unaffected by the
spin locking field. The expression for the various self- 3 3 0\ /Javam(®) 110
relaxation rates given by Eq. (155), simplifies to: +E 2 3 3| Joaxw | +2 1 1
2
PA . 5 5 0\ /Javam(©) 2 1 1) \Jnux(®) 111
pan | =55 5 2| Inex© Janan(26) 10 0\ /3
phwx 5 5 0/ MO x| da2o) |+ 21 1 o[ 30
3 3 0\ /Javam() 110 Juixvx(2w) 1 1 0/ \ IO
1
51 3 2] Imaxe) | F[1 1 2 1 0 0\ / Jan(®
1 1 47 \Juxux(w) 110 +2l1 1 ol| Jum(® |. (161)
Jamam(2w) 1 0 0\ /a0 1 1 2/ \ Ix(w)
8
x| J 2 +—=-]11 0 0] Juu(O
wxax(20) 3 w(©) The cross-relaxation and cross-correlation rates are
Juxmx(2w) 1 0 0/ \ IO given by:
1 0 0\/Jan(ow o'am = 2Iamam(0) + Jamam(w),
+211 2 0] Jum(w) | (159) Saam =0,
1 2 2/ \ Jx(w) / (162
XX oamax = 0,

The cross-relaxation and cross-correlation rates are o'ax = oyx = O.
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Under a doubly selective spin-locking case, cross- correlations by selective spin locking using the pulse
correlations involving the dipolar interactions sequence shown in Fig. 50(a). Transverse magnetiza-
between the spin-locked spins, become zero. Hencetion Iy is initially excited using a self-refocusing 270
this provides a method of measuring the cross-relaxa- on-resonance Gaussian pulse [303]. During the subse-
tion rate (NOE) between two spins without the inter- quent spin lock pulse which is applied along tke
ference of spin diffusion as well as cross-correlation axis, thely term may be regarded as an operaﬁxrlt

effects. is the rotating-frame relaxation of this term, which is
of interest. This term relaxes via the CSA-dipole
5.3.4. Case (iv): wheliy = Oy = 6y = 90° cross-correlation to the two spin order termy 2

Under this condition, all three interacting spins are (equivalent to 2715 in the lab frame). At the end of
spin locked and the relaxation is purely transverse. the spin locking periodrg, this term (21¢13) is
The various self-relaxation rates are given by: separated from the in-phase terfd, by applying
two Gaussian 270pulses, the first at the chemical

P 5 110\ /Jaman(© shift 2,, to convert 2% into 21215, and the second
pam [=5[0 1 1| Jnax© at the chemical shiff2y to create 22'1%. The single-
, spin operator terms are excluded by doing a phase
PAvx 0 0 0/ \wxwx(@ cycle on the three pulses along with the receiver.
3 3 0\ /Jaman(®) 11 0 Fig. 51 shows the experimentally observed build-up
1 and decay of the antiphase two-spin order in exifone
5 2 3 3| Iaxaxw) |+]1 1 1 recorded with the sequence of Fig. 50(a), including a
2 2 2) \Jnux(® 1 1 1 hard purging pulse, before the spin-locking period.
Using selective pulses, the rotating frame dipole—
Jamam(2w) 1 0 0\ /Ja© dipole cross-correlation rate was measured in a three

spin system using the pulse sequence shown in Fig.
50(b) [211]. Fig. 52 shows the 2D multiplets bF
Juxmx(2w) 1 1 1 Jux(0) methylleucine, the 4th residue in the cyclic undeca-
peptide cyclosporin-A, for various mixing times. Fig.
10 0\ / Jan(@) 53 shows the 1D build up and decay of the three-spin
+211 1 0Off Jum(o) | (163) order for the same leucine that is shown in Fig. 52.
Bruschweiler et al. [210] have observed the three-spin
order using the tilted rotating frame (3QF T-ROESY)
experiment on BPTI for a spin-locking angle 6f=
35 (Fig. 54). The 3QF-NOESY spectrum is also

X ‘]AXAX(Zw) + 1 1 0 JMM(O)

wl oo

1 1 1)\ (o

The cross-relaxation and cross-correlation rates are

given by: shown for comparison. It is seen that there are many
oA = %JAMAM(O) + Jamam(®) more cross peaks in the 3QF-T-ROESY spectrum than
the 3QF-NOESY. This is due to cross-correlation at
Saam =0 (164 zero frequency showing up in the T-ROESY.
Bruschweiler et al. have also extended the selective
Samax = Jamax(@) + Jamax(2w). spin locking to a flourine—proton system, in which the

two spins are locked in orthogonal directions, naming
the experiment ortho-ROESY [304]. Cross-correla-
tions lead to an antiphase peak, the amplitude of
which is sensitive to the magnitude of the spin-locking
5.4. Experimental observations field, the various cross-correlations and the cor-
relation time of the molecular reorientation. From a
Rotating frame cross-correlations were observed detailed analysis of the results of experiment on
using selective spin-locking fields by Burghardt et 1-fluoro-1,1,2,2-tetrachloroethane in a 1:5 mixture
al. [211]. They observed the CSA-dipole cross- with benzene-g it is shown that the cross peak

Here, the CSA—dipole cross-correlations go to zero.
In the NOE experiment, if there is any multiplet effect,
it will be due to dipole—dipole cross-correlations.
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Fig. 50. (a) Pulse sequence for the 1D experimental observation of CSA—dipole cross-correlation using selective spin locking. The Gaussian
pulses typically have a duration of 30 ms with a peak RF amplitude of 55 Hz to provide an on-resonance flip an§lefoE2RB amplitude of

the spin locking field is typically 40 Hz. The RF frequencies and phases are indi¢3téahglies that the pulse is applied at the chemical shift

of spin A). In the laboratory frame product operator evolution graphs, shown at the bottom of (a) and (b), the convdr%i@nl@finto

2315 = 21515, represented by a wavy arrow, is due to cross-correlation between CSA df apiththe dipolar interaction betwedrandX.

(b) Pulse sequence for 2D spectroscopy with selective spin locking, suitable for a system with three or more spins. The Gaussian pulse in the
middle of the evolution period refocuses all the scalar couplings. In the product operator evolution graph, the wavy arrow represents the partial
conversion ofl2 into 451315/, due to cross-correlation between the fluctuations of&tXeand AM dipolar interactions. [Reproduced with
permission from |. Burghardt, R. Konrat, G. Bodenhausen, Mol. Phys. 75 (1992) 467.]
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Fig. 51. Experimental build-up of two-spin order in the tilted framé, IT;_*,, involving the two protons Aand H¥in exifone, obtained with the

pulse sequence of Fig. 50(a), including a hard purging pulse. The spin locking interval was varied between 1 and 900 ms. The spectra were

recorded at 303 K with a Bruker AM-400 spectrometer equipped with a selective excitation unit, using a sample dissAHgDM$O
without degassing. [Reproduced with permission from |. Burghardt, R. Konrat, G. Bodenhausen, Mol. Phys. 75 (1992) 467].

observed in this case is largely due to cross correlatedresidual scalar interactions can give rise to three-spin
fluctuation between the scalar coupling and the isotro- order terms, which are difficult to distinguish from the
pic chemical shift in a system undergoirtgang three spin order terms arising from dipole—dipole
gauchereorientation. This is an extremely interesting cross-correlations. On the other hand, if the spin-lock-
work, which shows by explicit theoretical and experi- ing fields are strong enough to make the scalar
mental analysis, that time dependent correlated fluc- couplings ineffective, new complications arise due
tuations of isotropid and isotropic chemical shiftcan  to the interaction of the RF field with the passive
lead to two-spin orders. spins [306].

Poppe and Halbeek have observed differential
relaxation of the anomeric protons ef- and B-
[1-**C]-p-glucose during the non-selective proton 6. Dynamic frequency shift
spin-lock in proton—carbon system (ortho-ROESY
experiment) and during a selective proton spin-lock It has been mentioned in Section 2 that the relaxa-
(SLOESY experiment). The observed features in the tion matrixI" has real and imaginary parts (Eq. (12)).
spectrum are due to CSA (proton) and dipolar The real part gives rise to relaxation, which has been
(*H-3C) cross-correlations. The experiments were discussed in detail, in Sections 3—5. The imaginary
performed under the condition; . = 1, in order to part, gives rise to a small frequency shift, known as
enhance the cross-correlations [305]. Varma et al. the dynamic frequency shift (DFS). While the DFS
[306] have recently shown that in higher spin systems has been known in the literature for a long time and
(n = 4), if the spin-locking fields are very weak, the was introduced in the context of the semiclassical
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Fig. 52. Two-dimensional three-quantum filtered spectra of the cyclic
undecapeptide, obtained with a selective spin lock applied to the
protons H and H of the N-methylleucine-4th residue cyclosporin-

A for the duration from 100 to 400 ms. The spectra were recorded at
303 K with a Bruker AM 400 spectrometer using a degassed solution
in CDCL,. The spectral widths are 128 and 256 Hzan and w,
respectively (only 2& 40 Hz shown). 64 512 data points were
recorded, zero-filled to 128 1k. A Lorentzian-to-Gaussian line-
shape transformatiofL.B = —1.5, GB = 0.08) was applied before
Fourier transformation. [Reproduced with permission from I.
Burghardt, R. Konrat,G. Bodenhausen, Mol. Phys. 75 (1992) 467.]

theory of relaxation by Abragam [1], it has gained

importance in recent years due to contributions from
cross-correlations. Both auto and cross-correlation
spectral densities contribute to DFS, but manifest in
the spectra in a different manner. Auto-correlations
contribute equal DFS to all transitions of a spin,

giving rise to a net DFS, indistinguishable from a

chemical shift and therefore difficult to establish

experimentally. Cross-correlations, on the other
hand, give rise to differential effects on various transi-
tions. In the simplest case of a doublet, the effect is
often equal and opposite on the two transitions,
making DFS indistinguishable from a change in

coupling value, and again difficult to establish experi-
mentally, except via careful measurement of the split-
ting as a function of magnetic field [307]. In the case
of a triplet or higher multiplets, which may have

unequal DFS on various transitions (arising from
cross-correlations) the symmetry of the multiplet is
broken, giving rise to unequivocal experimental

evidence of the existence of DFS. This latter type
therefore needs a minimum of three coupled spin-(1/
2) system or a spin-(1/2) coupled to spi(1/2) and
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Fig. 53. One-dimensional multiplets of tHé-methylleucine-4th
residue in cyclosporin-A, obtained with the 1D selective spin lock-
ing shown in Fig. 50(a), without the purging pulse. The spin locking
interval was varied from 20 to 750 ms. [Reproduced with permis-
sion from |. Burghardt, R. Konrat, G. Bodenhausen, Mol. Phys. 75
(1992) 467.]

needs resolved or partially resolved multiplets [308—
310].

It can be seen that in the case of non-overlapping
non-degenerate transition$y .o — “’BB’| > Loapprs
the simple-line approximation) the summation on the
RHS of Eq. (20) reduces to only one term, namely,
I' .o ae’» Which contributes to the time evolution of the
off-diagonal elemento,,, which has a frequency
w,.» an exponential decay rat,, ., and a DFS
Low'aa’- HoOwever, in the limit |wx — wy| >
Jax# o g the coupled evolution of the twatran-
sitions of anAX spin system, can be written from Eq.
(12) and Eq. (21) as:

)
o34t
( Ri212 R1234) ]( )
+ .
Ri23a Raaza
(165

Here use is made of the fact tHat, g = Rggraar @nd
that L, gg is negligible, andw;, = wa + 3Jax and
W34 = WA — %‘]AX and Saa’ = Laa’aa’(w)~ Eq (165)
can be discussed in two limits. In the first limit, if
Jax > Ry234 the contribution ofRyy34 is negligible

w12 + 812 0

0

d
dt

w3g + O34

o1a(t)

o34(1)
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Fig. 54. Proton NMR spectra of a 20 mM solution of basic pancreatic trypsin inhibitog@ndd pD= 4.6 recorded with a RF field strengtB,/2m = 6100 Hz and irradiation
effectively 14.3 ppm at lower field from the middle of the spectrum. 1024 experiments with 60 transients each were recorded. (a) 3QF NOESY (B06&-MHz}- 0 at 305 K.
The water resonance ridge@ = 4.7 ppm is plotted at a four times higher level than the rest of the spectrum. (b) 3QF T-ROESHwi8%* (600 MHz) at 300 K. The k-H,
cross peak region is shown, which also includes some other cross peaks. The water resonance was suppressed by presaturation. [ReprodusehviitmpBrBigschweiler,
C. Griesinger, R.R. Ernst, J. Am. Chem. Soc. 111 (1989) 8034.]
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and each coherenee, andws, evolve independently  where 7. is the correlation time,x,, the angle

of each other by a single time constant givenRyy;, between the principal axes of the tensor interaction
or Ry3, The DFS also makes a contribution to the p andv with C, andC, being the constants indicating
shift of each line. The imaginary part of auto-correla- the strength of each interaction. This should be
tion spectral densities contributes equal value8to compared with the real part of the spectral densities
and 63, while the imaginary part of cross-correlation which govern the relaxation of the spin and which are
spectral densities makes equal and opposite contribu-given by [58]:

tions to 81, and 834, exactly in the manneR;,,, and 1 -
Ras434 differ from each other via the real part of cross- J,,(w) = ECMC,,(3 coé Xuv — 1)[ —°2 ]
correlation spectral densities. This results in a modi- 1+ (o)

fied splitting given byd + (815 — 834). In the limit, J (168

is zero, the two transitions overlap and their time Eqs. (167) and (168) indicate that the real and the
evolution gets coupled. In such a case, one can moni-imaginary parts of the spectral densities differ only
tor the time evolution of the sunioy, + 03) and by a multiplicative factorwr.. Thus the analytical
difference (o, — 0734) modes. In this circumstance, expressions for DFS are similar to the linewidths of
the imaginary part of cross-correlation spectral densi- the various coherences, except for the multiplicative
ties cancels out and the DFS is obtained only from the factor wr, and the absence of adiabatic (zero
imaginary part of auto-correlation term, which can at frequency) contributions to DFS. The dependence of
best shift slightly the resonance frequency and is these spectral densities an has been studied by
indistinguishable from a chemical shift change. In Fouques and Werbelow (Fig. 55) [312]. They show

the intermediate case whed ~ Ryzs the full  that for isotropic reorientations, the DFS becomes
equation has to be solved and one obtains numerical comparable to the linewidth fopr. =~ 1 and shows

solutions [311]. Similar analysis can be carried outfor yp prominently. For the short correlation time limit
higher order spin systems. In the following, we point wt, < 1, the DFS is much smaller in magnitude
out the DFS of various spin systems in the simple-line compared to the real part of the spectral densities. In
approximation, assuming all transitions and coher- thjs |imit, one obtains well resolved multiplets, since
ences to be well resolved. the linewidths are small, but the DFS is negligible. On

Before that the functional form of the DFS and its  the other hand, for the long correlation linait, > 1,
manifestation under various motional limits is briefly the DES reaches a saturation value. The non-adiabatic
discussed. contributions to the linewidthJ(w) and J(2w)

decrease, but the adiabatic contributi§f) increases

6.1. Functional form of the dynamic frequency shift  linearly, yielding broad lines, masking the multiplet
structure. In cases, where the adiabatic contribution to
linewidths is negligible, such as heteronuclear dipolar
interaction, the DFS becomes important in this limit,
as well. Anisotropic and internal motions, in general,
reduce the magnitude of DFS [312].

Following Eq. (12),K(w), the DFS is the sine
transform of the correlation functiofs(7) and can
be written as:

Kun(w) = J G,.(7) sin(w7) dr, (166
0
6.2. Dynamic frequency shift for various spin systems
whereG,,,(7) is the correlation function of the lattice
part of the interactions containing both auto-correla-  In this section, the DFS in various spin-(1/2)

tions (= v) and cross-correlationgu # v). For systems is discussed, within the limit of the “simple-
isotropically tumbling moleculeX,,(w) is obtained line approximation”, such that there are no degenerate
as [64]: transitions. A special case of degenerate transitions of

three equivalent spin#\§) will also be considered.

1 T
K, (w) = =C,C,3c0$ x,, — 1)[7‘3]
g 27" g 1+ (0m) 6.2.1. Two unlike spin-1/2 system (AX)

(167 Considering all the four single-quantum transitions
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T (xawp)

Fig. 55. Plot 0fJy(0), Ji(w¢), J2(2w0), Ki(we) andK,(2we) measured

in units of 4rwy/£2 versus the reorientational correlation time
measured in units obg. Here¢ is the strength of the interaction.
[Reproduced with permission from C.E.M. Fouques, L.G.
Werbelow, Can. J. Chem. 57 (1979) 2329].

to be well resolved, the off-diagonal elemeRs, g
andL g have negligible influence. Under this secu-
lar approximation, the DFS follows a result which is
similar to the real part of " given in Section 4.2.1,
except that the zero-frequency (adiabatic) contribu-
tions to the DFS are absent. Considering the relax-
ation of the spin system to be governed by the CSA
of each spin and the mutual dipolar interaction, the
frequencies of the two single-quantum transitions of

Spin A can be written as:
A 1 A
wp + Loy * (iJAX + Lerosd

(169

whereL4,is obtained neglecting the adiabatic contri-
butions, as [64,314]:

A
—Lauo= £ Kaxax(@a — wx) + 3 Kaxax(@p)

+ Kaxax(wa + ox) + 2Kaa(wp) (170
and the cross-correlation contribution as:
Looss= 2Kaax(@a) + 2Ky ax(@x). a7y

The DFS for theX-spin transitions can be obtained by
interchanging the indice& and X in the above equa-
tions. The cross-correlation contribution is identical
for both the spins, but the auto-correlation contribu-
tion is different on the two spins [307,313-316].
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DFS but only from auto-correlation terms respectively
given by [64]:

—L22 = 3 [Kaxax(@a) + Kaxax(@x)]

+ 2Kaxax(@a + @x)

+ 2[Kaa(@) + Ky(@y)] (172
and
—LA3 = 3 [Kaxax(@a) — Kaxax(@x)]

+ Kaxax(@a — 0x)

+ 2[Kaa(@n) — Kyx(@x)] (173

For homonuclear weakly coupled sping, = wy =

w, and the contribution fromaxax(wa — wx) to auto-
correlations vanishes both for SQ and ZQ cases (Egs.
(170) and (173)).

These shifts, for single as well as for MQ coher-
ence, are typically less than 1 Hz and are difficult to
establish as arising due to DFS, since they are indis-
tinguishable from the chemical shift. However, the
change inJ value (or the doublet separation) could
be identified due to DFS by making field-depend&nt
measurement, provided CSA and dipolar interactions
are the major contributors to the relaxation and their
cross term is significant in magnitude [307].

6.2.2. Three spin-1/2 system (AMX)

For a weakly coupled heteronuclear three spin-(1/2)
system AMX), with all three quartets well resolved
Iam # Iax # Iux > IineWidthS), such that the
simple-line approximation holds, the DFS contribu-
tions to the four A’-spin single-quantum transitions
are obtained, as [64,317]:

o

= LAuo + Jawx + 2Kam + 2Kax

wp

“’ﬁﬁ = LAuo — Jawx + 2Kam — 2Kax 174
(

wﬁa = LAuo — Jawmx — 2Kam + 2Kax

‘”ﬁﬁ = LAuo + Jamx — 2Kam — 2Kax.

The double and zero quantum coherences also haveWhile auto-correlations contribute identical shifts to
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all the A-spin transitions given by:
—Lawo= L[Kamam(wa — op) + Kaxax(@a — ox)]
+ $[Kamam(@a) + Kaxax(@p)]
+ [Kamam(wa + oy) + Kaxax(@a + wx)]

+ 2Kaa(wn), (175)
the cross-correlations contribute differential shifts,
breaking the symmetry of the multiplets. The contri-
bution of dipole—dipole cross-correlations to DFS,
following Bruschweiler, is given by [317]:

Jamx = —[Kamax(@wp) + Kapmx(om) + Kaxux(@x)]
(179

and the CSA—dipole cross-correlation contribution is
given by (to be published):

Kij = Kij (o) + Kjjj(w)) (177

All the three dipole—dipole cross-correlations
contribute equal and opposite DFS to inner and
outer transitions ofA-spin multiplet, breaking the
symmetry of the multiplet. Similarly, the CSA—dipole
cross-correlations also contribute differential shifts.
It can be shown that the contribution of the DFS to
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system are degenerate, with the eigenstates being
grouped into a quartet and two doublets belonging,
respectively, to the irreducible representati@)sA;
andA, of the C3, symmetry group.

Werbelow has given expressions for the DFS for
the SQ transitions of the quartet manifold as well as
for the doubly degenerate manifolds. The DFS of
these degenerate transitions, in the presence of
CSA-dipole and dipole—dipole cross-correlations
are different [308,313]. WhileJ-coupling does not
lift the degeneracy of these transitions, the DFS
could. However, the simple-line approximation
would not be valid in this case.

6.3. Dynamic frequency shifts for quadrupolar nuclei

6.3.1. Spin-1 system

The DFS of the two single quantum coherences for
a system of isolateti spins (spin-1) relaxed by intra-
molecular anisotropic shieldings and quadrupolar
interactions are given by [64]:

D10=—[2K? (@) + 4K 2w;) + 2K"A ()
+ 12KQACSA ()] (180

Qo 1= —[2K? () + 4K 2a,) + 2K"A ()

the various spin systems can be added as a modifica-

tion to the spin Hamiltonian (to be published) and the
above result for the contributions of dipole—dipole

and CSA-dipole cross-correlations to single-quantum
transitions of spin-(1/2) system can be generalized,
into the following spin Hamiltonian:

bFs = 4 Z Jilzilzjl z + 42 Kijlzilz (178
<<k i<
where [317]
Jik = —[Kijik (@) + Kijix (@) + K (@], 179

andK; is given by Eq. (177).

— 12KQCSA (@), (181

The DFS difference between these two coherences:
D10~ Qg1 = —[24K2N ()] (182

depends on the cross-correlation between quadrupolar
and CSA relaxation.

The DFS of the double quantum coherence is given
by [64]:

0, 1= —[4K%(w) + 8K? (2w, + 4K (w))].
(183

Thus, in general, the presence of cross-correlations and is dependent only on auto-correlation terms. The

break the symmetry of a multiplet, leading to unequi-
vocal evidence for the existence of DFS. However, it

is possible that some CSA-dipole cross-correlations

retain the symmetry of the multiplet, while changing
the J.

6.2.3. Three identical spin-(1/2) system)A
All the single-quantum transitions of this spin

relaxation rate of the double quantum coherence given
by:

(UTp)1 -1 = 4% awy) + 832 2wy) + (323)I°°4(0)

+ 43°%M (w)) (184)

which has no adiabatic quadrupolar contribution. In
this case, if the extreme narrowing condition fails, the
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DFS will be larger than the homogeneous linewidth. given by [64]:
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The maximum DFS of the double quantum coherence
is given by (3/20)(€’q,Q,/h)?/w, and may exceed

1 kHz for a deuteron. This suggests that for quadru-
polar nuclei, DFS of significant order to be measur-
able can be anticipated [64].

6.3.2. General case of spin 1

As seen in Section 6.3.1 (spih= 1 case), the
auto-correlation contribution to the DFS can be
significant for quadrupolar nuclei. The constant
e’qQ/h for most of the quadrupolar nuclei ranges
from 0.2 to 5 MHz and the DFS from quadrupole
relaxation range from one to several kHz. This is
the main reason for the interest in DFS in quadru-
polar nuclei with subsequent observation of the
same in various systems [318-326]. It may be
noted that even in such cases the DFS will not be
pronounced in regions away from tflg minimum,
where it will be smaller than the adiabatic linewidth
[326]. The DFS,2n-n for the specific component
I[my — |m—n) of the n quantum coherence for an
arbitrary spinl (either integer or half-integer) is
given by [327]:

x{[— 1 + 1)+ 6m(m—n) + 2n® + 1]

8n

Ommon = [m

XK () + [1(1 + 1) — 3m(m— n)

-’ — 11K Q2uw))}. (185)
Using the above equation, the DFS for various transi-
tions of nuclei withl < (9/2) have been tabulated and
plotted [for| = (5/2) and (3/2), Fig. 56]. This figure
clearly exemplifies the fact that the DFS reveals itself
outside the extreme narrowing regime that is in the
long correlation limit, for the cases in which the adia-
batic contributions to linewidths are absent.

The DFS due to the cross-correlation between
quadrupolar and other interactions can become promi-
nent even when there are dominant quadrupolar inter-
actions. For example, the DFS associated with the
cross-correlation between quadrupolar and CSA is

—12n(2m —n)

Q,CSA
2 — 1) ]K (@)-

-Qm.mfn = [ (186

6.4. Dynamic frequency shifts oH 1/2 spins scalar
coupled to efficiently relaxed quadrupolar spins (S)

Efficiently relaxed quadrupolar nuclei can dissipate
single quantum coherences of coupled spin-1/2 nuclei
via scalar relaxation of the second kind [328—331].
Cross-correlation between the quadrupolar, CSA and
dipolar relaxation can result in a differential shift of
multiplet components that are comparable to the
multiplet splittings themselves. This section discusses
the effect on the line shape features of spin-1/2 nuclei
arising from the cross-correlation induced DFS from
J-coupled, efficiently relaxed quadrupolar nuclei.

The spin-1/2 line shape function:

Flw) = ReJ: (. _(0))exp(—iwt) dt, (187
is calculated from the expression [1,332]:
Fw=Re > > A o)mw (188

m=—S m=-s

whereA is a(2s+ 1) X (2s + 1) symmetric matrix,
with s being the spin quantum number of the quad-
rupolar spin. The matrix elements &f are given by
[313,332]:

Amm = i((‘)l —wo—ml+ Qsm) - (1/T2)s,m (189
Ammfl = Amfl,m = A7m,7m+l = A7m+l,7m
= [2(s— m+ 1)(s+ m)(2m — 1)’s 2
X (25— 1)7*13%(wy) (190

Am,m—2 = A—m—m+2 = Am—z,m = A—m+2,—m
=[26—m+D(s—m+2)(s+m—1)
X(s+ms 22s— 1) 213%2ws) (192

In the above] is thel-Sscalar coupling constant, and
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Fig. 56. Plot of the quadrupole-induced dynamic frequency ity measured in units of (Tf),w for various coherences having no
adiabatic linewidth contribution. The paramefeT, equals the DFS/halfwidth-at-halfheight ratio. Only the magnitude and not the sign of the
shift is considered. The solid curves (a) and (c) arel fer(3/2) and the dotted curves (b), (d) and (e) arelfer (5/2) spins. The various
transitions are (a2 -2 (1 = 3) (b) Dsp—52 (1 = 3) (€) Lyp—1p (1 = 3) (d) Lyp_1 (| = 3) (€) L3232 (I = 3). [Reproduced with
permission from L.G. Werbelow, R.E. London, Conc. Magn. Reson. 8 (1996) 325].

w; = v,By. The DFS is obtained as [313,332]:

— l[ 4 ][S(s + 1) — 3MIK P (wg)

[nlLs2s—1)
(192

sm

Simulations of the**C line shape for @*C—?H spin
system for various values of the rotational correlation
time 7 are shown in Fig. 57 [313]. It is seen from Fig.
57 that under extreme narrowing conditions, the
expected symmetric triplet is obtained. The multiplet
structure collapses near tfiig minimum. In the slow
motion regime, the multiplet structure reappears with
a markedly noncentrosymmetric line shape. Experi-

correlation spectrum of monodeuterated glycine resi-
dues in a small proteink. coli thioredoxin, in the
absence ofH decoupling [283]. The observed DFS
arises through cross-correlations between dipolar and
quadrupolar relaxation. Simulation of similar line-
shape features have been reported for various spin
systems, namely®*C-''B [332], (Fig. 59), and
¥p_1'0 [332] (Figs. 60 and 61). Figs. 60 and 61
contain simulations with varying quadrupolar
coupling and magnetic field strengths. From these
figures, it is evident that the multiplet resolution
increases at slower correlation times and/or higher
magnetic field strengths. The former in any case
depends on various other relaxation mechanisms

mentally such nonsymmetric lineshapes have beenlike dipolar interactions with other spins and CSA

observed (Fig. 58) in°C, triplets in an *H-*C

contributions. These simulated patterns obtained
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Fig. 57. Spectral simulations of tHéC spectra for thé*C—?H spin grouping. Thé*C—2H dipole—dipole coupling constant was3.6 kHz

(rep = 1.09 A, YJcp was+20 Hz and quadrupole coupling constart 70 kHz, are based upon commonly accepted values. It is also assumed
that the dipolar and quadrupolar interaction are completely correld®& w) = {I%(w)I°(w)} 3] and the applied field strength is 11.75 T.
Simulations (A) through (F) correspond to isotropic reorientation with a correlation tig,ad.0 ps 100 ps, 1 ns, 10 ns, 30 ns and 100 ns,
respectively. [Reproduced with permission from L.G. Werbelow, R.E. London, Conc. Magn. Reson. 8 (1996) 325].

from an appropriate blend of structural and dynamic  The simulations listed above carry additional
parameters range from highly resolved spectra with attraction because many of the recent developments
anomalous intensity distributions and unequal peak in high resolution multi-dimensional NMR methods
separations, to partially collapsed spectra showing for the determination of structure of biomolecules
linewidth asymmetries arising from DFS due to employ extensively**C, ®N and°H labeling of the
cross-correlations. The sensitivity of these lineshapes molecules [307,332—336]. These labeled spin systems
to structural and dynamical parameters provides an will have fragments containing spin-1/2 spin-1 which
elegant way for investigating the motional character- are directly bonded to each other and they may have a
istics of the corresponding spin systems. J-coupling interaction between them. Although the
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-40 -20 0 20 40
Hz

Fig. 58. Upper trace: fslice of a?H-coupled®H-'*C HSQC spectrum of [22Hg,2-'%C] glycine enrichecE. coli thioredoxin drawn through
the Gly-74 resonance. Lower trace: The correspondirsijée obtained using broad-baftd decoupling (attenuated six-fold relative to fhé

coupled spectrum). These spectra were obtained at 14.1 T under conditions corresponding to a 8.1 ns correlation time. [Reproduced with

permission from R.E. London, D.M. LeMaster, L.G. Werbelow, J. Am. Chem. Soc. 116 (1994) 8400.]

J-couplings can be masked by the quadrupolar inter- explained as due to dipole—quadrupole cross-correla-
actions, there could be a residual line broadening. This tion induced DFS [283]. ThEC spectrum of perdeut-
broadening could be reduced by RF irradiation in the erated glycerol (Fig. 63) consists of a triplet for the
vicinity of the resonance of the quadrupolar nucleus. central methine carbon, which broadens when the
Murali and Rao [311] have extensively studied the temperature is lowered from 333 K, and collapses to
lineshapes of a spin-1/2 nucleus coupled to a quadru-a broad singlet at around 293 K, the temperature
polar nucleus (of spin-1) subjected to RF irradiation, corresponding to th&; minimum of deuterium. On

in the presence of a cross-correlation induced DFS further lowering of temperature, the lines become
(Fig. 62). For the system they have considered, DFS narrow again, showing an asymmetric triplet between
with respect to the spin—spin multiplet arise from the 283 and 268 K. These features have been reproduced
dipole—quadrupole cross-correlation terms of the spin via simulations and ascribed to CSA—quadrupole
(S=1) and from the CSA-dipole cross-correlation cross-correlation induced DFS [315].

term of spin[l = (1/2)]. This figure shows that the One of the earliest observations of DFS in NMR is
DFS causes asymmetric multiplet patterns, which by Marshall et al. [337] by a lineshape analysis of
collapse under RF irradiation, along with disappear- **Na in an aqueous sodium laurate/lauric acid solu-
ance of the DFS. tion. For a spin-3/2 nuclei, the theoretical spectrum
(Fig. 64), has two transitions of different chemical
shifts and widths. The narrow component arises
from (1/2) — —(1/2) transition, while the broad
component arises fronB/2) — (1/2) and —(1/2) —

It has been observed that there is a considerable line —(3/2) transitions. The chemical shift is due to differ-
narrowing of **C, resonances on perdeuteration of ent DFS. Marshall et al. [337] observed that the asym-
proteins calcineurin B [316] and thioredoxin [333]. metry in the composite peak in Fig. 64 is difficult to
The ?H-coupled™C muiltiplets in these proteins exhi-  establish experimentally since it cannot be distin-
bit asymmetrical patterns (Fig. 58), which have been guished from a small phase misadjustment and

6.5. Experimental observations of the dynamic
frequency shifts
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Fig. 59. Spectral simulations of thEC spectra for a directly bonded boron nucleus. Tfg—'°C dipole—dipole coupling constant

(Yo ysroah/2m = +2.55 kHz), Wgc scalar coupling constant-60 Hz) and quadrupole coupling constarfqQy/h = +1 MHz) are based

upon literature values. The assumed field strength is 11.75T. It is assumed that the dipolar and quadrupolar interactions are completely
correlated. Shielding anisotropies are assumed to be negligible. Simulations (A)—(F) correspond to isotropic reorientatica Y0tps

100 ps, 1 ns, 30 ns and 100 ns, respectively. [Reproduced with permission from L.G. Werbelow, G. Pouzard, J. Phys. Chem. 85 (1981) 3887.]

could be overlooked. They have used the extraordin- laurate/lauric acid mixture [Fig. 65(b)] deviates
ary sensitivity of the dispersion vs. absorption significantly from Lorentzian shape, yielding an
(DISPA) plat, to highlight deviations from a Lorent- asymmetric composite peak, establishing the DFS.
zian line shape, substantiating the existence of two Tromp et al. [318] have shown that the observation
chemically shifted peaks. The DISPA plot of the and quantification of the DFS by an analysis of line-
*Na spectrum of ordinary NaCl in 0 [Fig. 65(a)] shape can be complemented by the calculation of the
is reflective of a near Lorentzian shape. On the other shift from the field dependent relaxation rates. The
hand, the DISPA plot for the sodium ion spectrumina lineshape analysis is done féfNa in an isotropic



292 A. Kumar et al. / Progress in Nuclear Magnetic Resonance Spectroscopy 37 (2000) 191-319

A) QCC =1 MHz C) QCC = 3 MHz
-3 -2 -1 0 1 2 3 -3 -2 -1 [] 1 2 3
B) QCC = 2 MHz D) QCC = 5 MHz
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
(vi-v)/J vi-w/J

Fig. 60. Spectral simulations of th&P spectra for a directly bonded oxygen-17 nucleus. ¥k&-'P dipole—dipole coupling constant
(Yeyorpahi/2m = 2.0 kHz), andJpe scalar coupling constant (200 Hz) are typical. The applied field strength is taken as 11.75 T. It is assumed
that the dipolar and quadrupolar interaction are completely correldf®d({) = [J%(w)I°(w)]¥?} and motions are isotropic with a correlation

time of 30 ns. Shielding anisotropies are assumed negligible. Simulations (A)—(D) correspond to quadrupole cetqighsf +1, +2, +3

and +5 MHz, respectively. [Reproduced with permission from L.G. Werbelow, G. Pouzard, J. Phys. Chem. 85 (1981) 3887.]

medium of crosslinked aqueous NaPSS (sodium poly- cyclo[8.8.5] tricosane, dissolved in glycerol. The
styrene sulfonate) in which the sodium relaxation is relaxation times of the triple quantum coherence
far from the extreme narrowing limit. They have also and the triple quantum DFS were measured by the
systematically observed the field dependence of the 2D pulse sequence, 90r/2-180—7/2—90-t;—
DFS. The measurement of the DFS for single quantum 90°—t, (acq). They have observed that the DFS is
coherences has been difficult since the shifts are larger at the lower temperature where the decay rate
comparable to the linewidths. However, lin= (3/2) is smaller. Recently another interesting experimental
systems, it has been theoretically shown that the DFS observation of DFS is thé*C triplet of doubly

for triple quantum coherence can be larger than its labeledp-glucose complexed t&. coli periplasmic
linewidth, allowing clear observation of DFS [338]. glucose/galactose receptor, and it is shown that an
Eliav et al. [339,340] have presented the experimental asymmetrical triplet can arise due to DFS from
observation of a triple quantum DFS in solution. cross-correlation between tHéC—?H dipolar inter-
The DFS was measured on the triple quantum spec-action and the quadrupolar relaxation of deuterium
trum of *Na in 4,7,13,16,21-pentaoxa-1,10-diazabi- (Fig. 66) [341].
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Fig. 61. Spectral simulations of t#& spectra for a directly bondédO nucleus. An isotropic correlation time of 100 ns is assumed. Other
relevant parameters are as indicated in Fig. 60. Foetafs/h = +3 MHz, By = 11.75 T; for (B) €qQy/h = +3 MHz, B, = 17.60 T; for (C)
€qQ/h = +5MHz, By = 1175T; for (D) €?qQ/h = +5 MHz, By, = 17.60 T. [Reproduced with permission from L.G. Werbelow, G.
Pouzard, J. Phys. Chem. 85 (1981) 3887.].

7. Other recent developments high fields. Some of the recent experimental results
are discussed in the following sections.
Cross-correlations have gained significant interest
in recent years with the advent of high-field spectro- 7 1 cross-correlations in paramagnetic molecules
meters. At the high fields produced by superconduct-
ing magnets, the CSA has increased proportionally — Cross-correlation between dipole—dipole relaxa-
and its cross-correlation with dipolar interactions tion and paramagnetic relaxation can play an impor-
has become routinely observable. A large number of tant role in paramagnetic proteins [342,343].
studies are directed towards DLB and narrowing Anomalous cross peaks have been observed in
produced by cross-correlations in single as well as the COSY spectra of metalloproteins containing
multiple quantum coherences 1#C, **N, ?H labeled ~ paramagnetic species and they were attributed to
biomolecules. Major attention is focused on spectral cross-correlation between the interproton dipole—
densities at zero frequencies, which increase in value dipole interaction and the Curie spin relaxation
for large molecules in the long correlation limit. (CSR) (Fig. 67) [344]. These cross peaks in COSY
Furthermore, the large CSA tensors 6€ and N spectra in the absence of scalar coupling arise from
at high fields are contributing significantly to cross- cross-correlation induced coherence transfer and can
correlations with dipolar relaxation. Recently, there be distinguished from scalar coupling cross peaks by
have been several observations of cross-correlationstheir phase with respect to the diagonal. While similar
from Curie relaxation in paramagnetic proteins, at relaxation-induced cross peaks have been reported
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Fig. 62. Simulated®C spectra of 8*C—2H spin system with the dynamic frequency shifts arising from the quadrupole—dipole cross-correlation
included. The spectra were plotted as a functiotugf — w)/J. The parameters used in the simulation &ar(**C—H) = 22 Hz, 7, = 20 ns

eZqQ =11x10°s tandthe proton Larmor frequency was set at 600 MHz. The irradiation amplitydeso, /27 in (a) 0, (b) 11, (c) 22, (d)

50, (e) 100, (f) 150, (g) 500 and (h) 1000 Hz. Note that the vertical scales are not the same in all the figures. [Reproduced with permission from
N. Murali, B.D.N. Rao, J. Magn. Reson. A 118 (1996) 202.]

due to other cross-correlations, they can be quite magnetic macromolecules and it effectively acts as a
pronounced for paramagnetic compounds even whenCSA relaxation mechanism [345-348]. The CSR
the NMR signals are broad. Hence the report of COSY mechanism is due to the dipolar coupling of each
cross peaks even for linewidths as large as 500— nucleus with the time-averaged electron magnetic
1000 Hz should be taken as a caveat. moment induced by the external magnetic field. It

Bertini et al. have shown that CSR is often the may be noted that like CSA, the CSR also increases
dominant source of proton line broadening in para- with the magnetic field and becomes quite prominent
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Fig. 63.2°C natural abundance spectrum of glycerghtivarious temperatures at a magnetic field strength corresponding to a 600 MHz proton
Larmor frequency. (A) Complete spectrum at 333 K. (B) Spectral region of the methine triplet in the temperature range from 333 to 258 K.
Spectra were recorded with the spectrometer in the unlocked mode; therefore the reference frequency is arbitrary. A total of 32 transients were
recorded per spectrum. [Reproduced with permission from S. Grzesiek, Ad Bax, J. Am. Chem. Soc. 116 (1994) 10196.]

at high magnetic fields. They also found that although magnetic cross-correlation effects on the longitudinal
cross-correlation effects are the largest when the CSRrelaxation of small molecules, such ass-chlor-
and dipolar interactions are nearly equal, they remain oacrylic acid in solution in the presence of?Niions
significant upto a ratio of 100. They have critically with the two olefinic protons constituting an isolated
surveyed the literature reporting the observation of AX spin system [349]. Differential relaxation was
COSY cross peaks in paramagnetic metalloproteins observed in the presence of nickel ions due to cross-
and found that the ratio of the relaxation-induced correlations between dipole—dipole and CSR [349]. In
effect to the scalar effect could be as high as 700. an interesting study, it is shown that the changd of
True scalar cross peaks may be expected for smalldue to cross-correlation induced DFS between CSR
metalloproteins, if the electron spin multiplicity is and dipole—dipole relaxation can interfere with the
small and the scalar coupling constant is large. It change in splittings due to small residual dipolar
may be noted that the relaxation-induced peaks are acouplings arising from slight orientations of paramag-
rich source of structural and geometric information.  netic proteins in high field [350]. This study points out
Maler et al. have investigated the influence of para- that these should be carefully discriminated. In
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Fig. 64. Energy-level diagram (right) and single-quantum NMR
spectrum (left) for a spin-(3/2) nucleus with rotational correlation
time 7, = 1.2/wy = 15 ns for®Na at 7.0 T. The narrow component
line arises from the-(1/2) to (1/2) transition and the broad compo-
nent from the+(1/2) to +(3/2) and—(3/2) to —(1/2) transitions.
Note the distinct chemical shift difference between the broad and
the narrow transitions. [Reproduced with permission from A.G.
Marshall, T. Cottrell, L.G. Werbelow, J. Am. Chem. Soc. 104
(1982) 7665.]

another recent study of uniformli{’N-labeled cyto-
chrome C;, the relative linewidths of the doublet
peaks of the®N-coupled imido proton of the coordi-
nated imidazole group were reversed on oxidation
(Fig. 68) [351]. This inversion has been explained
by the interference between the electron—proton dipo-
lar and ®N-'H dipolar interactions. Such an effect
can be used to assign the imido protons of the coordi-
nated imidazole groups in heme proteins. The elec-
tron—proton dipolar cross-correlation is thus another
source of structural information in the investigation of
paramagnetic proteins [352—354].

7.2. Determination of chemical shift anisotropy

The CSA of various nuclei in peptides has been
determined with the help of solid-state NMR techni-
ques [355-357]. In solution, by measuring the CSA—
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Fig. 65. (a) Experimentai®™Na NMR spectrum and its correspond-
ing DISPA plot for 1.0 M NaCl in RO, obtained from Fourier
transformation of an unapodized 4096-point time-domain data set
at a spectrometer frequency of 79.388 MHz, with & &Kcitation
pulse (44us), for one cycle of an 8-pulse phase-alternating
sequence. The close fit of the experimental data to the DISPA
reference circle indicates a near-perfect Lorentzian line shape. (b)
Experimental®Na NMR spectrum and its corresponding DISPA
plot (left) for 120 mM NaCl, 20 mM sodium laurate and 5 mM
lauric acid in aqueous (15% ,D) solution. The sample was
milky white, with a sodium laurate concentration of about twice
the critical micelle concentration for 0.1 M NaCl solutions of
sodium laurate. Detection was as in (a), except for ‘aeX@itation
pulse width. The experimental DISPA plot (left) closely matches
with that computed forwyr, = 5.6 (right). [Reproduced with
permission from A.G. Marshall, T. Cottrell, L.G. Werbelow, J.
Am. Chem. Soc. 104 (1982) 7665.]

of polarization from'H to >N arising from cross-

dipole cross-correlation rate one can determine the ¢qorrelation between the proton CSA and proton—nitro-
CSA. Recently, many groups have measured the gen dipolar relaxation mechanisms in a fuflyN

N, C and'H CSA in several proteins by monitor-
ing the differential relaxation of the spin multiplets.

7.2.1."°N CSA measurements
Dalvit [358] demonstrated the feasibility of transfer

labeled protein. The proton magnetization was initi-
ally spin locked during which the single spin order of
the protonlx was partially converted intol S, via the
CSA(H)—dipoleH-""N) cross-correlation, which
was detected in a 2D HSQC experiment. A large
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Fig. 66. Simulation of the observedC triplet arising from its coupling to deuterium of D-f#€, 1-H] glucose complexed witlE. coli
periplasmic glucose/galactose receptor. A, D and G are the experimental spectra, recorded respectively at 5,@ aada?525 MHz. B, E

and H are the corresponding simulated spectra. C, F and | show the overlaps confirming the DFS arising from the cross-correlation between the
%C—?H dipolar interaction and the deuteron quadrupolar relaxation, in these systems. For other details see Ref. [341]. [Reproduced with
permission from S.A. Gabel, L.A. Luck, L.G. Werbelow, R.E. London, J. Magn. Reson. 128 (1997) 101.]

number of cross peaks with varying intensity, indica-
tive of variation in the magnitude and direction of the
CSA tensor with respect to the dipolar axis, were
observed.

Tjandra et al. [239] measured tf# CSA tensor in
uniformly **N-enriched human ubiquitin utilizing the
cross-correlation between tH&N-CSA and *N-'H
dipolar relaxation. The experiment is essentially a
HSQC (°N-'H correlation) experiment, with a
relaxation period A inserted before thE€N evolution
period during which the CSA-dipole cross-correla-
tion converts the antiphaseN magnetization into
inphase N magnetization. Two spectra were
recorded: one in which the operator terms arising
from N CSA-—dipole cross-correlation terms are

which | = ®N and S= H. Significant variation in
the intensities of the peaks as a function of residue
number was observed. These were then reduced using
a local order parameter toCSA™= S?(o —

o )P»(cosf) wheref is the angle between the prin-
cipal axis of the CSA tensor and the dipolar vecsf,

is the generalized order parameter [359] akal =

(o — o) is the CSA anisotropy. The variation in
observed intensity thus could be due to a variation
in any of these parameters. The observed E%g¢
shows a good correlation with the observed isotropic
5N chemical shift, indicating that the sum of the most
shielded CSA tensor components is largely invariant
to structural changes.

selected (experiment A) and a reference experiment 7.2.2.'H CSA measurements

(B) in which they are suppressed (by combined use of

additional pulses on the proton channel and
gradients). The intensity ratio of the cross peaks in
the two experiments has been shown to follow the
relation:

:—A = tan“2A6|’|S), (193)

B

where §),s is the CSA—dipole cross-correlation in

Tjandra and Bax have also measured the amide
proton CSA in**N-enriched ubiquitin and perdeuter-
ated HIV-1-protease, by modifying the pulse scheme
in two different ways [240]. In the first method, the
relaxation delay A is incorporated in the proton
evolution before transfer of magnetization teN,
followed by a normal HSQC, experiment and as
before a reference experiment is obtained by incorpor-
ating a7 pulse on®N during the periodA. The ratio
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Fig. 67. Downfield region of the 360 MHz phase-sensitive COSY spectrum of horseradish peroxidg®eainbl 7.0 and 5%. The nearly
absorptive antiphase cross peak between the well-resolvedandi7-H, resonances shows the predominance of the cross-correlation effect
between interproton dipolar relaxation and Curie spin relaxation (CSR). The slight asymmetry of the cross peak is due to non-hegligible
coupling effects. The diagonal peak is phased to be positive, and positive and negative components of the cross-peak multiplet ate’marked “
and “— ", respectively. Cross peaks between ¥isCPH and -C*H’ and between 6-Hand 6-H. of the heme are distorted due to their
proximity to the approximately 50 times more intense diagonal resonances. [Reproduced with permission from J. Qin, F. Delaglio, G.N. La
Mar, A. Bax, J. Magn. Reson. B 102 (1993) 332.]

of the intensities follow the same hyperbolic tangent considerably smaller inx-helices. This has been
dependence as in Eq. (193). In a second experiment,correlated with the length of the hydrogen bond,
they have utilized the constant time evolution period which is longer in helices compared fsheet in
and expanded it to a 3D experiment. The advantage isthese proteins (Fig. 69).

that instead of running two experiments, with and Tessari et al. [241] have also measured the amide

without cross-correlations, one resolves th#- proton CSA in'*N-labeled proteins using modified
coupled proton doublet in thE; dimension, theN constant time HSQC experiments. The pulse schemes
chemical shift inF,, and the'H chemical shift inF. are shown in Fig. 70. The constant relaxation period is
The ratio of the intensity of the components of the inserted in®N evolution after INEPT transfer of
proton doublet is given by: polarization from proton to™N in scheme A, in
I, which the®™N-CSA, **®N—'H dipolar cross-correlation
o= exp(—4T ég)s), (1949 plays the role. In scheme B, the constant relaxation
2 period is inserted before polarization transferi,

where 8¢5 is the proton § CSA and IS is the  such that theH-CSA, *H-""N dipolar cross-correla-
proton—nitrogen dipolar interaction. The measured tion is active. The remaining part of the sequence is
proton CSA is found to be large iR-sheets and the same as the HSQC experiment. In each case, two
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Fig. 68. Proton NMR spectra of the imidazole imido proton of His-
52 of uniformly *N-labeled cytochrome Lfrom Desulfovibrio
vulgaris Miyazaki F in the fully reduced (A) and fully oxidized
(B) states. HMQC spectra were obtained with a Bruker AMX-
500 MHz NMR spectrometer at 3D. The protein was dissolved

in a 20 mM phosphate buffer (90%1,0/10%2H.,0), at (A) pH 7.0

and (B) pH 5.0. Partial slices for the proton dimension are presented.
[Reproduced with permission from T. Ohmura, E. Harada, T. Fuiji-
wara, G. Kawai, K. Watanabe, H. Akutsu, J. Magn. Reson. 131
(1998) 367.]

spectra are recorded: one in which the CSA-dipole
cross-correlations are retained and a
experiment in which they are suppressed. The ratio
of the intensity of a peak in these two experiments
yields:

I
In _Cross 4A8IIJ ,

ref

(195

wherei is the CSA of the selected spin of experiment
A or B. This linear dependence of the intensity ratio
on A and §;; is prone to less errors than the hyper-
bolic tangent dependence of Eg. (193). They found
significant variation indy yy as a function of residue
number and much less variation &y n4. The results
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from N studies indicate a globular, well-structured,
isotropic tumbling protein, displaying similar
dynamics for most residues. On the other hand, the
'H cSA-dipole cross-correlation rate depends upon
the CSA of the amide proton and also on the mobility
of the H—N bond vector, which gives rise to the
variation in éy u.

7.2.3.1°C, CSA measurements

Recently Tjandra and Bax have also measured the
B¢, CSA in ¥C, ™N uniformly doubly labeled
proteins, by monitoring the differential relaxation
of the *C,—{'H} doublet, due to cross-correlation
between the"*C, CSA and*C,—'H, dipolar relax-
ation [360]. The methodology followed is identical
to the >N CSA measurement outlined above, except
that here the INEPT polarization transfer is first to
3¢, carbon using selective carbon, Cpulses.
During the constant Crelaxation periodA, the
carbonyl carbons (§ are decoupled by using a
selective 180 pulse in the middle of thel period.
Furthermore, during*C, evolution period, the
protons are decoupled by Waltz decoupling. The
3¢, coherence is further transferred taN and a
®N-'H HSQC spectrum is obtained in which the
intensity of the cross peak in spectrum A
is dependent on thé®C, CSA, **C,—'H, dipolar
cross-correlation and in the reference spectrum B,
the cross-correlation is suppressed by the use of a
180 proton pulse applied appropriately during the
A period. As before, the intensity ratio in the two
experiments is given by Eqg. (193). In a 3D version
the A period also includes frequency labeling of the
3¢, with the central 180pulse on**C, moving in

reference concert witht;. In the 3D version the relative inten-

sity of the **C,—{'H,} doublet components are
measured, which equals expgAs,s). Both the
experiments were applied to samples of uniformly
enriched °C, ™N-ubiquitin and calmodulin
complexed to a 26 residue unlabeled peptide frag-
ment (M13) of skeletal muscle myosin light chain
kinase. Large variations il*C, CSA were observed
which correlates well with the various secondary
structure elements. For exampley—o, for °C,

in B-sheets is obtained as .27+ 4.3 ppm while
for a-helices it was found to be .B+ 4.9 ppm
[360].
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Fig. 69. H' CSA calculated from the quantitative cross-correlation experiments, as a function of residue number for ubiquitin. The secondary
structure of ubiquitin is marked at the top (solid arr@@sheet; small pitch coikk-helix; large pitch coil: 3-helix). The CSA tensor is assumed
to be axially symmetric with its unigue axis collinear with the N—H bond direction. [Reproduced with permission from N. Tjandra, A. Bax, J.

Am. Chem. Soc. 119 (1997) 8076.]
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Fig. 70. Pulse sequence for quantitative measurement ofPRESA—dipole cross-correlations and (BN CSA—dipole cross-correlations.

Narrow and wide bars denote pulses with 4 &0d 180 flip angle, respectively. For both experiments, two variations of the pulse scheme are
recorded selecting for magnetization arising from CSA-dipole pathways and a reference. For the reference experiment, the delays were chosel
as indicated in the dashed boxes and the pkag@) or ¢ (B) was changed. All pulsed-field gradients (PFG) had a sine-bell shape and were
applied along th&-axis. [Reproduced with permission from M. Tessari, F.A.A. Mudler, R. Boelens, G.W. Vuister, J. Magn. Reson. 127 (1997)
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7.3. Isolation of relaxation pathways by linear
combination of various modes

7.3.1. Longitudinal modes
Norwood et al. have utilized the idea of coadding

the relaxation rates of various modes such that the

relaxation of the sum is dependent only on the mutual
dipolar relaxation of the two spins, free from all other

relaxations, external to the two spins [361-363]. For
longitudinal relaxation, this is shown by taking a

three-spin systenAMX [361]. The sumpp + py —

pam Yields [see also Eq. (63)]:

pa+ v — pam = [ZJamam(wa — @) + Aamam(@a + oy)]
(196

This sum is only dependent on the mutual dipolar

interaction between the two spins and is independent

of all other auto and cross-correlation terms. Rates
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correlations. However, while the first depends on all
the three dipolar interactions, the later depends only
on two of the dipolar interactions and is preferred.

7.3.2. Transverse modes

Isolation of relaxation pathways can also be
achieved by linear combination of transverse relaxa-
tion rates. For example, considering again the weakly
coupled three-spin systeAMX, one can monitor the
relaxation rates of the sum modes of SQC, ZQC and
DQC [362]. The following linear combination isolates
the dipolar relaxation between spiAsandM:

1 1 0 2
2005) + py) — PA-m- — Poar e

= [$Iamam(0) + 2 Jamam(wa — oym) + Jamam(@a)

(198

+ Jamam(om) + Jamam(wa + oy)]

pu can be directly measured using selective inversion wherep!) is the self-relaxation rate of the sum mode

of AandM spins, under the initial rate approximation.
pam Can be measured using the sequencg/ABA—
905(A)-m-904  4(A, M) — 9031 (A, M)-Acq(¢r). The
transverse magnetization @(I{,*) evolves into anti-
phase2121M) duringA and is converted into two-spin
longitudinal order (2171}") by the second 9A)
pulse, which decays during and is measured using
a double quantum filter with appropriate phase cycle
[361].

Dipolar relaxation of the three-spin systems can
also be isolated from the rest of the spin by the follow-
ing linear combinations [362] (see also Eq. (63)):

Pa + pm + px — pamx = [ 3 Jamam(@a — @y)
+ 2Jamam(@a + op)] + [ Iaxax(wa — @x)
+ 2Jaxax(@a + 0x)] + [5 Iuxmx(@m — ox)
+ 2Juxmx(om + wx)]

or

pam + px — pamx = T [ 5 Jaxax(wa — wx)
+ 20axax(@a + @)1 + [ Iuxmx(@pm — @x)
+ 2uxvx(om + @x)] (197

Both these linear combinations isolate the mutual
relaxation of a set of three spins, free of all cross-

of SQCs of spirA, pi),,_ that of the ZQCs oA andM
spins, ancbfﬂw that of the DQCs [362]. This linear
combination is again free of all cross-correlations.
Another combination which exclusively depends on
the dipole—dipole cross-correlation between the three
spins, is given by:

(0)
p.

(2)
oa-me TP

2 3 1 1 1
2A*M*+p() (3) (1) (1) (1)

omxt — Poarmixt T Par T Pmr T Px
= [4Iamax(0) + 3 Jamax(@a)]1(3 cog Oamax — /2
+ [53ammx(0) + 3 Jammx ()13 cog Oapmx — 1)/2

+ [2Iaux(0) + 3 Iaxux(@)1(3 cog Oaxux — 1/2.
(199

Excitation of multiple quantum coherences requires
resolved couplings between the pair of involved

spins. In such a circumstance, the measurement of
ZQC, SQC and DQC sum modes presents practical
problems and has to be done by taking into account
the J-coupling evolution [362].

7.3.3. Combination of longitudinal and transverse
modes

In Egs. (198) and (199), only the decay rates of the
inphase transverse modes were considered. If the
decay rate of antiphase transverse mogde \, is
also measured, one can combine longitudinal and
transverse mode relaxation rates in the following
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Fig. 71. Pulse sequences to measure the cross-relaxation rate cdnglants. (@) 1D version in the laboratory frame with a INEPT
preparation sequence to generate the init&l,4,, and (b) 2D version in the rotating frame, optimized for the observation of gbups.
The delays used am, = 1/(4Jcy) andA, = 1/(8]cy) for CH, groups andd, = 1/(4Jcy) for CH; groups. [Reproduced with permission from
M. Ernst, R.R. Ernst, J. Magn. Reson. A 110 (1994) 202.]

manner: experimental data has, therefore, been compared
g with various motional models. The 1D experiments
par P, = poarm, = [ damam(@a = ou) have been carried out using the pulse scheme of Fig.

71(a) and the 2D ROESY experiments using the pulse
 Jamam(em) + Jamam(@a + o)l (200 scheme of Fig. 71(b). Suppression of undesired terms

This rate is also free of other dipolar interactions as at the beginning and the end of the mixing period is

well as cross-correlations. essential to monitor the small cross-correlation rates.
Experimental pulse schemes have been given for In this case, the pathwayo(0) o« (4S,1,l,) —

measuring the above rates [361-363]. a(m) o< (S,) has been utilized.
Fig. 72 shows the 1D spectra obtained using the

scheme of Fig. 71(a) or’C labeled antamanide
dissolved in (a) chloroform at = 280 K and (b) acet-
one atT = 310 K The viscosity of chloroformypn =
Recently heteronuclear dipole—dipole cross-corre- 0.651 cP at 280 K while for acetong,= 0.285 cP at
lations which couple carbon single-spin-ord&) to 310 K. Using Stoke’s relation, the correlation times
carbon—proton three-spin-order Y4,1,,) in CH, for isotropic reorientation are in the ratio [364]:
anq 1¥%CH;§ s_pin sys_tems hav_e bgen utilized to charac- r.(chloroform at 280 K
terize the side chain motion in biopolymers [364]. The
technique has been applied to the cyclic decapeptide Te(acetone at 310K
antamanide and to the protein human ubiquitin. This Fig. 72 reveals that there are three classes of signals.
rate depends on the modulation details of the cross (i) The Val-1 and Ala-4 methyl group signals are
terms betweerSl, and Si, dipolar interactions. The  negative in (a) and positive in (b). (i) Th&CH,

7.4. Dipole—dipole cross-correlations CH, and
13CH, spin systems

=26 (201
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Fig. 72.(4S;1171,7) — (S;) cross-relaxationC spectra for fully**C-labeled antamanide (a) in chloroformTat= 280 K and in (b) in acetone
atT = 310 K for six different mixing timesr,. The spectra have been recorded at 150.8 MBzesonance frequency with the pulse sequence
of Fig. 71(a) in the laboratory frame. The visible multiplet structure is du@e-**C J-coupling interactions. The chemical shift refers to
8(TMS) = 0 ppm [Reproduced with permission from M. Ernst, R.R. Ernst, J. Magn. Reson. A 110 (1994) 202.]

signals are negative in both for thghg; of Pro-2 and negative cross peak for Prpindicates fast pucker-

Pro-7, but rather weak in (b). (iii) Signals which are ing motion with a large amplitude. The negative

positive in both (for all the remaining residues). cross peaks of lysine side chains indicate a rapid

From these data and measurBdvalues of G reso- and virtually unrestricted motion of these residues

nances, upper and lower bounds have been obtained364].

for the correlation times of internal motion for these

residues. 7.5. Combined use of transverse and longitudinal
Using **C-labeled ubiquitin the 2D experiment has  ¢oss-correlations

been carried out with the pulse scheme of Fig. 71(b).

Most of the cross peaks for thECH, are positive Several groups have suggested measurement of

except for °CgH, in Ser-57,"°C,H, in Pro-37 and  longitudinal and transverse cross-correlation rates in

BC,H,, "C3H, and *C,H, in Lysine residue at 6, independent experiments, on the same sample, to

11, 29, 33, 48 and 63 positions. The positive cross- obtain motional parameters independent of structural

peaks of'*CH, groups indicate slow rotation about attributes. The procedure is to measure the CSA—

the x; angle with a correlation time; = 1.3 ns The dipole cross-correlation ratey,, for transfer of
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Fig. 73. Pulse sequences for the measurement of (a) transygraad (b) longitudinak, "H-">N dipolar/*N CSA relaxation interference
effects. Narrow and wide bars correspond t6 @@d 180 pulses, respectively. Solid bars represent rectangular pulses, while open bars
correspond to composit®0°,-90°,)90° and composit¢90°,~180,-90°,)180 pulses. All pulses are applied with phasenless specified
otherwise. Delay durations arte= 2.67 ms and5 = 0.75 ms Two experiments are performed for each value of the relaxation periodhe
first experiment, the compositd 90° pulse, designated by the narrow open bar is includgds A and 7, = A + t,/2. In the second
experiment, the composite 9Pulse is absentr, = A + t;/2 and 7, = t;/2. [Reproduced with permission from C.D. Kroenke, J.P. Loria,
L.K. Lee, M. Rance, A.G. Palmer lll, J. Am. Chem. Soc. 120 (1998) 7905.]

inphase transverse magnetizati@®) (or (S,)) to
antiphase coherena@l;S) (or (21,S,)). The same
CSA—dipole cross-correlation is also responsible for
cross relaxation between longitudinal ordé8s) and
(21,S;) with rate constant;,. These rates for CSA-
dipole cross-correlation in a two-spin system are
given by [365]:

1, = —4cdP,(cos)J(ws)

(202
Ny = — 2cdP,(cos6)[4J(0) + 3)(ws)]
Here ¢ = (ysBoAag)(+/30), d= (VBuohy ys)/

(4mrEy/10) and cdPy(cosh)d(ws) = Jgis(ws) (EQ.

(64) and (107), as well as being given in Eq. (A8). Itis
noted that whilen,, depends on botfi(0) andJ(wy),

1, depends only od(wg). The ratesn,, andn, have
been measured by using the following experiments.
The raten,y is measured using the pulse scheme of
Fig. 73(a). The proton magnetizatidgfl;)) is trans-
ferred to >N by an INEPT transfer ag2l,S,) (or
(2NyHy)), which evolves during the period and is
converted to(S,) (or (Ny)) by the cross-correlation
rate ,,. The 180 N pulse in the middle of- refo-
cuses chemical shift and-coupling evolutions, as
well as averages the auto relaxation rates of the
inphase and antiphase coherencesr # n/J, then

(42)). These expressions can be obtained from Egs.the effective evolution during the relaxation period
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7 is given by: The ratio of these two intensities is obtained as:
E( (S)(7) ) _ R, Tixy ( (S (7) ) :_B = tanh(n,7). (206)
dt\ (212S)(7) Ty Re ) \(22S/)(7) A

(203 The ratio of the transverse and longitudinal cross-

) L correlations thus obtained, is given by:
inwhichR, = (R, + Ry5)/2, whereR, andRys are the

self-relaxation rates dfS,) and(21,S,), respectively. My _ A0 + 3(wg) 207
Two experiments are performed in which after the n, 6J(ws) ’

period, eitherS,) or (21,S,) are selectively detected

and the ratios of the intensities of these two experi- @nd is independent of the principal values and orien-

ments yields: tations of the CSA tensors and is sensitive only to
internal and overall motions that contribute to dipo-
la _ tanh(n,,7) (204 lar and CSA relaxation mechanisms. Kroenke et al.

I measured thé®N—'H dipolar and'®N CSA cross-

An experiment has also been designed to measurecorrelations in’H, ™N enriched RNaseH [365]. The
n, by an analogous method of Fig. 73(b), which S&@me ratio (Eq. (207)) has been utilized by Kojima
averages the relaxation rates (8,) and (21,S,). et al. [366], to obtain the ratio between the spectral

During this experiment, the cross relaxation (NOE) densities at zero and ais as:
between(S;) and (Iz) as well as cross-correlation Q) 3(., My
between(l;) and (21,S,) are suppressed, retaining g = Z( 1)
exclusively the cross-correlatiom, between(S;) S
and (21;S,). As shown in Fig. 73(b), the proton They have monitored thé’C—'H dipolar and**C
magnetization(lz) is converted via an INEPT trans- CSA cross-correlation in*C—H doublets of C8—
fer into the two-spin order2l;S;) prior to the H8 and C2-H2 in a DNA decamer duplex with
relaxation periodr. The composite”N 180 pulse purine randomly™C enriched to 15%. The spectral
in the middle of ther period suppresses the cross- density at zero frequency(0) is independent of

(208
Nz

correlation between thtH CSA and'H-"N dipolar chemical exchange effects. With limited internal
interactions. This reduces thex3® rate equation  motions, the ratio also enables an accurate evalua-
between(S;), (Iz) and (2I;S;) into a 2x 2 [Eq. tion of the correlation time for overall molecular

(A11)] containing only(S;) and (2l;S;), with n, tumbling as well as the anisotropic rotational diffu-
as the rate constant between them. Further averagingsion tensor. Application of these techniques for

in the self-relaxation rates dfS;), Ry and (21;$), investigating dynamics in biomolecules have been
Rys is achieved by a series of pulses, represented by demonstrated [365,366].
a transformationd, mid-way between each half of Fushman and Cowburn [367] have also suggested a

the = period. The rate equation describing the time method, which combines the transverse self-relaxa-
evolution of the longitudinal one and two spin order tion rate R, of N and the cross-correlation rate

in analogy with Eq. (203) is then given by: (Mxy), between™N-"H dipolar and®N CSA. Extend-
= ing the works of Tjandra et al. [239] and Tessari et al.
d( (& ) = _(Rl 77z>( (&) ) [241], they observed that the spectral densities respon-
dt (21;S,)(7) n, R/ \(2:S)D sible for these rates have some common features,
(205 which can be further exploited. For example they

_ note thatR, for °N is given by:
where Rl = (RlS + Rl|s)/2 and RlS = Ps and RlIS =

pis of Eq. (63). Two experiments are again carried R, = %(d2 + ¢2)[4J(0) + 3J(wy)] + Pue + Rex

out; experiment A monitors the decay of the two- (209
spin order and experiment B the transfer of two-spin

order to single-spin order via the cross-correlation. wherePy contains the high frequency contributions
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to R, and is given by:

Pur = %dZ[J(wH — wy) + 6J(wy) + 6J(wy + wy)]
(210

and R, corresponds to a conformational exchange
contribution if any. (Herewy and wy are Larmor
frequencies of®N and *H, respectively). Eq. (209)
can be obtained from Eq. (107), except Ry. For
high-field spectrometersyy 7. > 1 and Py is often
negligible. Further assumin@., to be negligible,
R, = (1/2)(d? + c)[4J(0) + 3I(wy)].

Fushman and Cowburn further note that, since the
cross-correlation rateng,) between'®N—'H dipolar
and N CSA for transverse relaxation, given by Eq.
(202) andR; given above contain exactly the same
combination of spectral densities, the ratio,
(Myy/Re) = [2dd/(d + ¢*)IPy(cosh). Since my/R,
does not contain any direct dependence on spectral
densities, this ratio provides a basis for a direct,
model independent determination BN CSA from
experimentally measured parameters, without explicit
knowledge of the microdynamic parameters and with-
out any assumption about the model of overall motion
[367]. PublishedN relaxation data on human ubiqui-
tin [239,360] have been analyzed using the above
argument. It is found that (i) the ratig, /R, values
lie within 0.7—0.8 for various residues. This variation
is likely due to deviations irg, variations in CSA
values and/or to experimental errors. The solid state
NMR studies have indicated CSA ofN to be
~ —160 ppm andf =~ 20-24°. A statistical analysis
of the above ubiquitin data indicates that CSA is
~ —170 ppm and lies between 10 and 25368].

7.6. TROSY: transverse relaxation optimized
spectroscopy

The DLB (which can also be appropriately called
differential line narrowing) due to CSA-dipole
cross-correlations has recently been shown to lead to
a significant narrowing of one of the lines oflesplit
multiplet in 2D correlation experiment, which in turn
leads to improved signal to noise ratio of the sharp
peak and hence its detectability [369].

At high magnetic fields, the CSA relaxation B,
13C and™N in enriched proteins, forms a significant
source of relaxation along with dipole—dipole relax-
ation. This leads to an overall increase in the trans-
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verse relaxation rate. The transverse relaxation of
amide protons has been successfully reduced by
large-scale deuteration of non-labile protons. In
such circumstances, the DLB effect arising from
CSA-—dipole cross-correlation leads to further
narrowing of one of the components of thN—'H
fragment of the peptide bond. Theoretical calcula-
tions indicate that for proteins of size25 kDa, at
proton frequencies near 1 GHz, almost complete
cancellation of all transverse relaxation within a
N—'H moity can be achieved for one of the four
multiplet components in &N—'H correlation experi-
ment [369]. TROSY observes exclusively the narrow
component for which the residual linewidth is
entirely due to dipolar relaxation with remote protons
in the protein. This protocol increases significantly
the size of biomolecules that can be studied by multi-
dimensional NMR. TROSY has been discussed in
detail [369—371], with further improvements &N
ratio by utilization of steady-state magnetization as
well as echo-antiecho pathways [372,373]. The
method has also been applied t8C—'H system
[374-376]. The main features of TROSY are
explained in the following. Details are contained in
the above references.

TROSY (Fig. 74) is basically a heteronuclear
correlation experiment, in which the proton magne-
tization is first transferred td°N (or *C) which
evolves duringt; period (with differential relaxation
rate of the ®N doublet due to CSAPN)-dipole
(*N='H) cross-correlation) and transferred back to
proton with detection durindy, again with differen-
tial line broadening of the proton doublet due to
CSA(H)—dipole ¢H-'N) cross-correlation. The
resulting heteronuclear cross peak (Fig. 75) is a
multiplet of four peaks each having different widths,
in the w, and w, dimensions. One of the cross-peak
components is narrow and the other broad in both
dimensions with the remaining two peaks being
broad in one and narrow in the other dimension.
The ST2-PT step in Fig. 74 has been introduced
to effect single-transition to single-transition
polarization transfer (ST2-PT) which adds up the
magnetization of various quadrants of the 2D
experiment, canceling out all but the narrowest
component.

The experiment starts with a 9@ulse on proton
and transferring this magnetization tN(**C). The
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density matrix at points (a) and (b) in Fig. 74 are given where w, and ws are the Larmor frequencies of the

by [371]: spinsl andS T,sand Ty are the transverse relaxation
time of spinSand longitudinal relaxation time of spin
o@ = —ly I, respectively, and
o(b) = 21,5 = 1,5 +1,S" (211 1 yydh 1 \
_ - P=-7% "3 ds = YsBoAos

= 12(S> + ) + 12(Sp2 + S3a) 22 Tis 32 (213
The time evolution of these single-quantum coher- § = i% B,Aoy.
ences is given by: 3v2

1 1 1
- Fiwg + Ryt — + 5—  3(p*— D) — o -

d < 2> - SHR A P (P~ — 6))J(w)) T, < 2) o1

1
3(p° = 8 n) — o

ST2-PT
y V2

IH -X V3 Ys
v Y4
15 tltl’b L . tJ‘cl‘cH
GGy Gn G,G,G3 Gy

PEG_[| ] 10T

1
1
u

Gy

Fig. 74. Pulse sequence for 2BH, >N]-TROSY using single tran-
sition to single transition polarization transfer (box identified with
ST2-PT). Narrow and wide bars represent non-selectivea®ad
180 RF pulses, respectively. The delay= 2.7 ms PFG indicates
the pulsed magnetic field gradients applied along #zis: G;,
amplitude 30 G/cm, duration 1 m&p,, 40 G/cm, 1 msGs, 48 G/
cm, 1 ms;Gy, —60 G/cm, 0.75 msGy, 60 G/cm, 0.076 ms. The
phase cycle used wagh = (y, =X); o =(=Y); Y3 =V; 4=
(—Y); Yr= (Y, —X); x on all other pulses. To obtain a complex
interferogram, a second FID is recorded for egdelay, withy, =

Y, X); Yo =VY; 3 =(=Y); ¥s =Y, and Gy inverted. The use of
ST2-PT thus results in a 2B, *N]-correlation spectrum that
contains only the most slowly relaxing component of the 2D
N-'H multiplet. Water saturation is minimized by keeping the
water magnetization along thiez-axis during the entire experiment,
which is achieved by the application of the water-selectivero
pulses indicated by the curved shapes on theltihéThe use of the
gradientsGy andGy (broken lines) allows the recording of the pure

i' (1)34 + R3434 +

1 1 +
TTS”Lﬁ <4>

Ri,12andRss3.are the transverse relaxation rates of the
individual components of thé& doublet (following
Egs. (103) and (107)) given by [370]:

Riz12= (p — 89)%[4J(0) + 3)(wg)] + P*[I(w, — wg)
+ 33(w) + 6J(w, + ws)] + 362 (w))
Rasaa = (P + 89)%[4J(0) + 3)(w9)] + P*[I(w, — wg)

+ 3J(wy)) + 6J(w; + ws)] + 382 (w))
(214

Here the principal axis of the CSA tensor of inter-
nuclear dipole vectors are assumed to be collinear.
For N, the dominant mechanisms are CSA and dipo-
lar interactions, with the attached proton wherdas,
andT;sare determined by dipolar interactions with the
other protons as well.

Under the simple-line approximation, wh&p and
S4 are well resolved, the off-diagonal elements of Eq.
(212) can be neglected and the two coherences evolve
independently with their transverse relaxation rate
difference given by:

Ri212 — Rsaza = 2p8g[4J(0) + 3)(ws)] (215

In the w, dimension, the linewidth difference is given
by:

Ri313 — Roaza = 2p8[43(0) + 3J(wy)] (219

phase absorption spectrum without any cycling of the pulse phases.
[Reproduced with permission from K.V. Pervushin, G. Wider, K.
Withrich, J. Biomol. NMR 12 (1998) 345.]

Fig. 76 shows the cross-sections taken at the various
positions of the 2D spectra. This clearly shows that
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Fig. 75. Contour plots of®N, *H correlation spectra showing the inddf@&\—'H spin system of Trp-48 recorded in a 2 mM solution of
uniformly **N labeledfushi tarazu(ftz) homeodomain complexed with an unlabeled 14-bp DNA duplex in 9Q@&/%% °H,0 at £C, pH=

6.0, measured at the proton frequency of 750 MHz. (a) Conventional broadband decdtig|léd][COSY spectrum. The evolution caused by
J(*H,*™N) scalar coupling was refocused in the and w, dimensions by a 18@roton pulse in the middle of thEN evolution int; and by

WALTZ composite pulse decoupling dfN during data acquisition, respectively. (b) Conventio@[*H] COSY spectrum recorded without
decoupling during; andt,. (c) TROSY-type {°N,'H] correlation spectrum recorded with the pulse sequence of Fig. 74. Chemical shifts relative

to DSS in ppm and shifts in Hz relative to the center of the multiplet are indicated in both dimensions. The arrows identify the locations of the
cross-sections shown in Fig. 76. [Reproduced with permission from K.V. Pervushin, R. Riek, G. Widerth¢ich/uProc. Natl. Acad. Sci.

USA, 94 (1998) 12366.]
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Fig. 77. (a) TROSY-typé°N& 'H correlation spectra (recorded on a
Bruker DRX-750 MHz spectrometer) of uncomplexédN/?H
labeled FimC (left spectrum) and of®N/°H labeled FimC
complexed with unlabeled FimH (right spectrum). Both samples
contained 0.4 mM of®N/?H-labeled FimC, pH 5.0 in 90% 40,

10% D,O. A slight excess of FimH was used in the complex to
Fig. 76. Cross-sections through the spectra of Fig. 75 (solid lines). ensure that FimC was fully bound. Both spectra were measured at
To facilitate a comparison of the linewidths in the different spectra 38°C. The panel (c) shows an expanded view of the superposition of
the cross-sections were normalized to the same maximal signal the spectra in (a) and (b). In (c), the cross peaks are labeled with
amplitude. (al), (a2) etc. refer to the arrows in Fig. 75. Simulated their corresponding amino acid number and the cross peaks that
line shapes (dashed lines in (a) and (b)) were calculated using have shifted in the complex by a large amount are linked to their

N
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<— o; (*°N) [ppm]
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J(*H, N) = —105 Hz 7 = 20 ns chemical shift anisotropies of
Aoy = —16 ppm Aoy = —160 ppm For *H", the relaxation due
to dipolar coupling with the other protons in the nondeuterated

complex was approximated by three protons placed at a distance

of 0.24 nm from*H". [Reproduced with permission from K.V.
Pervushin, R. Riek, G. Wider and K. Whrich, Proc. Natl. Acad.
Sci. USA, 94 (1998) 12366.]

nearest neighbor by a line. [Reproduced with permission from M.
Pellecchia, P. Sebbel, U. Hermanns, K. ¥Whch, R. Glockshuber,
Nature, Structural Biology 6 (1999) 336.]

correlation spectra, but still all cross peaks were
not present. Perdeuteration of FimC except at
amide positions, dramatically improved the situa-

one of the components is narrower in both dimensions tion. Further improvement was achieved by using
than the decoupled line and exclusively observed after TROSY. The TROSY typé®N—'H correlation spec-

ST2-PT step (Fig. 76c¢). Th&N ratio of the narrow
component further increases by a facto2 on
coaddition of echo—antiecho parts [371] and further
more by 10—15% by addition of the equilibriufPN
magnetization [370].

The sensitivity gain of TROSY has been
exploited for mapping the binding surface of chaper-
one FimC (a protein of 23 kDa) for the adhesin
FimH (28 kDa). The conventional spectrum of the
51 kDa complex gave a few, very broad, almost
undetectable signals. ThéN-labeled FimC and
unlabeled FimH complex, gave many signals in

trum of ™N/?H labeled FimC in free state and
complexed with unlabeled FimH, yielded TROSY
spectra with narrow peaks for all thEN in the
protein, many of which show significant chemical
shift changes near the binding sites (Fig. 77)
[377]. This demonstrates a methodology not achiev-
able for complexes of this size with conventional
methods. Similar improvements have also been
reported for ¥*C—H system in a '*C labeled
18 kDa protein cyclophilin [374,375]. Here it is
shown that for the aromatic carbon the C&&)—
dipole®*C—'H) cross-correlation narrows one of the
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13C doublet component considerably. The optimum T, in N-'H systems with proton broad-band
effect is observable in théH resonance frequency decoupling, which essentially causes saturation of
range of 600—800 MHz and leads to a sensitivity proton magnetization, during the recovery period.
gain by a factor of 10. Several groups have reported Kay et al. have come up with pulse sequences for
TROSY enhancement and given further improve- removal of cross-correlation effects on the measure-
ments/variations in the TROSY scheme [378—-385]. ment of heteronucleaf,; and T, values in proteins
Recently several groups have reported direct [395]. Cross-correlation effects an can be removed
evidence of the existence of hydrogen bonds$°M- by applying'H 18C pulses during the time allowed
labeled oligonucleotides artdN—"3C labeled proteins  for longitudinal relaxation at a rate at least five times
by NMR, utilizing the sensitivity gain and line- faster than the decay rate of the fastest decaying multi-
narrowing features of TROSY [386—391]. plet component. Alternative pulse schemes are also
suggested that involviH saturation oH decoupling
7.7. Cross-correlation under magic angle spinning  during the time allowed for longitudinal relaxation,

Chung and Oldfield reported the presence of CSA— \[,églz]h is similar to the approach used by Boyd et al.

dipole cross-correlation effects in the nuclear spin
relaxation of polymers under magic angle sample
spinning [392]. Differential relaxation was observed
in proton-coupled®C MAS inversion-recovery spec-
tra for the methine C—H spin groups in patig
isoprene). Further experiments have substantiated
the presence of temporal cross-correlations between
the **C—H dipolar and**C CSA interactions in the
spin—lattice relaxation rates of olefinic and methine
carbons in polymeric species [393].

The cross-correlation effects of, can also be
removed by the use of a series of 1§@ilses applied
selectively toJ-coupled spin. The rapid 18@ulsing
interchanges the labels of the spin states of the two
transitions which otherwise relax with differeftdue
to cross-correlations if they aré resolved, which
relax with an average rate devoid of cross-correla-
tions. These ideas have been used to meaSird,
andT, for uniformly **N-labeled SNase [390]. Broad-
band decoupling was shown to be effective in remov-
ing the cross-correlation effects I, measurements
8. Experiments that avoid cross-correlations by Palmer et al. [396]. They have shown that applica-

tion of a 180 pulse to the protons attached to the

There have been several techniques and experimen-heteronucleus synchronously with every second
tal methodologies proposed to suppress cross-correla-echo of the heteronuclear spin, efficiently eliminates
tion effects. In longitudinal relaxation, the multiplet the effects of cross-correlations. Composite pulse
effects can be suppressed easily in homonuclear spindecoupling of the protons during the CPMG sequence
systems, by the use of a non-selectivé Bfeasuring and application of a single 18@ulse to the protons at
pulse. In heteronuclear spins, °9pulses would be  the midpoint of the CPMG sequence are not very
needed on two or more spins to suppress the multiplet effective in removing the cross-correlation effects
effect. The net effects can be avoided by the use of [396].
short mixing times as they are second order in time.  As it has been discussed in detail in Sections 5.2
This pertains only to NOE measurements and not to and 5.3, selective spin lock of a particular spin, in a
inversion-recoveryl; measurements where the use of group of coupled spins makes the CSA—dipole cross-
long mixing times is unavoidable. In general, unlike correlation rate zero and hence can be thought of as a
the multiplet effects, the net effects persist in all the way of suppressing cross-correlations. Also the
experiments and are difficult to suppress. experiment proposed by Levitt and Di Bari, discussed

Boyd et al. have used the idea that avoiding the in Section 3.5.2, can also isolate relaxation pathways
creation of multi-spin orders can suppress cross-corre- removing certain cross-correlations. For example, if
lation effects inT; measurements of a spin, which can 18C pulses are applied on all the relaxation-coupled
be achieved if all the other relaxation-coupled spins spins, then the even and odd order modes have
are selectively saturated during the relaxation recov- different symmetry, avoiding cross-correlations
ery period [394]. This has been used in measutihy which couple them [214,215].
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9. Conclusions

Cross-correlations affect the longitudinal relaxation
including NOE via spectral densities at the Larmor

frequency. They affect transverse relaxation via spec-

tral densities at zero frequency as well. Therefore, in
biomolecular studies the most significant observation
of cross-correlations are the differential transverse
relaxation or differential line broadening/narrowing

of various single- and multiple-quantum coherences.
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discussions. Use of NMR Spectrometers of Sophis-
ticated Instruments Facility of Indian Institute of
Science, Bangalore is gratefully acknowledged.

Appendix A. Operator formalism for relaxation

The expectation values of any opera€is given
by Tr{o(t)Q}. Using the equation of motion of the
density matrix (Eg. (8)), the time evolution of the

Some of these effects of cross-correlations have beenexpectation value of any operator is obtained as

utilized for obtaining additional information on struc-

tures and dihedral angles of the biomolecules. The

differential line broadening which narrows one of
the components of the multiplet has been utilized
for increasing the resolution argN ratio leading to

enhancing the sizes of the biomolecules that can be

studied by NMR. Recently, several applications of the

[1,238]:

&«Q) 1 s
. EJWTr{[[Q,% ®1,

A (S (e o (Al)

enhanced resolution and sensitivity arising out of The trace in the integral on the RHS is a difference of
transverse cross-correlations have been demonstratedexpect‘,:mOn values of the type:

In future, cross-correlations will therefore continue to
play a dominant role in biomolecular NMR.
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QA O], #™ (D)) — (IQ, A" (0)], £ (T)])eq

In order to calculate the time evolution of the expec-
tation value of any observable, one needs to calculate
the commutators of various operators with the relaxa-
tion Hamiltonians and there is no need either to make
any assumption about the form of the density matrix
during the evolution of the system, or to calculate
explicitly the variation of its matrix elements. The
evolution of any desired physical quantity is obtained
by proper choice of the operatQ: When considering

a spin operatoi,, (« = X, Y, 2), we treat its projection

on the subspace & = +(1/2) and—(1/2) (for a two-
spin system; can be easily extended to higher order
systems) as:

IP=1,3+s) 12=1,3-9)

It is often more convenient to calculate the expec-
tation values of linear combination:

(A2)

ly =18 +1@
(A3)
2,8 =1 -1

For a two-spin systeniS, considering relaxation via
CSA of spind and mutual dipolar interaction, the rate
equation for the longitudinal relaxation is given by
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[238]:
(I AL BB B Iz = 2lp)
a <Sz> =—-|E A/l B/l <Sz - 23)>
2,8) B, Bl C 2.S)
(Ad)
where
_ 6(1 + ) 2
A= DTC{ 1+ w|2'rg * 1+ (0 — ws)zTg
n 12
1+ (0 + wg)’r2
12«
Bl = DTC{ m}

2
1+ (a), + (,()5)27'2 1+ ((1)| - (,()S)ZTg }

(1+a) 6
1+w§7%

2
1+ 1 + (o — w18

DTC{
DTC{
12
1T (o + ws)z‘fg} (A9)

with D = (V4m)d? = (1/20)(uo/4m)?y2vahr —© and
a=—(23)H(ay — o )r*/(ysh). Eq. (A4), is identi-
cal to a reduced Eq. (61) for a two-spin system, with

AL =p = pa Al = ps=pm,E1 = 015 = 0am, B1 =
d1,1s = Spam, B} = dgis=0uavw =0 and C, =
Pis = PAM-

Similarly for transverse relaxation, one obtains the
rate equation as:
(I

d( () ) (Az Bz)( )

— = - : (A6)
dt\.s) B, C/\(2.s)

which is formally identical to Eq. (105), with, =

(/2)(D; + Dy) + C, B, = (/2)(D; — D) andC, =
(U2)(D,; + D,) — C. Eg. (A6) can be transformed into
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expectation values of single transition operator
equation as:

d (1P
d—(,)

+(@1d/2) + A+ w |
_( u -ﬂW3+A—n)Q9)

(A7)
This equation is equivalent to Eq. (103), with =
A+ m, Dy = A — nandC = u. Here it is noticed that
both A and w contain only auto-correlation spectral
densities whilen gives the cross-correlation spectral
densities.

Kroenke et al. have recently rewritten the expres-
sions for various constants in the above formalism
without defininga as the ratio between CSA and
dipolar magnitudes [365]. The cross-correlation in
longitudinal and transverse relaxation have been
unified into a single notation ag, andn,,. The equa-
tion of motion for transverse relaxation is given by:

E( (§)(1) )__ R, my ( (§)7) )
dt \ 21,.5)(7) Ty R ) \(2S5)7)

(A8)
where R, = (R, + Ryg)/2, and for longitudinal

relaxation is given by:
Mz (SH()

d(<sm>) (Rl )( )
— = (A9)
dt \ (21,S,)(t) n, Rus/\(21,S)®)

with thel spin evolution decoupled. The above equa-
tion has been written assuming that, the contribution
from equilibrium | and S magnetization have been
removed by subtracting pairs of experiments in
which, the sign ofl, and § are altered, that the
small effect of I spin dynamics is removed by
inverting all S spin operators at timér/2) (only the
ungerade space dynamics is included in the above).
Furthermore, it is assumed that one is dealing with a
two-spin system, since all the other spins (protons)
have been removed by deuteration. In Egs. (A8) and
(A9), the cross-correlation spectral densities are given
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by:
1, = —4cdP,(cos)I(ws)

(A10)
Ty = — 5¢dP,(cos6)[4(0) + 3)(wg)]

where ¢ = (ysBoAoe)///30,  d = (vBuohiyi ys)/
(4mrs/10), 6 is the angle between the principal
axis of the CSA tensor and the dipolar vector and
cdP,(cos0)J(ws) = Jgis(ws). The auto-correlation
spectral densities are given by:

Ry = ps = (d/4)[3)(ws) + I — wg)

+ 6J(w + wg)] + c2I(ws)

Ry = 3(D; + Dy) = (d%/8)[4J(0) + 3)(wg)

+ o — wg) + 6J(ey)
+ 6J(w + wg)] + (C*/6)[4I(0)
+ 3J(wn)] + Rex
Rys = 015 = (d%/4)[3(wg) + 3J())]
+ AJ(wg) + Ry
Rys = C = (d%/8)[4(0) + 3J(wg) + J(w, — wg)
+ 6J(0 + wg)]

+ (c?/6)[4J(0) + 3)(ws)] + Rey + Ry,
(A11)

where R, represents the additive effect of chemical
exchange line broadening amy, is the longitudinal
relaxation rate constant resulting from dipolar inter-
actions between the amidH"(l) spin and other
remote protons that are near in space.

Experiments have been designed to monitor the
time evolution of (S.y), (2S,1,). (S) and (2I,S)
operators directly, rather than the conventional obser-
vables, such ak” and|®. The selective observation
of 1Y andI? requires well-resolved multiplets. Rapid
interconversion of'Y andI? by appropriately placed
7 pulses allows the monitoring af,) and (2l,S,
operators.

Goldman in the first part of the paper [238] assumes
that the principal axis of the axially symmetric CSA
tensor is parallel to the internuclear dipolar vector. He
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then introduces an angle between the two, showing
that auto-correlation terms involving CSA do not
depend on the angle and only the cross terms between
the CSA and dipolar relaxation are to be multiplied by
a factor(3 cos 6 — 1)/2, yielding the spectral density

as outlined by Eq. (A8). In the next part of the paper,
Goldman considers the case of non-axial CSA tensors
such that the principal values are all different, with the
following Hamiltonian:

%CS: Y [O-X’Hx’lx’ + O'yrHy/|y/ + UZ’HZ’IZ’] (A12)
whereOX'y'Z represents the molecule fixed principal-
axes frame of the CSA tensor, withbeing the prin-
cipal axis. The laboratory frame is represented by
OXYZwith 6’ being the angle betwee@Z and OZ
and¢’ being the angle betweddX and the projection

of OZ on the plan€DXY. The isotropic part of# csis
given by:

r}fcs| = %'y,(ax/ + O'y/ + O'Z/)H'l (A13)
However, it is only the anisotropic part which contri-
butes to relaxation and can be expressed as the sum of
two axially symmetric anisotropic chemical shift
tensors as:

Hosn= HEsp+ HEen (Al4)
with

H = 3yi(ow — op)[2Helw — Hyly — Hyly]
HBp= Ly(0y — o)[2Hyly — Hyly = Hyly]

(A15)

There are cross terms betweefi,p and each of the
H L and #Z,. The cross terms between these two
CSA tensors (the angle between them bein@)
affects both the transitions of thke spin equally,
since these terms do not depend $nBy analogy
with the expression fore, Goldman defines the
cross-correlation in this case as:

ay = —(23)H(oy — o) (ysh)

ay = —(23H(ay — o) /(ysh)

(A16)

In the auto-correlation expression given AyandC,
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in Eq. (A5), a? is then replaced by

(a% + a% — o) = (4H2I’6/9'y%h3)[0'3, + 0'51 + 022/
- (TX/O'y/ - O'y/O'Z/ - O'Z/O'X/],

and in the cross-correlation terBy (Eq. (A5)), « is
replaced by

1y (3c0g6,, — 1) + ay(3c0g6,, — D).
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