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Environment-induced corrections to the spin Hamiltonian as dynamic
frequency shifts in nuclear magnetic resonance
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We derive an expression for the correction to the spin-system Hamiltonian that arises due to the
system–bath interaction, starting both from the standard master equation for the spin density matrix
and a perturbative diagonalization of the system–bath Hamiltonian to the second order in the
interaction. We show that the dynamic frequency shifts observed in the evolution of the nuclear spin
coherences are a result of these Hamiltonian corrections. We present a systematic decomposition of
the relaxation superoperator into Hermitian and anti-Hermitian parts as opposed to the usual practice
of partitioning it into real and imaginary parts. We point out that the relaxation-induced corrections
to the coherent motion arise exclusively from the anti-Hermitian part and the dissipative effects,
from the Hermitian part, both, in general, being complex. However, the secular terms of this
correction are found to depend only on the imaginary and the real parts, respectively. ©2000
American Institute of Physics.@S0021-9606~00!71541-8#
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I. INTRODUCTION

The relaxation behavior of a system of nuclear spins
contact with the other molecular degrees of freedom is c
tured by a master equation for the spin density matrix1–3

The Redfield equation is one such master equation tha
used to describe all relaxation phenomena in the NMR
liquids. The coupling of the spin system to the bath co
prised of the molecular motional degrees of freedom chan
the nature of the evolution of the spin system in a fundam
tal way, in that it introduces irreversibility. In this descrip
tion, the bath is modeled as a classical object undergo
random motion characterized by the spectral den
function.4 The random interactions give rise to both dissip
tive and coherent corrections to the motion of the syste
These coherent effects induced by the random interact
manifest themselves in the form of shifts in the frequenc
known as dynamic frequency shifts5–13 ~henceforth referred
to as DFS!, and are the subject of this article.

In contrast to the line broadenings and the recovery
longitudinal magnetization produced by the dissipative p
of the relaxation superoperator, these shifts are very diffi
to observe due to the absence of any reference scale ag
which these could be measured. These shifts have been
served when they, arising from the cross-correlation betw
different relaxation mechanisms, either destroy the symm
of a multiplet5,6 or produce field-dependent changes in t
coupling values.9

There has been a considerable amount of work, b
theoretical and experimental, on the manifestations of th
shifts in various coupled spin systems. It is often stated

a!Electronic mail: kart@sif.iisc.ernet.in
b!Electronic mail: anilnmr@physics.iisc.ernet.in
7130021-9606/2000/113(17)/7131/9/$17.00

Downloaded 28 Nov 2003 to 203.200.43.195. Redistribution subject to A
n
p-

is
f
-
es
-

g
y
-
.

ns
s

f
rt
lt
inst
ob-
n

ry

th
se
at

these shifts arise out of the imaginary part of the spec
densities while the real part only contributes to purely dis
pative evolution. Recently, Bru¨schweiler has shown that th
DFS in an AX system that arise due to the cross-correla
between the fluctuations of the chemical shift and the dipo
interaction can be represented as a correction to the J
pling between the spins10 and in same spirit, the DFS due t
the dipole–dipole cross-correlation in an AMX system
equivalent to a three-spin J coupling.11 The possibility of
expressing all DFS as corrections to the Hamiltonian is
tractive on account of its notational simplicity and the a
companying simplification in the way one can think abo
these shifts. More fundamentally, such an equivalence h
at the existence of a refined physical explanation.

In this article, we show that the decomposition of t
relaxation superoperator into real and imaginary parts le
to an incomplete picture while a decomposition into Herm
ian and anti-Hermitian leads to a more general picture.
example, beyond the secular approximation,14 a separation
into real and imaginary parts does not correspond to a s
ration into parts causing, respectively, purely incoherent
purely coherent effects on the evolution while the separa
presented in this article is always guaranteed to provide s
a correspondence. The Hermitian part contributes only to
purely dissipative evolution while the anti-Hermitian pa
contributes to purely coherent evolution. An important d
tinction of the present decomposition is its generality in
taining all the relaxation elements while earlier treatme
assumed that the real part of the spectral densities contri
to the decoherence and the imaginary part, to the cohe
effects, therby missing out the complex nature of the o
diagonal elements in both the cases. We also present a
1 © 2000 American Institute of Physics
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malism within the scope of which these shifts naturally ar
as corrections to the spins system Hamiltonian.

The layout of the article is as follows. We start from th
master equation in Sec. II to show that the relaxation sup
operator is decomposable into a Hermitian and an a
Hermitian part. While the former accounts for all the irr
versibility in the motion the latter produces coherent effe
on the system motion. The anti-Hermitian part is shown
have a commutator structure that naturally leads to defini
of a correction to the spin Hamiltonian. In Sec. III we sta
with the system-bath Hamiltonian that istime independent.
The system–bath interaction causes the energy levels o
uncoupled system–bath to mix and shift. As a conseque
there is an average shift produced to the energy levels o
system. In order to find these shifts, we use a perturba
diagonalization technique to find the lowest-order corr
tions to the system levels. This procedure naturally leads
correction to the system Hamiltonian that we find to be id
tical to the one derived from the master equation. We th
show that the correction contains both diagonal and no
agonal terms. The diagonal part of the correction is show
depend only on the imaginary part of the spectral densit
In Sec. IV we provide the Hamiltonian corrections for certa
spin systems. In particular, we arrive at the two- and thr
spin J couplings in the AX and AMX systems. The cros
correlation between the quadrupolar and the dipolar inte

tion in a system of a spin-1
2– spin. 1

2 system is found to
produce a correction to the system Hamiltonian that destr
the symmetry of the spin-1

2 multiplet structure. We also show
that the autocorrelation of the quadrupolar interaction fo
spin.1 system gives rise to a correction to the Hamilton
that removes the degeneracy of the transitions causing a
ellite formation. We conclude the article with Sec. V. In a
Appendix we list explicitly, the matrix representation of th
complete relaxation superoperator for a two-spins sys
showing the complex nature of the off-diagonal elements
their consequences.

II. THE MASTER EQUATION

In this section, we start with the master equation t
describes the evolution of the spin density matrix due to
interaction with a classical bath. The general procedure
obtaining such a master equation in the context of nuc
spin relaxation in liquids is to start with the microscop
evolution equation of the density matrix. The standa
second-order treatment in the system–bath interaction a
Markovian approximation leads to the following form for th
master equation.1,2

d

dt
r52 i Ĝsr2Ĝr. ~1!

Here,Ĝs is the Liouvillian of the spin system that generat
the free evolution of the system under the spin Hamilton
and is given in terms of it by the following equation:

Ĝsr5@Hs ,r#.
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Ĝ is the relaxation superoperator that generates the irrev
ible behavior of the evolution.15 In the semiclassical formu
lation of the master equation, the irreversibility arises due
the rendering of the interaction HamiltonianH8 time depen-
dent due to the random motion of the bath variables. In g
eral, the interaction Hamiltonian can be written as a sum
various scalar contractions of the system and bath variab
We shall use the following notation to represent the gene
interaction Hamiltonian.15

H85 (
h,l ,q

x l ,2q
h Al ,q

h . ~2!

Hereh stands for the various interactions.l andq represent
the rank and the azimuthal index of the operators.Al ,q

h are
the operators of the spin system. The isotropy of the b
leads to the following symmetry of the correlation functio
of the bath variables:

^x l ,2q
h ~ t !x l 8,q8

h8 ~ t1t!&5dq,q8d l ,l 8Cl
hh8~t!, ~3!

where ^ & represents the averaging over the bath variab
Using a second-order perturbation theory and making
Markovian approximation, the following expression for th
relaxation superoperator may be derived:3

Ĝr5E
0

`

dt^†H8,@H̃8~2t!,r#‡&. ~4!

The overtilde refers to the operator written in the interact
frame. It is useful to introduce the set of eigenoperators
the free system Liouvillian superoperator,

2 i ĜsSi5 iv iSi . ~5!

The spin operators that are present in the interaction Ha
tonian can be resolved in this basis to give the followi
representation:

Al ,q
h 5(

i
^Si uAl ,q

h &Si . ~6!

The coefficients are defined as

^Si uAl ,q
h &5Tr~Si

†Al ,q
h !. ~7!

Written in terms of these basis operators and using the s
metry property of the bath variables from Eq.~3!, we have

the following form for Ĝ:

Ĝr5 (
h,h8,l ,q,i , j

Jl
hh8~v j !^Si uAl ,q

h &

3^Sj uAl ,2q
h8 &†Si ,@Sj ,r#‡. ~8!

We have introduced the spectral density function in
above equation that are defined as follows:

Jl
hh8~v j !5E

0

`

dt Cl
hh8~t!expiv jt. ~9!

The spectral density has the following symmetry that ari
out of the reality of the correlation functions:
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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7133J. Chem. Phys., Vol. 113, No. 17, 1 November 2000 Dynamic frequency shifts in NMR
Jl
hh8~2v!5Jl

hh8* ~v!. ~10!

The complete evolution equation for the density matrix m
now be written as

d

dt
r52 i Ĝsr2 (

h,h8,l ,q,i , j

Jl
hh8~v j !^Si uAl ,~ ŝ !q

h~ŝ!

&

3^Sj uAl ,2q
h8 &†Si ,@Sj ,q#‡. ~11!

The first term on the RHS corresponds to the free evolu
of the system under the spin Hamiltonian. The second te
owing to its double commutator structure, cannot be int
preted as an evolution under a Hamiltonian. It is the sou
of irreversibility. However, as it stands, the second term
not interpretable as causing pure dissipation since a pu
dissipative superoperator has to be Hermitian. It is there
useful to partition the relaxation superoperator into Herm
ian and anti-Hermitian parts, the former causing pure di
pation while the latter producing coherent effects on
motion.16 At this point it is worthwhile to note that in the
previous works,1,3,5–13the relaxation superoperator was pa
titioned into real and imaginary parts. Such a partition
relevant only for the secular terms of the relaxation super
erator. This point is further discussed later. Partitioning i
Hermitian and anti-Hermitian is readily made by decomp
ing the double commutator into parts that are symmetric
antisymmetric in the basis operators. Following Jeener,16 we
decompose the double commutator as

@Si ,@Sj ,r##5ˆ$Si ,Sj%,r‰22~ Ŝi3Ŝj1Ŝj3Ŝi !r

2†@Si ,Sj #,r‡, ~12!

where

Ŝi3Ŝjr5SirSj ,
~13!

$Si ,Sj%5SiSj1SjSi .

We now define the purely dissipative superoperator (R̂) and
the purely coherent superoperator (L̂) as follows:

Ĝ5R̂1L̂.

R̂5 1
2 ~ Ĝ1Ĝ†!, ~14!

L̂5 1
2~ Ĝ2Ĝ†!.

The above definition ofR̂ and L̂ naturally leads to their
being Hermitian and anti-Hermitian respectively. Using t
properties

~ Ŝi3Ŝj !
†5Ŝi

†3Ŝj
† , ~15!

^Si
†uAl ,q

h†&5^Si uAl ,q
h &* , ~16!

and
Downloaded 28 Nov 2003 to 203.200.43.195. Redistribution subject to A
y

n
,

r-
e
s
ly

re
-
i-
e

s
-

o
-
d

Al ,q
h 5Al ,2q

h† , ~17!

we obtain

R̂r5
1

2 (
h,h8,l ,q,i , j

Jl
hh8~v j !^Si uAl ,q

h &

3^Sj uAl ,2q
h8 &„ˆ$Si ,Sj%,r‰

22~ Ŝi3Ŝj1Ŝj3Ŝi !r…, ~18!

L̂r52
1

2 (
hh8,l ,q,i , j

Jl
hh8~v j !~Si uAl ,q

h &

3^Sj uAl ,2q
h8 &†@Si ,Sj #,r‡. ~19!

The commutator structure of the anti-Hermitian part
lows us to define a Hamiltonian correctionHd , by rewriting
Eq. ~19! as

L̂r52 i @Hd ,r#, ~20!

where

Hd52
i

2 (
h,h8,l ,q,i , j

Jl
hh8~v j !^Si uAl ,q

h &^Sj uAl ,2q
h8 &

3@Si ,Sj #. ~21!

The anti-Hermitian part of the relaxation superoperator gi
rise to a correction to the Hamiltonian. This correctio
Hamiltonian gives rise to DFS and depends on the comp
complex spectral density. It is also nondiagonal in the eig
basis of the main Hamiltonian,Hs . The Hermitian part of
the relaxation superoperator is also dependent on the c
plete complex spectral density and causes pure dissipa
and decoherence. The Hermitian and the anti-Hermitian p
have the following symmetry with respect to the trace m
ric:

R̂†5R̂,
~22!L̂†52L̂.

It will be shown in the next section that under the secu
approximation wherein the nonresonant terms of the re
ation superoperator are dropped,L̂ andR̂ are dependent on
the imaginary and the real parts of the spectral density,
spectively. This is also the difference between the pres
and the earlier treatments of DFS.1,3,5–13

Though we have shown that the master equation desc
ing the relaxation dynamics, has in it, an inherent correct
to the coherent dynamics apart from causing dissipation
decoherence and that this correction can be mimiced b
correction to the Hamiltonian, the origin of this similarit
has not been presented. Indeed, these corrections ha
stigma associated with them, of beingdynamicas opposed to
the other terms in the Hamiltonian that are more naturally
property of the spins. In the next section, we present a tr
ment of the closed system formed by the spins and the
tice. In the lowest order in the interaction between them, th
evolve under their free Hamiltonians. The presence of a m
tual interaction between them, however, causes a correc
to the energy levels of the free spins bath. As a conseque
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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there are corrections to the free Hamiltonian that can be
culated from a standard static perturbation theory. We
velop a formalism based on the operator version of st
perturbation theory to partially diagonalize the Hamiltoni
of the closed system–bath complex. This formalism is sho
to give rise to corrections to the Hamiltonian of the spins t
we find to be identical with the DFS causing a Hamiltoni
correction that we have derived from the master equat
This picture, we believe, is more natural in showing the o
gin of the Hamiltonian corrections.

III. BATH-INDUCED CORRECTION TO THE SPIN
HAMILTONIAN

In this section we determine the effective Hamiltonian
a spin system in contact with a heat bath made of the
lecular degrees of freedom. We would like to determine
correction to the spin Hamiltonian of the system due to
interaction with the heat bath. In the first order, the aver
correction to the spin Hamiltonian is zero. In the seco
order, we find a nonzero residual correction to the s
Hamiltonian. This second-order average Hamiltonian corr
tion is found to be identical with the Hamiltonian correctio
that mimics the coherent effects of relaxation as modeled
the master equation. We diagonalize the system–bath Ha
tonian to second order in the interaction. We start with
total Hamiltonian of the system–bath complex,

HT5Hs1HB1lH8, ~23!

5H01lH8. ~24!

Hs is the spin Hamiltonian,HB is the Hamiltonian of the
bath, andl is a perturbation parameter, which is a meas
of the strength of the interaction between them. Assum
that the bath is a macroscopic object at a constant temp
ture, one can write an effective Hamiltonian for the sp
system at various orders in the system–bath interaction
the lowest order, it is given by

Hd
~1!5l^H8&. ~25!

The angle brackets imply an averaging over the bath deg
of freedom with respect to the thermal equilibrium bath de
sity operator,

^H8&5TrS exp~2bHB!

Z •H8D . ~26!

Substituting forH8 from Eq.~2!, we have, for the first-orde
correction to the spin Hamiltonian,

^H8&5TrS exp~2bHB!

Z (
h,l ,q

x l ,2q
h Al ,q

h D
5 (

h,h8,l ,q,

TrS exp~2bHB!

Z x l ,q
h DAl ,q

h . ~27!

The isotropy of the bath leads to complete averaging of
bath operators as a result of which only rank zero ter
could possibly be nonzero. The commonly encountered
teractions are tensors of nonzero rank and hence the a
correction to the Hamiltonian is zero. The second-order c
rection to the Hamiltonian can be found by diagonalizing
Downloaded 28 Nov 2003 to 203.200.43.195. Redistribution subject to A
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total Hamiltonian to second order in the system–bath in
action. We construct a unitary operator that diagonalizes
total Hamiltonian to second order,17–19

HT
D5exp~2 iS!HT exp~ iS!, ~28!

where S is a Hermitian generator of the diagonalizatio
transformation. The diagonality to the second-order con
tion gives forS, the following equation.18,19

2 i Ĝ0S5H8. ~29!

This equation can be formally inverted to give forS,

S5 i Ĝ0
21H8. ~30!

The inverse of the free system–bath Liouvillian is hypo
esized to exist based on the observation that there exist
intrinsic decay time of the bath. An integral representation
the inverse can then be given toS as

S52E
0

`

dt H8~t!, ~31!

where

H8~ t !5exp~2 i Ĝ0t !H8. ~32!

One then has forH̃T the following form up to the second
order in the interaction:

H̃T'H01l2H8~2!, ~33!

where the residual second-order interaction is

l2H8~2!52
i

2
@S,H8#

5
i

2 E0

`

dt@H8~t!,H8#. ~34!

We can naturally find the effective Hamiltonian correction
the motion of the spins by averaging the second-order in
action over the equilibrium bath to get

Hd
~2!5^H8~2!&,

~35!

^H8~2!&52
i

2 E0

`

dt^@H8,H8~t!#&.

Using Eq.~2! and the symmetry of the correlation function
we find

^H8~2!&52
i

2 E0

`

dt (
hh8,l ,l 8,q,q8

^@x l ,2q
h Al ,q

h ,x l 8,q8
h8

3~t!Al 8,2q8
h8 ~t!#& ~36!

52
i

2 (
h,h8,l ,q

E
0

`

dtˆ^$x l ,2q
h ,x l ,q

h8~t!%&

3@Al ,q
h ,Al ,2q

h8 ~t!#1^@x l ,2q
h ,x l ,q

h8~t!#&

3$Al ,q
h ,Al ,2q

h8 ~t!%‰. ~37!

We encounter two kinds of correlation functions in the abo
equation. The antisymmetric correlation~the second term on
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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the RHS! function plays a role only when the quantum n
ture of the bath becomes important. In the present cont
however, these effects are negligible and can be drop
Identifying the symmetric correlation function with the co
relation functions that arise in the semiclassical descrip
of the bath in Eq.~3! and using the definition of the earlie
defined spectral densities in Eq.~9!, we arrive at the expres
sion for the second-order correction to the spin Hamilton
as

^H8~2!&52
i

2 (
h,h8,l ,q,i , j

^Si uAl ,q
h &^Sj uAl ,2q

h8 &

3J l
hh8~v j !@Si ,Sj #. ~38!

It is seen that the above correction to the Hamiltonian
identical with the one derived from the master equation. T
following comments are in order. It is useful to rewrite th
above correction in a manifestly antisymmetric form as f
lows:

^H8~2!&52
i

4 (
h,h8,l ,q,i , j

^Si uAl ,q
h &^Sj uAl ,2q

h8 &

3$J l
hh8~v j !2J l

hh8~v i !%@Si ,Sj #. ~39!

The above Hamiltonian is seen to depend upon the comp
complex spectral densities. From the symmetry relations
the complex spectral densities equation~10!, it is evident that
the secular part of the above correction (v i52v j ) is depen-
dent on the imaginary part of the spectral density alone
similar argument for the Hermitian part of the relaxation s
peroperator in Eq.~18! shows that under the same appro
mation, it is a function of the real part of the spectral dens
alone. In the Appendix, we give the matrix representation
the Hermitian and the anti-Hermitian parts of the relaxat
superoperator in the case of a system of two spins-1

2. There, it
is clearly seen that contributions from the complete comp
spectral densities are only to the off-diagonal elements.

The secular part of the above correction (^H8(2)&0 , is
given as

^H08
~2!&52

i

2 (
h,h8,l ,q,i , j

^Si uAl ,q
h &^Sj uAl ,2q

h8 &

3J l
hh8~v j i !@Si ,Sj #, ~40!

where v j i 5
1
2 (v j2v i). In the above sum, thei and j are

restricted such thatv i1v j50. After some algebra we find
for the shifts,

^H08
~2!&52

i

4 (
h,h8,l ,q,i , j

^Si uAl ,q
h &^Sj uAl ,2q

h8 &~J l
hh8~v j i !

2J l
hh8~v i j !!@Si ,Sj #

5
1

2 (
h,h8,l ,q,i , j

^Si uAl ,q
h &^Sj uAl ,2q

h8 &Kl
hh8~v j i !

3@Si ,Sj #. ~41!
Downloaded 28 Nov 2003 to 203.200.43.195. Redistribution subject to A
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In the above equation,Kl
hh8(v) are the imaginary part of the

spectral densities that are antisymmetric functions of the
quency and are given by

Kl
hh8~v!5E

0

`

sin~vt!Cl
hh8~t!dt. ~42!

Equation~41! is identical with the Hamiltonian derived in
Ref. 11. However, the same form for the correction Ham
tonian was assumed to hold beyond the secular approx
tion. In this, the present treatment differs. We have sho
that the DFS arises from the secular part of a more gen
correction to the spin Hamiltonian induced by the interact
with the bath.

IV. THE HAMILTONIAN CORRECTIONS IN
PARTICULAR SPIN-SYSTEMS

We now examine the shift producing Hamiltonians in
few interesting cases.

~1! A system of two spins-12: The possible relaxation
Hamiltonian of a system of two spins-1

2 is given by

H85HA
CSA1HM

CSA1HAM
DD, ~43!

where the first two terms on the RHS are the chemical s
anisotropies associated with the two spins and the third t
is the mutual dipolar interaction between them. These
defined further as in Eq.~2! with

A05A2

3
AZ , A615

1

2
A6 ,

~A^ M !05
1

A6
S 2AZMZ2

1

2
~A1M 21A2M 1! D ,

~44!

~A^ M !615 1
2 ~A6MZ1AZM 6!,

~A^ M !625 1
2 A6M 6 .

Using the above expressions in Eq.~39!, we find for the total
correction to the Hamiltonian as
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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^H8~2!&52@ 1
2 K2

A,A~vA!1 1
8 K2

AM,AM~vA!1 1
4 K2

AM,AM~vA1vM !1 1
24 K2

AM,AM~vA2vM !#AZ2@ 1
2 K2

M ,M~vM !1 1
8 K2

AM,AM~vM !

1 1
4 K2

AM,AM~vA1vM !2 1
24 K2

AM,AM~vA2vM !#MZ2@K2
A,AM~vA!1K2

M ,AM~vM !#AZMZ

2@ 1
12 $K2

A,AM~vA2vM !2K2
M ,AM~vA2vM !%1 1

4 $K2
A,AM~vM !1K2

A,AM~vA!1K2
M ,AM~vM !1K2

M ,AM~vA!%#

3~A1M 21A2M 1!1 i @ 1
12 $J2

A,AM~vA2vM !2J2
A,AM~0!2J2

M ,AM~vA2vM !1J2
M ,AM~0!%

1 1
4 $J2

A,AM~vM !2J2
A,AM~vA!1J2

M ,AM~vM !2J2
M ,AM~vA!%#~A1M 22A2M 1!. ~45!
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In the above equation,K2
A,A andK2

M ,M are the autocorrelation
spectral densities, respectively, of the CSA of the spinA
andM, K2

AM,AM are the autocorrelation spectral densities
the dipolar interaction andK2

A,AM andK2
M ,AM are the cross-

correlation spectral densities, respectively, between the C

of spinsA andM, and dipolar interaction.J2
h,h8 are the real

part of the spectral densities that are symmetric function
the frequency and are given as

Jl
h,h85E

0

`

cos~vt!Cl
hh8~t!dt. ~46!

The diagonal part of the above corrective Hamiltonian@the
first three terms on the RHS of Eq.~45!# are seen to depen
only on the imaginary part of the spectral densities while
off-diagonal part is found to be complex, in general~also see
the Appendix!. For homonuclear spins (uvA2vMutc!1),
the spectral densities at the two Larmor frequencies
equal. The contributions from the real part of the spec
densities are seen to tend to zero in this limit, thus mak
the DFS arise solely from the imaginary part of the spec
densities. The above Hamiltonian is then seen to take
following form:

^H8~2!&52VAAZ2VMMZ2DA"M , ~47!

whereD is the relaxation induced coupling between the sp
and is given by

D5K2
A,AM~vA!1K2

M ,AM~vM !, ~48!

and the Larmor frequency shifts are given by the followi
expressions:

VA5$ 1
2 K2

A,A~vA!1 1
8 K2

AM,AM~vA!

1 1
4 K2

AM,AM~vA1vM !% ~49!
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VM5$ 1
2 K2

M ,M~vM !1 1
8 K2

AM,AM~vM !

1 1
4 K2

AM,AM~vA1vM !%. ~50!

For homonuclear systems, therefore, the total spin Ham
tonian HT

S can be written~including the relaxation-induced
couplings and Larmor frequency shifts! as

HT
S52~vA1VA!AZ2~vM1VM !MZ1~J2D!A"M .

~51!

In the limit of weak coupling between the spinsuvA2vMu
@D, the Hamiltonian correction takes the following form:10

^H8~2!&52VAAZ2VMMZ2DAZMZ . ~52!

It is to be noted that even when the Larmor frequencies
the spins are equal, the relaxation-induced corrections to
Larmor frequencies could be different when the anisotro
of the chemical shifts to the spins are different.

The above example clearly demonstrates the fact that
real part of the spectral densities play only a negligible r
in causing frequency shifts. This point is further illustrated
the Appendix using the matrix representation of the Herm
ian and the anti-Hermitian parts of the relaxation superope
tor. In what follows, we neglect the real part.

~2! Cross-correlation-induced three-spin coupling: We
consider a system of three spins-1

2 interacting via the mag-
netic dipolar interaction. As in Ref. 11, we arrive at the fo
lowing expression for the relaxation-induced coupli
Hamiltonian:

^H8~2!&5HA1HM1HX , ~53!

where
(

HA52 1
2 K2

AM,AX~vA!AZMZXZ1 1
8 ~K2

AM,AX~vM !1K2
AM,AX~vA!~A1M 21A2M 1!XZ1 1

8 „K2
AM,AX~vX!

1K2
AM,AX~vA!…~A1X21A2X1!MZ2 1

4 ~K2
AM,AX~vX1vA!1K2

AM,AX~vM1vA!!~X1M 21X2M 1!AZ , ~54!

with similar expressions forHM and HX with appropriate changes in the indices. Again, for homonuclear spinsuvA

2vMutc'uvM2vXutc!1), we can replace all the arguments of the spectral densitiesvA'vM'vX5v. We then have11

^H8~2!&52 1
2 „K2

AM,AX~v!1K2
AM,MX~v!1K2

AX,MX~v!…AZMZXZ1 1
2 „K2

AM,AX~v!1K2
AM,MX~v!

1K2
AX,MX~2v!…~A1M 21A2M 1!XZ1 1

2 „K2
AM,AX~v!1K2

AX,MX~v!1K2
AM,MX~2v!…~A2X11A1X2!MZ

1 1
2„K2

AM,MX~v!1K2
AX,MX~v!1K2

AM,AX~2v!…~X1M 21X2M 1!AZ . ~55!
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In the case of weak coupling, the terms that cause mixing between the various spin states are rendered ineffective
arrive at a weak coupling Hamiltonian given by11

^H8~2!&52 1
2 „K2

AM,AX~vA!1K2
AM,MX~vM !1K2

AM,MX~vX!…AZMZXZ . ~56!

The implications of such a coupling term have been dealt with earlier11 and will not be treated here. It may be pointed out th
the autocorrelations@not included in Eq.~55!# also give rise to DFS, which cause unequal Larmor frequency shifts on
various spins.

~3! Quadrupolar—DD cross-correlation-induced Hamiltonian shifts: We consider a spin-12 (I )—spin. 1
2 (S) system re-

laxing via their mutual dipolar interaction~IS! and the quadrupolar interaction (QS) of the spin. 1
2. The relaxation-induced

coupling between them arises from both the autocorrelation of the dipolar interaction (K2
IS,IS) and the cross-correlation

between the dipolar interaction and the quadrupolar interaction5–8,12 (K2
QS ,IS) giving the following coupling Hamiltonian.

^H8~2!&52@ 1
2 K2

IS,IS~v I !12K2
QS ,IS

~vS!#SZ
2I Z1 1

16 @K2
IS,IS~vS!1K2

IS,IS~v I !1K2
QS ,IS

~vS!1K2
QS ,IS

~v I !

24K2
QS ,IS

~vS1v I !24K2
QS ,IS

~2vS!#@ I 2$S1 ,SZ%1I 1$S2 ,SZ%#1@K2
QS ,IS

~vS!2 1
12 K2

IS,IS~v I2vS!

2 1
2 K2

IS,IS~v I1vS!#@ I Z~S22SZ
2!#. ~57!
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A feature in the above Hamiltonian is the coupling of t
spin-12 to the spin. 1

2, which breaks the symmetry of the mu
tiplet structure of the spin-1

2. In the limit uv I2vSu
@K2

QS ,IS ,K2
IS,IS , the second term is rendered ineffectiv

The above coupling then takes the following form:

^H8~2!&52@ 1
2 K2

IS,IS~v I !1K2
IS,IS~v I2vS!

1K2
IS,IS~v I1vS!#I ZSZ

21@K2
QS ,IS

~vS!

2 1
12 K2

IS,IS~v I2vS!2 1
2 K2

IS,IS~v I1vS!#

3@ I Z~S223SZ
2!# ~58!

The above Hamiltonian also presents the possibility of
mutual cancellation of the effects produced by the dipo
autocorrelation and the quadrupolar–dipolar cro
correlation terms in breaking the symmetry of the multip
structure of the spin-1

2. The autocorrelation of the quadrupo
lar interaction also produces DFS that can be observed
are presented in the next section.

(4) Hamiltonian shifts induced by fluctuating quadrup
lar interaction: Here we consider a lone spin. 1

2 relaxed by
the electric quadrupolar interaction.8 The Hamiltonian shifts
produced by the autocorrelation of the quadrupolar inter
tion is given by

^H8~2!&5 1
2 $2K2

QS~2vS!2K2
QS~vS!%SZ

3

2~S221!K2
QS~2vS!SZ . ~59!

The second term in the above correction causes equal s
to all the transitions while the first term~for S.1!, lifts the
degeneracy of all the Zeeman transitions and hence prod
satellites. The effect of these shifts is expected to be gre
than all the other known shifts because of their depende
on the autocorrelation functions rather than the cro
correlation functions. It is to be noted that these shifts
come observable only for spin.1. For example, in the cas
of a spin (S5 3

2), the 1
2, 2 1

2 transition is shifted less than th
3
2,

1
2 and the2 1

2, 2 3
2 transitions yielding a satellite formation

the splitting being1
8 (2K2

QS(2vS)2K2
QS(vS)).
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V. DISCUSSION AND CONCLUSION

We have shown that the relaxation superoperator can
partitioned into Hermitian and anti-Hermitian parts th
cause purely dissipative and purely coherent effects on
motion of the system. The latter was shown to posses
commutator structure that lead us to define a general Ha
tonian correction to the system. Earlier works decompo
the relaxation superoperator into real and imaginary pa
We have shown that it is more instructive to decompos
into a Hermitian and an anti-Hermitian part. Within the sec
lar approximation, the latter decomposition is found to
identical with the former. As a result of the present deco
position, both coherent and dissipative effects of the rel
ation are seen to depend on the complete complex spe
densities. Again, in the secular limit, the coherent effects
seen to depend exclusively on the imaginary part while
dissipative effects are seen to depend on the real part o
spectral densities. To provide a physical basis to the ab
arguments, the correction to the system Hamiltonian was
termined to the lowest nonzeroth order in the system–b
interaction. It was shown that the second-order correction
the system Hamiltonian naturally arises out of a perturba
diagonalization procedure, and this correction was found
be identical with the Hamiltonian correction extracted fro
the master equation. The correction was found to have b
diagonal and off-diagonal elements. Under the secular
proximation, the influence of the off-diagonal terms are ne
ligible and the resulting Hamiltonian correction only caus
first-order DFS, and was shown to depend, in agreement
the literature, only on the imaginary part of the spectral d
sities. The nonsecular parts of the DFS Hamiltonian can g
rise to observable features the case of rf relaxation in
presence of irradiation~to be published!. It is interesting to
note that the role of the real part of the spectral densitie
causing coherent evolution is small and often negligible. T
reason for this can be traced back to the scalar nature o
relaxation causing a Hamiltonian. When this scalar natur
broken, the effects of the real part of the spectral densitie
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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expected to be important. The well-known two- and thre
spin J couplings that arise due to relaxation, were show
arise out of this formalism. An instance where the autoc
relation functions give rise to observable shifts was dem
strated for a lone spin.1. To conclude, we have shown th
the DFS can always be thought of as arising out of a cor
tion to the Hamiltonian and a formalism has been provid
that naturally leads to the determination of these Hamilto
ans. It has been shown that the general DFS Hamilton
depends on the complete complex spectral densities and
the first-order DFS depends only on the imaginary part of
spectral densities. The same feature is noted in the cas
the dissipative part of the relaxation too. We find that t
imaginary part of the spectral densities do contribute to
an

nd

ci
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dissipation. However, they always contribute only to t
nonsecular part.

APPENDIX: MATRIX REPRESENTATION OF THE
HERMITIAN AND THE ANTI-HERMITIAN PARTS OF
THE RELAXATION SUPEROPERATOR OF A
SYSTEM OF TWO SPINS-1

2

Our purpose in this appendix is to show explicitly th
matrix structure of the Hermitian and the anti-Hermitia
parts of the relaxation superoperator. We consider a sys
of two spins-12. The eigenstates of the spin Hamiltonian a
labeled as 1→u↑↑&,2→u↓↑&,3→u↑↓&,4→u↓↓&. The corre-
sponding basis superkets spanning the space of single q
tum transitions can be labeled asu1&^2u, u3&^4u, u1&^3u, and
u2&^4u. In this basis, the total coherent superoperator can
written as
Ĥ52 iS 2nA2
1

2
h 0 d2 ig 0

0 2nA1
1

2
h 0 d2 ig

d1 ig 0 2nM2
1

2
h 0

0 d1 ig 0 2nM1
1

2
h

D , ~A1!
en-
e
en-
eal
e to
best

an
ble
: 1

m

where

nA5vA1@ 1
2 K2

A,A~vA!1 1
8 K2

AM,AM~vA!

1 1
4 K2

AM,AM~vA1vM !1 1
24 K2

AM,AM~vA2vM !#,

nM5vM1@ 1
2 K2

M ,M~vM !1 1
8 K2

AM,AM~vM !

1 1
4 K2

AM,AM~vA1vM !2 1
24 K2

AM,AM~vA2vM !#,

h5J1@K2
A,AM~vA!1K2

M ,AM~vM !#,

d5@ 1
12 $K2

A,AM~vA2vM !2K2
M ,AM~vA2vM !%

1 1
4 $K2

A,AM~vM !1K2
A,AM~vA!1K2

M ,AM~vM !

1K2
M ,AM~vA!%#,

g5@ 1
12 $J2

A,AM~vA2vM !2J2
A,AM~0!2J2

M ,AM~vA2vM !

1J2
M ,AM~0!%1 1

4 $J2
A,AM~vM !2J2

A,AM~vA!

1J2
M ,AM~vM !2J2

M ,AM~vA!%#.

The first-order DFS are contained inh, which modifies the J
coupling between spins. This term is in agreement with Tj
draet al.9 and Brüschweiler.10 The off-diagonal terms of the
matrix (d6 ig) connect the transitions of different spins a
yield second-order shifts (d21g2)/(nA2nM) to the frequen-
cies. These shifts are negligible when the Larmor frequen
of the two spins are sufficiently different@(d21g2)/unA
-

es

2nMu2!1#. When the transitions of the spins become deg
erate,g goes to zero butd does not. Hence, in both th
extreme limits, the real part of the spectral densities are r
dered ineffective. In the intermediate region, both the r
and the imaginary parts of the spectral densities contribut
the DFS. This feature has not been reported earlier to the
of our knowledge.

The Hermitian part of the relaxation superoperator c
also be given a similar matrix representation in a suita
basis of single quantum operators defined as follows
→(1/&)A1 , 2→&A1MZ , 3→(1/&)M 1 , and 4
→&M 1AZ . In this basis, the Hermitian part takes the for

R̂5S rA1
dA DAM hA

dA rA1MZ
hM DAM

DAM* hM* rM1
dM

hA* LAM* dM* rM1AZ

D , ~A2!

where the elements are defined as

rA1
5 1

2 J2
A,A~vA!1 2

3 J2
A,A~0!1 1

8 J2
AM,AM~vA!

1 1
6 J2

AM,AM~0!1 1
24 J2

AM,AM~vA2vM !

1 1
2 J2

AM,AM~vA1vM !1 1
4 J2

AM,AM~vM !,
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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rM1
5 1

2 J2
M ,M~vM !1 2

3 J2
M ,M~0!1 1

8 J2
AM,AM~vM !

1 1
6 J2

AM,AM~0!1 1
24 J2

AM,AM~vA2vM !

1 1
2 J2

AM,AM~vA1vM !1 1
4 J2

AM,AM~vA!,

rA1MZ
5 1

2 J2
A,A~vA!1 2

3 J2
A,A~0!1 1

8 J2
AM,AM~vA!

1 1
6 J2

AM,AM~0!1 1
4 J2

AM,AM~vA1vM !

1 1
24 J2

AM,AM~vA2vM !, ~A3!

rM1AZ
5 1

2 J2
M ,M~vM !1 2

3 J2
M ,M~0!1 1

8 J2
AM,AM~vM !

1 1
6 J2

AM,AM~0!1 1
2 J2

AM,AM~vA1vM !

1 1
24 J2

AM,AM~vM2vA!, ~A4!

dA5 1
2 J2

A,AM~vA!1 2
3 J2

A,AM~0!,

dM5 1
2 J2

M ,AM~vM !1 2
3 J2

M ,AM~0!,

DAM52 1
12 „J 2

AM,AM~0!1J 2
AM,AM~vA2vM !…

1 1
8 „J 2

AM,AM~vA!1J 2
AM,AM~2vM !…,

~A5!
hA52 1

6 „J 2
A,AM~0!1J 2

A,AM~vA2vM !…

1 1
4 „J 2

A,AM~vA!1J 2
A,AM~2vM !…,

hM52 1
6 „J 2

M ,AM~0!1J 2
M ,AM~vA2vM !…

1 1
4 „J 2

M ,AM~2vM !1J 2
A,AM~vA!…,

LAM5 1
12 „J 2

AM,AM~0!1J 2
AM,AM~vA2vM !….

In the above matrix, we find that the terms that connect
transverse orders of the different spins~D, h, and L! are
complex while the terms that connect the various transve
orders of a spin~d! are real. The real part of the above matr
agrees with the calculations presented earlier in
literature.13,20 Again, in the limit when the Larmor frequen
cies of the two spins are equal, wherein we would exp
these complex terms to be effective, the contribution to th
terms from the imaginary part of the spectral densities t
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to zero, thus making the imaginary part of the spectral d
sities, practically ineffective in contributing to the incohere
evolution.

Hence, we note that though, in principle, both the re
and the imaginary parts of the spectral densities contribut
the DFS and the decoherence, the role played by the real
the imaginary parts of the spectral densities in causing D
and decoherence, respectively, is rendered ineffective in
extreme cases of complete resolution and complete de
eracy of the lines. In the intermediate region, the compl
complex matrices corresponding to the DFS and deco
ence, should be used. The above treatment of the relaxa
of a system of two spins-1

2 is more general within the Red
field relaxation theory and to the best of our knowled
never been presented in the literature.
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