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We derive an expression for the correction to the spin-system Hamiltonian that arises due to the
system—bath interaction, starting both from the standard master equation for the spin density matrix
and a perturbative diagonalization of the system—bath Hamiltonian to the second order in the
interaction. We show that the dynamic frequency shifts observed in the evolution of the nuclear spin
coherences are a result of these Hamiltonian corrections. We present a systematic decomposition of
the relaxation superoperator into Hermitian and anti-Hermitian parts as opposed to the usual practice
of partitioning it into real and imaginary parts. We point out that the relaxation-induced corrections
to the coherent motion arise exclusively from the anti-Hermitian part and the dissipative effects,
from the Hermitian part, both, in general, being complex. However, the secular terms of this
correction are found to depend only on the imaginary and the real parts, respectiveB00®
American Institute of Physic§S0021-96060)71541-§

I. INTRODUCTION these shifts arise out of the imaginary part of the spectral
densities while the real part only contributes to purely dissi-

The relaxation behavior of a system of nuclear spins inyative evolution. Recently, Bschweiler has shown that the
contact with the other molecular degrees of freedom is capprs in an AX system that arise due to the cross-correlation
tured by a master equation for the spin density matrix. between the fluctuations of the chemical shift and the dipolar

The Redfield _equat|on 'S one such master f_equatlon that '}ﬁneraction can be represented as a correction to the J cou-
used to describe all relaxation phenomena in the NMR o

liquids. The coupling of the spin system to the bath com.Pling between the spif$and in same spirit, the DFS due to

prised of the molecular motional degrees of freedom changetg1e dipole—dipole cross-correlation in an AMX system is

the nature of the evolution of the spin system in a fundamen?qL“Va'e_nt to a three-spin J gouplng.'I'he pos_5|bll!ty (?f
tal way, in that it introduces irreversibility. In this descrip- €XPressing all DFS as corrections to the Hamiltonian is at-
tion, the bath is modeled as a classical object undergoinb’aCtive on account of its notational simplicity and the ac-
random motion characterized by the spectral densitgompanying simplification in the way one can think about
function? The random interactions give rise to both dissipa-these shifts. More fundamentally, such an equivalence hints
tive and coherent corrections to the motion of the systemat the existence of a refined physical explanation.
These coherent effects induced by the random interactions In this article, we show that the decomposition of the
manifest themselves in the form of shifts in the frequencieselaxation superoperator into real and imaginary parts leads
known as dynamic frequency shifts® (henceforth referred  to an incomplete picture while a decomposition into Hermit-
to as DF$, and are the subject of this article. ian and anti-Hermitian leads to a more general picture. For
In contrast to the line broadenings and the recovery Ogyample, beyond the secular approximafidm separation
longitudinal magnetization produced by the dissipative Parnio real and imaginary parts does not correspond to a sepa-

of the relaxation superoperator, these shifts are very difﬁcu'Fation into parts causing, respectively, purely incoherent and
to observe due to the absence of any reference scale against ' ’

which these could be measured. These shifts have been o%l-”ely cohgren.t effe'cts gn the evolution while the separation
served when they, arising from the cross-correlation bet\NeeRresemed in this article is aIwg_ys guarantee_d to provide such
different relaxation mechanisms, either destroy the symmetr? correspoqdeqce. The I-!ermmah part cont_nbutes.(.)nly to the
of a multipleP® or produce field-dependent changes in thepurelly dissipative evolution while thg ant|—H.erm|t|an pqrt
coupling values. contributes to purely coherent evolution. An important dis-
There has been a considerable amount of work, botfinction of the present decomposition is its generality in re-
theoretical and experimental, on the manifestations of thes@ining all the relaxation elements while earlier treatments
shifts in various coupled spin systems. It is often stated thagssumed that the real part of the spectral densities contribute
to the decoherence and the imaginary part, to the coherent
3Electronic mail: kart@sif.jisc.ernet.in effects, therby missing out the complex nature of the off-
DElectronic mail: anilnmr@physics.iisc.ernet.in diagonal elements in both the cases. We also present a for-
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malism W'Fhm the icope. of which thﬁlse ﬁh'ft.s naturally arNSer s the relaxation superoperator that generates the irrevers-
as Corr]re::tlons tof the Sp|_n|s ;ysteT I amiltonian. ¢ h ible behavior of the evolutiof? In the semiclassical formu-
The ayou_t 0 _t e article is as follows. We start. rom € |5ion of the master equation, the irreversibility arises due to
master equation in Sec. Il to.show that th_e_ relaxation SUPEThe rendering of the interaction Hamiltoniat! time depen-
&pera_tgr 1S decsvmhﬁosibli Into a Herm|t|afn ar;ld han,am'dent due to the random motion of the bath variables. In gen-
err'nlfu'an .part. ne the former accounts for all the irre- eral, the interaction Hamiltonian can be written as a sum of
versibility in the motion the latter produces coherent effects ;iq s scalar contractions of the system and bath variables.

on the system motion. The anti-Hermitian part is Shown Qe sha)| yse the following notation to represent the general
have a commutator structure that naturally leads to def'n't'o%teraction Hamiltoniart®

of a correction to the spin Hamiltonian. In Sec. Ill we start

with the system-bath Hamiltonian that tisne independent , , ”

The system—bath interaction causes the energy levels of the H'= ;I:q Xi-qAlq- @
uncoupled system—bath to mix and shift. As a consequence, -

there is an average shift produced to the energy levels of thgere # stands for the various interactiorisand g represent
system. In order to find these shifts, we use a perturbativéhe rank and the azimuthal index of the operatotg, are
diagonalization technique to find the lowest-order correcthe operators of the spin system. The isotropy of the bath
tions to the system levels. This procedure naturally leads to Eads to the following symmetry of the correlation function
correction to the system Hamiltonian that we find to be iden-of the bath variables:

tical to the one derived from the master equation. We then , ,

show that the correction contains both diagonal and nondi- (X!’ q(D X" o/ (t+ 7)) = 84.4:611:C" (7), 3

agonal terms. The diagonal part of the correction is shown tc\)/vhere< ) represents the averaging over the bath variables.

depend only on the imaginary part of the spectral denSitieSt,lsing a second-order perturbation theory and making the

In Sec. IV we provide the Hamiltonian corrections for certain ! L . .
. . . Markovian approximation, the following expression for the
spin systems. In particular, we arrive at the two- and three-

spin J couplings in the AX and AMX systems. The Cross_relaxatlon superoperator may be derived:

correlation between the quadrupolar and the dipolar interac- . o e

tion in a system of a spig—spin>3 system is found to szfo dr([H".[H' (= 7).p D) )
produce a correction to the system Hamiltonian that destroys

the symmetry of the spig-multiplet structure. We also show The overtilde refers to the operator written in the interaction
that the autocorrelation of the quadrupolar interaction for drame. It is useful to introduce the set of eigenoperators of
spin >1 system gives rise to a correction to the Hamiltonianthe free system Liouvillian superoperator,

that removes the degeneracy of the transitions causing a sat- . .

ellite formation. We conclude the article with Sec. V. Inan L sSi=ioiS;. ®

Appendix we list explicitly, the matrix representation of the The spin operators that are present in the interaction Hamil-

complete relaxation superoperator for a two-spins systeffynian can be resolved in this basis to give the following
showing the complex nature of the off-diagonal elements angeresentation:

their consequences.

Alg=2 (SIATS;. (6)
Il. THE MASTER EQUATION The coefficients are defined as
In this section, we start with the master equation that (S| Al =Tr( Si‘r AT (7)

describes the evolution of the spin density matrix due to its

interaction with a classical bath. The general procedure ofVritten in terms of these basis operators and using the sym-
obtaining such a master equation in the context of nucleametry property of the bath variables from Hg), we have
spin relaxation in liquids is to start with the microscopic the following form forT:

evolution equation of the density matrix. The standard

second-order treatment in the system—bath interaction and a ¢ _ ' Njcl An

Markovian approximation leads to the following form for the a E 4 (w’)<8'|A'*q>

T 70 1A
master equatioh ,
X(S| AT LS .[S).p]] ®)
d A n . , Co
apz—lrsp—rp- (1) We have introduced the spectral density function in the

above equation that are defined as follows:

Here,I'g is the Liouvillian of the spin system that generates o [~ - i

the free evolution of the system under the spin Hamiltonian T (w))= fo d7 7" (7)expi wjT. ©

and is given in terms of it by the following equation:
~ The spectral density has the following symmetry that arises
I'sp=[Hs.p]. out of the reality of the correlation functions:
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T (=) =T (o). (10) Alg= AL, (7
The complete evolution equation for the density matrix mayWe obtain
now be written as 1 ,
Ro=5 2 J"(0)(S|Al)
. 7.7",,0,0,]
it S A w)(SIAL
air= e A, TS X(SIAT U S}
X(S}| AP NS [S;.a1] (12) —2(§XS+SXS)p), (18
The first term on the RHS corresponds to the free evolution . 1 ' ”
of the system under the spin Hamiltonian. The second term, Lp== zym’IEqi i T () (S| Al
owing to its double commutator structure, cannot be inter- o
preted as an evolution under a Hamiltonian. It is the source XS AT_ IS Si1,p]. (19

of irreversibility. However, as it stands, the second term is

not interpretable as causing pure dissipation since a purel\k/)W
dissipative superoperator has to be Hermitian. It is therefor:]:Eq (19

useful to partition the relaxation superoperator into Hermit-
ian and anti-Hermitian parts, the former causing pure dissi-
pation while the latter producing coherent effects on the
motion!® At this point it is worthwhile to note that in the

previous works;>®3the relaxation superoperator was par-
titioned into real and imaginary parts. Such a partition is
relevant only for the secular terms of the relaxation superop-
erator. This point is further discussed later. Partitioning into
Hermitian and anti-Hermitian is readily made by decompos-

The commutator structure of the anti-Hermitian part al-

Z:P:_i[HayP],

where

H&Z_E

7,7 ,1,0,ij

X[&;, 8]

> T (0)(SIATNS AT o)

s us to define a Hamiltonian correctiéfy;, by rewriting

21

ing the double commutator into parts that are symmetric an(-:[he anti-Hermitian part of the relaxation superoperator gives

antisymmetric in the basis operators. Following Jeéhare
decompose the double commutator as

[SI 1[81 ,P]]:{{S| =Sj}vp}_2(‘§l><$]+3j X3|)p
_[[Si !Sj]ip]i (12)
where
SiXSjPZSipS',
(13
{Si ,SJ}ZS|S]+SJS| .

We now define the purely dissipative superopera‘fb} énd
the purely coherent superoperatd)(as follows:
[=R+L.

R=3(T+TMh),

N

(14

L=YT-T").

The above definition ofR and £ naturally leads to their

fise to a correction to the Hamiltonian. This correction
Hamiltonian gives rise to DFS and depends on the complete
complex spectral density. It is also nondiagonal in the eigen-
basis of the main Hamiltoniarf{s. The Hermitian part of

the relaxation superoperator is also dependent on the com-
plete complex spectral density and causes pure dissipation
and decoherence. The Hermitian and the anti-Hermitian parts
have the following symmetry with respect to the trace met-
ric:

RI=R,
" . (22)
L'=—L.

It will be shown in the next section that under the secular
approximation wherein the nonresonant terms of the relax-

ation superoperator are droppédandf% are dependent on
the imaginary and the real parts of the spectral density, re-
spectively. This is also the difference between the present
and the earlier treatments of DE&5-13

Though we have shown that the master equation describ-
ing the relaxation dynamics, has in it, an inherent correction
to the coherent dynamics apart from causing dissipation and
decoherence and that this correction can be mimiced by a
correction to the Hamiltonian, the origin of this similarity
has not been presented. Indeed, these corrections have a

being Hermitian and anti-Hermitian respectively. Using thestigma associated with them, of beidgnamicas opposed to

properties
(&x8)T=8x§], (15)

(STTATY =(S|AT)*,

and

(16)

the other terms in the Hamiltonian that are more naturally, a
property of the spins. In the next section, we present a treat-
ment of the closed system formed by the spins and the lat-
tice. In the lowest order in the interaction between them, they
evolve under their free Hamiltonians. The presence of a mu-
tual interaction between them, however, causes a correction
to the energy levels of the free spins bath. As a consequence,
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there are corrections to the free Hamiltonian that can be cakotal Hamiltonian to second order in the system—bath inter-

culated from a standard static perturbation theory. We deaction. We construct a unitary operator that diagonalizes the

velop a formalism based on the operator version of statitotal Hamiltonian to second ordéf;*°

perturbation theory to partially diagonalize the Hamiltonian D_ . .

of the closed system—bath complex. This formalism is shown ™ =exp —iS)Hr expliS), (28)

to give rise to corrections to the Hamiltonian of the spins thatvhere S is a Hermitian generator of the diagonalization

we find to be identical with the DFS causing a Hamiltoniantransformation. The diagonality to the second-order condi-

correction that we have derived from the master equatiortion gives forS, the following equatior{®°

This picture, we believe, is more natural in showing the ori- A

gin of the Hamiltonian corrections. —iloS=H". (29
This equation can be formally inverted to give f&r

I1l. BATH-INDUCED CORRECTION TO THE SPIN ~

HAMILTONIAN S=il'y'H'. (30)

In this section we determine the effective Hamiltonian of The inverse of the free system-bath Liouvillian is hypoth-
a spin system in contact with a heat bath made of the moesized to exist based on the observation that there exists an
lecular degrees of freedom. We would like to determine thdntrinsic decay time of the bath. An integral representation of
correction to the spin Hamiltonian of the system due to itsthe inverse can then be given $oas
interaction with the heat bath. In the first order, the average w
correction to the spin Hamiltonian is zero. In the second S=—J drH'(7), (31
order, we find a nonzero residual correction to the spin 0
Hamiltonian. This second-order average Hamiltonian correcyhere
tion is found to be identical with the Hamiltonian correction R
that mimics the coherent effects of relaxation as modeled by H'(t)=exp(—il'gt)H’. (32
the master equation. We diagonalize the system—bath Hamil- ~ .
tonian to second order in the interaction. We start with theone then he_ls fOHT_ the following form up to the second
total Hamiltonian of the system—bath complex, order in the interaction:

He=Hot+ Hg+\NH', (23) Hr~Ho+N2H'?, (33)
=Ho+ NH. (24)  Where the residual second-order interaction is

Hs is the spin HamiltonianHg is the Hamiltonian of the
bath, and\ is a perturbation parameter, which is a measure
of the strength of the interaction between them. Assuming —
that the bath is a macroscopic object at a constant tempera- :'_J dr[H (7),H']. (34)
ture, one can write an effective Hamiltonian for the spin 2Jo

Sﬁ/ stlem at va(rjlous_ orders mt';he system—bath interaction. Alyq can naturally find the effective Hamiltonian correction to
the lowest oraer, it is given by the motion of the spins by averaging the second-order inter-

i
NH == S[SH']

HP=N(H"). (25)  action over the equilibrium bath to get
The angle brackets imply an averaging over the bath degrees Hs?'=(H'?),
of freedom with respect to the thermal equilibrium bath den- i e (35
sity operator, (H'@)y=— EJ dr{[H',H'(7)]).

L [exp—BHg) ’
(H')=Tr -z “H'|. (26) Using Eq.(2) and the symmetry of the correlation functions,
we find
Substituting forH’" from Eq.(2), we have, for the first-order )
. . . - I o] '
correction to the spin Hamiltonian, (H’(2)>= _ Ef dr 2 <[X|7f—q«4|7,'q ’Xlﬂ’,q’
exp( — BHz) 77’0709
<H'>=Tr(% > Xﬁ_qAﬁq> .
7l X(TA] _q(D]) (36)
eX[X—BHB) | * ’
N 2 Tr(TXﬁq Aflg- @7 =—3 > dr{{ixl-q:X1’q(7)})
7,7'.1.9, ' lq Y0

The isotropy of the bath leads to complete averaging of the ) ,
bath operators as a result of which only rank zero terms X[Ar?q’Aly,]—q(T)H([Xﬁ—q'Xﬁq(T)D
could possibly be nonzero. The commonly encountered in- 7 A
teractions are tensors of nonzero rank and hence the above XA Ao 37)

correction to the Hamiltonian is zero. The second-order corWe encounter two kinds of correlation functions in the above
rection to the Hamiltonian can be found by diagonalizing theequation. The antisymmetric correlati@the second term on
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the RHS function plays a role only when the quantum na- |n the above equatiorK(’”'(w) are the imaginary part of the

ture of the bath becomes important. In the present contexgpectral densities that are antisymmetric functions of the fre-
however, these effects are negligible and can be droppegduency and are given by

Identifying the symmetric correlation function with the cor-
relation functions that arise in the semiclassical description
of the bath in Eq(3) and using the definition of the earlier

defined spectral densities in E§), we arrive at the expres- Klmz'(w): foo sin(wr)C,””'(r)dr. (42)
sion for the second-order correction to the spin Hamiltonian 0
as
<HI<2)>:_'E > <8i|-’4|7,]q><8j|-’4|77,7q> Equation(41) is identical with the Hamiltonian derived in
o L Ref. 11. However, the same form for the correction Hamil-
) tonian was assumed to hold beyond the secular approxima-
XJM (o)[S,5]- (38 tion. In this, the present treatment differs. We have shown

It that the ab tion to the Hamiltonian i that the DFS arises from the secular part of a more general
it 1S seen that the above correction 1o the Hamiltonian 1., ection to the spin Hamiltonian induced by the interaction
identical with the one derived from the master equation. Th%vith the bath
following comments are in order. It is useful to rewrite the '

above correction in a manifestly antisymmetric form as fol-

lows:
=L S gl ys|aT ) IV. THE HAMILTONIAN CORRECTIONS IN
4 iTai] AT PARTICULAR SPIN-SYSTEMS
X{T (o) =T () S, S;]. (39 We now examine the shift producing Hamiltonians in a

L few interesting cases.
The above Hamiltonian is seen to depend upon the complete (1) p system of two sping: The possible relaxation

complex spectral densities. From the symmetry relations ofj5miltonian of a system of two spirlsis given by
the complex spectral densities equati@f), it is evident that

the secular part of the above correctian € — ;) is depen-

dent on the imaginary part of the spectral density alone. A

similar argument for the Hermitian part of the relaxation su- M =HaAS Hy “SA Hau P, (43)
peroperator in Eq(18) shows that under the same approxi-

mation, it is a function of the real part of the spectral density

alone. In the Appendix, we give the matrix representation ofyhere the first two terms on the RHS are the chemical shift
the Hermitian and the anti-Hermitian parts of the relaxationanisotropies associated with the two spins and the third term

superoperator in the case of a system of two spifisere, it s the mutual dipolar interaction between them. These are
is clearly seen that contributions from the complete compleXiefined further as in Eq2) with

spectral densities are only to the off-diagonal elements.
The secular part of the above correctioft((?)),, is
given as
2 1
Ao= §AZv Ai1=§Ai,

(Hey==5 S (SIATNSIATY

70", ,0,0
X T (0)[S,S]], (40) L .
AxM)g=—| 2A;M;— = (AL M_+A_M ,
where wj;=3(w;— ;). In the above sum, the andj are ( Jo \/E( Mz= 5 (A +)

restricted such thab; + w;=0. After some algebra we find, (44)
for the shifts,

i , , (A®M) . 1=3(AMz+A;M.),
(He®)==7 2 (SIATNSIAT )T (o))

7.7 L4,
=T (@))[S1.5] (A®M).,=A.M. .
l ’ r
=5 E  (SIATN(SAT_ K (w5i)
7.7 1a Using the above expressions in Eg§9), we find for the total
X[Si Sl (42 correction to the Hamiltonian as
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(H'@y=—[3K5Mwp) + s KEVAM (0 + 1 KEMAM (o + wy) + 25 KEM M (wa— o) 1A= [ KY M(0y) + 3 KM AM (w))
+3 KQM’AM(‘DA"‘ wy)~ 3 KQM'AM(‘UA_ o) Mz— [KQ’AM(‘”A) + KQA’AM(“’M)]AZMZ
~[ KM (0a— om) =K M(wa— o)} + KM (@) + KM () + K3 M (o) + K3 M (wp)}]
X(ALM_+A_M ) +i[ 5 {I5AM(wa— ) — IEAM0) = INAM(0p— wyy) + I AM(0)}

+ 335 M) =I5 MM (wa) + IF AM(0y) = I AM(0 ) T(ALM _—A_M ). (45)

In the above equatiofk5” andK 5" are the autocorrelation and
spectral densities, respectively, of the CSA of the spgins

andM, KAMAM are the autocorrelation spectral densities of ~ Qm={3K5 " (wy) + 5K M(wy)
the dipolar interaction an&5"*" andK}"AM are the cross- 1AM A 50
correlation spectral densities, respectively, between the CSA HERY (wat o)} (50

of spinsA and M, and dipolar interactiorﬂg"’?' are the real For homonuclear systems, therefore, the total spin Hamil-
part of the spectral densities that are symmetric functions ofonian H? can be written(including the relaxation-induced
the frequency and are given as couplings and Larmor frequency shiftas

HE=—(wa+ Qa) A~ (wy+ Qy)Mz+(I—A)A-M.

3 = f: cog wn) G ()dr. (46) (51)

The diagonal part of the above corrective Hamiltonjgire  In the limit of weak coupling between the spifs,— wy|
first three terms on the RHS of E@5)] are seen to depend >A, the Hamiltonian correction takes the following forth:
only on the imaginary part of the spectral densities while the
off-diagonal part is found to be comple, in gend@bo see

the Appendix. For homonuclear spins|@a—wu|7c<1). |t is to be noted that even when the Larmor frequencies of
the spectral densities at the two Larmor frequencies argne spins are equal, the relaxation-induced corrections to the
equal. The contributions from the real part of the spectraj armor frequencies could be different when the anisotropy
densities are seen to tend to zero in this limit, thus makingyf the chemical shifts to the spins are different.
the DFS arise solely from the imaginary part of the spectral  The above example clearly demonstrates the fact that the
denS|t_|es. The above Hamiltonian is then seen to take thgyg) part of the spectral densities play only a negligible role
following form: in causing frequency shifts. This point is further illustrated in
(H' @Y= —QpA;— QuMz—AA-M, (47) f[he Appendix u_sing th_e_ matrix representation_ of the Hermit-
] o ] _ian and the anti-Hermitian parts of the relaxation superopera-
whereA is the relaxation induced coupling between the spinsq, |4 what follows. we neglect the real part.
and is given by (2) Cross-correlation-induced three-spin coupling/e
A=Ky "M(wp) +KYAM(y,), (48  consider a system of three spihdateracting via the mag-

) ] ~netic dipolar interaction. As in Ref. 11, we arrive at the fol-
and the Larmor frequency shifts are given by the foIIOWIng|0ng expression for the relaxation-induced coupling

(H' @)= — QA — QM7 —AAM. (52

expressions: Hamiltonian:
Qp={3K5Mwp) + 5KEMAM(,) (H' @y =Hp+ Hyy+Hy, (53
+%K)2AM’AM(CUA+ (,L)M)} (49) Where

Ha= =3 K" (@A) AZM X2+ 5 (KEY A (0y) + KM A (@) (AL M+ A-M )Xz + 5 (KEY A (wx)

+ KA (@A) (AL X +A X )Mz= 5 (KA @yt wa) + KA 0y + o)) (X M-+ XM, )Az, (54)
with similar expressions fof{,, and Hy with appropriate changes in the indices. Again, for homonuclear sping (
— wy| Te~| oy — wy| Te<1), we can replace all the arguments of the spectral densitiesoy~ wy=w. We then havé

(H'P) = =3 (K" (0) + KM (0) + KM (0))AZM X+ 3 (KE™ (@) + KM (w)
+ KM 20)) (AL M_+A_M )X+ 5 (KEVAX(0) + KE*MX () + KEMMX(20))(A_X, + AL X )M
+ HKEMMX () + KEMX () + KEMAX(2w0)) (X, M _+X_M A, . (55)
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In the case of weak coupling, the terms that cause mixing between the various spin states are rendered ineffective, and we
arrive at a weak coupling Hamiltonian givenby

()= =3 (K" (wp) + KM (0y) + KR X (050)AZM X (56)
The implications of such a coupling term have been dealt with edri@d will not be treated here. It may be pointed out that
the autocorrelationgnot included in Eq(55)] also give rise to DFS, which cause unequal Larmor frequency shifts on the
various spins.

(3) Quadrupolar—DD cross-correlation-induced Hamiltonian shift§e consider a spif-(1)—spin>3(S) system re-
laxing via their mutual dipolar interactioftS) and the quadrupolar interactio®§) of the spin>3. The relaxation-induced
coupling between them arises from both the autocorrelation of the dipolar intera&@r‘\sx and the cross-correlation
between the dipolar interaction and the quadrupolar intera?c‘ﬁdﬁ(KgS"S) giving the following coupling Hamiltonian.

(M) =~ [FKE"S(w)) + 2K3> X9 JSF 2+ 5 [KE (we) +KE () + KF* " wg) + K35 ()

S,IS

—4KF5 ¥ (wgt @) — 4K 3209 11 {S. S} +1.{S_ ,SAI+[KT N (we) — HEKE'S(w, — ws)

— 3K (0 + wg) I[1(S*— S5)1. (57)

A feature in the above Hamiltonian is the coupling of theV. DISCUSSION AND CONCLUSION
spin- to the spin> 3, which breaks the symmetry of the mul-

tiplet structure of the spig- In the limit |o,—wg We have shown that the relaxation superoperator can be
>K§S"S,K'25v'3, the second term is rendered ineffective. partitioned into Hermitian and anti-Hermitian parts that

The above coupling then takes the following form: cause purely dissipative and purely coherent effects on the

motion of the system. The latter was shown to possess a

(H'@)=~[3K>'S(0) + K0~ wy) commutator structure that lead us to define a general Hamil-

tonian correction to the system. Earlier works decomposed
the relaxation superoperator into real and imaginary parts.
We have shown that it is more instructive to decompose it
into a Hermitian and an anti-Hermitian part. Within the secu-
X[1,(S*=3S,%)] (58)  lar approximation, the latter decomposition is found to be

The above Hamiltonian also presents the possibility of thddentical with the former. As a result of the present decom-
mutual cancellation of the effects produced by the dipolaPOSition, both coherent and dissipative effects of the relax-
autocorrelation and the quadrupolar—dipolar ~ cross&tion are seen to depend on the complete complex spectral
correlation terms in breaking the symmetry of the muItipIetde”S't'es- Again, in the secular limit, the coherent effects are
structure of the spif: The autocorrelation of the quadrupo- S€€n to depend exclusively on the imaginary part while the
lar interaction also produces DFS that can be observed arféissipative effects are seen to depend on the real part of the
are presented in the next section. spectral densities. To provide a physical basis to the above
(4) Hamiltonian shifts induced by fluctuating quadrupo- arguments, the correction to the system Hamiltonian was de-
lar interactiont Here we consider a lone spirg relaxed by  termined to the lowest nonzeroth order in the system—bath
the electric quadrupolar interacti6rhe Hamiltonian shifts  interaction. It was shown that the second-order correction to
produced by the autocorrelation of the quadrupolar interacthe system Hamiltonian naturally arises out of a perturbative

+ K0+ 09 11,52 +[KF ' (wg)

— K0 — wg) — 3KP'¥(0+ wg)]

tion is given by diagonalization procedure, and this correction was found to
WM 1 Qs Qs 3 be identical with the Hamiltonian correction extracted from

(H'9)=2{2K;%(20s) —K;(ws)}S; the master equation. The correction was found to have both

2 11 Qs diagonal and off-diagonal elements. Under the secular ap-

(S DK A209)S7. ©9 proximation, the influence of the off-diagonal terms are neg-

The second term in the above correction causes equal shiftigible and the resulting Hamiltonian correction only causes
to all the transitions while the first teriffior S>1), lifts the  first-order DFS, and was shown to depend, in agreement with
degeneracy of all the Zeeman transitions and hence produc#®e literature, only on the imaginary part of the spectral den-
satellites. The effect of these shifts is expected to be greatesities. The nonsecular parts of the DFS Hamiltonian can give
than all the other known shifts because of their dependencese to observable features the case of rf relaxation in the
on the autocorrelation functions rather than the crosspresence of irradiatiofto be published It is interesting to
correlation functions. It is to be noted that these shifts benote that the role of the real part of the spectral densities in
come observable only for spiil. For example, in the case causing coherent evolution is small and often negligible. The
of a spin 6=$), the 3, — 5 transition is shifted less than the reason for this can be traced back to the scalar nature of the
3 3and the— 3, — § transitions yielding a satellite formation, relaxation causing a Hamiltonian. When this scalar nature is
the splitting being%(ZKSs(Zws) - Kgs(ws)). broken, the effects of the real part of the spectral densities is
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expected to be important. The well-known two- and three-dissipation. However, they always contribute only to the
spin J couplings that arise due to relaxation, were shown toonsecular part.

arise out of this formalism. An instance where the autocorappeNDIX: MATRIX REPRESENTATION OF THE
relation functions give rise to observable shifts was demonHERMITIAN AND THE ANTI-HERMITIAN PARTS OF

strated for a lone spi1. To conclude, we have shown that THE RELAXATION SUPEROPERATOR OF A
the DFS can always be thought of as arising out of a correc® Y STEM OF TWO SPINS-;

tion to the Hamiltonian and a formalism has been provided ~Our purpose in this appendix is to show explicitly the
that naturally leads to the determination of these HamiltoniMarix structure of the Hermitian and the anti-Hermitian
arts of the relaxation superoperator. We consider a system

ans. It has been shown that the general DFS Hamlltomaﬁf two spinss. The eigenstates of the spin Hamiltonian are

depends on the complete complex spectral densities and thrarbeled as L[11),2—11),3=|11),4—|11). The corre-

the first-order DFS depends only on the imaginary part of th%ponding basis superkets spanning the space of single quan-
spectral densities. The same feature is noted in the case ffm transitions can be labeled &9(2|, |3)(4], |1%(3|, and

the dissipative part of the relaxation too. We find that the|2)(4|. In this basis, the total coherent superoperator can be
imaginary part of the spectral densities do contribute to thevritten as

1
—vp— E n O 5_ | Y 0
1 .
0 — VA+ E n 0 o—Ii b2
H=—i . : (A1)
5+ | Y O —Vm E n 0
. 1
0 S+ivy 0 -yt E ”
|
where —uy|?<1]. When the transitions of the spins become degen-
LA L AMAM erate, y goes to zero buts does not. Hence, in both the
A= wat[2 K (0p) T 5K (wa) extreme limits, the real part of the spectral densities are ren-

dered ineffective. In the intermediate region, both the real
and the imaginary parts of the spectral densities contribute to
the DFS. This feature has not been reported earlier to the best
of our knowledge.

AM,AM AM,AM
+3K5 (wp+ oy)+ 35 K5 (wp—wpm) ],

_ 1 M,M 1 AM,AM
vm=on+[2K; " (oy) +5K; (wm)

+%KQM’AM((A)A-F(UM)—iKg\M'AM(a)A— o], The H_ermitian_pz_irt of the_ relaxation su_per(_)perato_r can

also be given a similar matrix representation in a suitable

7=J+[K5"M(wa) + K *M(w\)1, basis of single quantum operators defined as follows: 1
—(IV2)A,, 2—V2ZA Mz, 3—=(IV2)M,, and 4

6=[H{KE"M(wp—wpy) — KN *M(wp— o)} —V2M A, . In this basis, the Hermitian part takes the form

+ H{KS M () + KS M () + KM (wy)

Pa,  Oa  Aam A

+ K AM(wa)}],
. Sp  PAM,; 7y AYNY

CrAIAAM, o SAAMy_ (MAM, R= : (A2)
y=[12{32" (wa— wy) —3277(0) =I5 (wa— wm) Axv  mw Pwm, Y

+35AM(0)} + £{92 M (0n) = 33" (wp) Ta Alm S Puoa,

+ 35 M () — IFAM(wa) 1.

The first-order DFS are contained i which modifies the J Where the elements are defined as
coupling between spins. This term is in agreement with Tjan-

9 -- iarlo ;
draet al® and Brischweiler*® The off-diagonal terms of the pa. = L30A(wa) + 2 IBM0) + LIAMAM 4 1)

matrix (6+ivy) connect the transitions of different spins and *

yield second-order ShiftSéG%—.yZ)/(vA— vy) to the frequen- +2IMAM0) + £ IOMAM (G — )
cies. These shifts are negligible when the Larmor frequencies L AMAM L AMAM

of the two spins are sufficiently differert( 5%+ y?)/|va +33 T (waton)+23 7 (on),
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P, =235 M (o) +53571(0)+ 532" ()
592" M(0) + 232" M (wa— o)
+%JQM'AM(G)A"“UM)*'%JQM'AM(CUA),

pa,m,= 335" (@a) +5354(0) + 5151 MM (wp)

+335MAM(0) + 3 331 M (wat w)

+35295" MM (wa— 0y, (A3)
P a, =237 " (om) +5351(0) 5 5 M (wy)

+535"AM(0) +3 31 M (wat o)

+ 225" Moy —wp), (Ad)
5a=335"M(wa) +535°M0),
Su=133"M(wy)+3354M(0),

12(7 2" AM0) + T MM (wa— o)
+ (T M wa) + T MM~ o)),

7a=—5(T5"M(0)+ T 3" (wp—wn))

+3(T 5™ (wp) + T 5MM(— o)),
=~ (T 5M0) + T8 M wp— o))
"’%(sz’AM(_wM)+~7§’AM(wA)),

Aam= 12 (T 5V M0)+ T2V M (wp— o).

Apvm=—

(A5)
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to zero, thus making the imaginary part of the spectral den-
sities, practically ineffective in contributing to the incoherent
evolution.

Hence, we note that though, in principle, both the real
and the imaginary parts of the spectral densities contribute to
the DFS and the decoherence, the role played by the real and
the imaginary parts of the spectral densities in causing DFS
and decoherence, respectively, is rendered ineffective in the
extreme cases of complete resolution and complete degen-
eracy of the lines. In the intermediate region, the complete
complex matrices corresponding to the DFS and decoher-
ence, should be used. The above treatment of the relaxation
of a system of two sping-is more general within the Red-
field relaxation theory and to the best of our knowledge
never been presented in the literature.
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