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Phase transition in a class of Hamiltonians *
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Abstract. We consider a class of Hamiltonians for a system of one localized spin-
3 particle per lattice site with the total spin as a good quantum number. We
introduce a set of conditions in the form of a hypothesis relating the subpartition
function, which is the partition function defined by the subset of energies with a
specific value of spin. If the equality in the hypothesis is satisfied, then the system
undergoes a phase transition as a consequence of Yang-Lee theorem. As an
application, we estimate the bounds on the spectrum of the Heisenberg Hamiltonian.

Keywords. Phase transition; Yang-Lee theorem; partition function; Heisenberg
Hamiltonian; critical temperature.

1. Introduction

It is well known that only few model Hamiltonians which undergo a phase transition
can be solved exactly. Many attempts have been made to construct approximation
procedures which provide at least a qualitative understanding concerning the critical
region. In either case most of the insight obtained about the mechanism leading
to a phase transition is obtained from model oriented analysis, with a notable
exception, namely, the analysis of Yang and Lee (1952) (although, the analysis
refers to the liquid-gas system). Their analysis tells us the “ mathematical mecha-
nism >’ leading to a phase transition. Briefly, the singularities that appear in the
thermodynamic quantities are attributed as arising due to the existence of a finite
density of zeros of grand partition function in an arbitrarily small neighbourhood
of the positive real fugacity axis. If a line of roots cuts the positive real fugacity
axis, then the limiting function X = lim (1/¥) log & has two distinct analytic pieces
and X is continuous at the point, but the derivative in general has a discontinuity.
The corresponding results also hold in the case of canonical partition function
(see for example Fisher 1965 and Jones 1966). As we will see later, the hypothesis
that we use in this paper is motivated from these considerations. We will restrict
our considerations to ferromagnetic phase transitions.

The main purpose of the paper is to be able to use the .Yan.g—Leej theor§m in
some way. This is achieved by introducing a hypothesis which is again motivated
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by the Yang-Lee analysis. Assuming that the hypothesis (for 7" = T) holds and
by going over to the complex magnetic field plane, we show that there is a line of
zeros of partition function closing on to the positive real activity axis in the thermo-
dvnamic limit. The form of the Hamiltonian is quite general (except that it re-
p;'esents a ferromagnetic system) and is so chosen that the partition function can be
written as a symmetric function in the activity variable with coefficients which
depend exclusively on the spectrum at zero magnetic field. The hypothesis relates
these coefficients among themselves. The entire analysis is done in section 2.
As an application, we estimate bounds on the spectrum assuming that the three-
dimensional Heisenberg Hamiltonian undergoes a phase transition. Finally,
section 4 contains concluding remarks.

2. Conditions for critical behaviour

Consider a lattice system with one spin—1/2 particle localized on each site. We wish
to consider a general Hamiltonian which has a symmetry that enables us to express
the partition function as a symmetric function in the activity variable. The Hamil-
tonian characterizing the interaction may be spin or spin-free (Matsen et a/ 1971)
or both. The symmetry property that we require for the Hamiltonian is that
it commutes with the total spin of the system, i.e., :

[Ho, S%o] = 0 2.1
where

2 2
S-toz = (a-?isl ) (2 - 2)

\zvith 5; fepresentin.g the spin at the site i. The application of a uniform magnctic
field £ in the z-direction gives rise to the total Hamiltonian

H.,. = H -+ H, and [H'r> S2 ot) = 0
” o 1 tot] 2.3)
1 = 88 Z S; (2.4)

where x is the Bohr magneton and i i
’ g the gyromagnetic ratio. T iti
function for such system is ® fen the partition

N2 S fs

Z= 55'M=Z_J_S Fz:?l exp {— BE(F, S) — BgphM} (2.5)

where 8 = 1/kT, F distinguishes amon i
. KT, F g the fS states with th i
eigenvalue of §%, in this subspace. Let ®same 5 and Miis the

fS
Ys = 1:2::1 exp {— E(F, S)/kT}

(2.6)
We call yg, the sub-partition function. Defining the activity variable
= = exp (a/2) (2.7)
with a = 8guh, the partition function (2.5) takes the form .
Z _: — A=l 2 s .
(2= 2 psl® B2 4 s (2.8)

This can be written in the form:

Y S

. w:.,.
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NV sinh (S +1/2)
sin a
z@= ) vt 2.9)
S

Thus Z is a symmetric function in the activity variable z with the coefficients Ps
which depend exclusively on the spectrum of the system at zero magnetic field.
Since the yg > 0 by definition (2.6) [and since z > 0 by definition (2.7)], we see
that Z (z) has no real positive zeros, and thus Z is analytic in 8 and z for all finite
N. However, in the limit as N — oo these complex roots may coalesce into a
‘line”’ of finite density that pinches the real positive z-axis for some value of tem-
perature. If this happens, then by the Yang-Lee theorem this indicates the existence
of a phase transition.

We want to consider the behaviour of the system at zero magnetic field (z = 1)
and we notice that for z = 1, Z reduces to Z y5 (25 + 1). So we allow the magnetic
field to take on complex values and then let Re (k) —0*. Thus we introduce a
variable y by = z¥. Since the Re & is zero, ye [0, 27]. With this variable the
partition function can be written as

n

Z0) =g ), 7esin @S+ )y ©.10)
S
Let
Z(y) = Z yssin(2S + 1)y 2.11)

Let us assume that the system undergoes a phase transition at some temperature
T, and that Yang-Lee’s criterion is also a necessary condition. (This may not
be so, since it has not been shown that if the system undergoes a phase transition
then there is a finite density of roots in an arbitrarily small neighbourhood of the
real activity axis). Then we know that the free energy per spin is non-analytic
at that value z = z, where the line of zeros cuts the real activity axis and that there
are two distinct analytic pieces for real positive values of interest, one to the left
of z, and the other to the right of z.. Below this temperature any region R con-
taining the real activity axis is free of zeros and therefore the free energy per spin is
completely analytic. This is again true for T > T.. But the functional form of
the free energy per spin in general is different from the functiongl form below
T = T, However, the limiting value of the free energy per spin as T—Tt
and T — T,~ with Re 4 fixed at Re &, + ¢ (where ¢ is arbitran}y §mall and. real),
can be expected to be the same. Since the free energy per spin is 2 funct.;lon of
v, and since we expect the functional form of the free energy per spin to be different
below and above T, we should expect the relation between y, and ygy to change
across T = T,. Further, at T = T, we expect that all the y, to be the same Up to
a multiplicative factor which is positive and independent of S and which will be
determined later on (see Appendix A). (Since we expect the values of free energy
per spin for T > T, and T < T, to coincide at T = T,).

Thus we are led to consider the following hypotheses.

1, ys 1 2.12a)
= log & > —log 4, vS
N o8 vs-1 N

with 4,>0 for T<T/
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> — ;logn nlog 7+ log

— lm s
wpoo  2nkT. 4.
or .
JN log 2 3.
B, — E, > — TN 082 (3-8)

Of course 8, = J/kT, differs from crystal to crystal, depending on the lattice struc-

ture and dimensionality of the lattice. Thus, by using the critical conditions we
are able to obtain an expression for the bounds of the spectrum. For ‘the case of
one dimension this result is not meaningful since we know that there 1s no phase
transition. However, if we take the values of 6, for the F.C.C. the B.C.C. and the
S.C. that are estimated from the high temperature expansion, namely, 0. ~ 0-24,
0-4 and 0-6, respectively, we obtain:

4J log 2 for the F.C.C.
> <2-5Jlog2 ...B.C.C. 3.9
1-666 log 2 ... S.C

EA—EF
N

4, Summary and discussion

To summarize, we have considered a class of Hamiltonians with S,,, as a good
quantum number. The partition function for such a system under a uniform
applied magnetic field can be written as a symmetric function in z. Since we were
interested in the zero magnetic field situation, we let the magnetic field take on
complex values and the real part approach zero. By introducing a hypothesis
relating the subpartition functions with different values of S we were able to show
that when the equality holds, given an arbitrary small neighbourhood about z = 1,
the number of zeros indefinitely increases in the limit as N — oo, thus indicating
that the system undergoes a phase transition. We then obtained an estimate of
the bounds on the spectrum of the Heisenberg Hamiltonian. Unfortunately we
are unable to find a model which satisfies our hypothesis.

Thus we have succeeded in using the Yang-Lee’s theorem on the mechanism of
phase transition. It may be argued that the quantities obtained, namely, y, are
quite complicated so that not much reduction has been obtained. For this we
remark that the main purpose of the analysis is not very much to obtain any reduc-
tion of the difficulties involved in the computation of Z (which is altogether a
different problem), but to be able to use Yang-Lee theorem to obtain some infor-
mation about the system. The analysis of the problem may be well appreciated
if it is recalled that the Yang-Lee theorem has not been used since its publication
(to the best of our knowledge). Further, the analysis of the present problem does
indicate how it may be possible to use a similar approach for other problems of the
same nat;:re. ]In addition, if one considers a sequence of groups which commute
among themselves and with the Hamiltonia i
Casimir invariants the reduction of Z into q;:n'ti‘ia:s iierﬁf':lndl? o amber of
enhanced. (A possible example would be a Hamji o o 'ys.wpuld .be greatly

Janc : 4 1 miltonian which is invariant under
unitary group in N-dimensions.)

If one v'x_'ants to cpns:der proving thf: necessity for the hypothesis one meets with
t.he follow ing formldaplg problem. Since there are several orders of phase transi-
tion, these, in the spirit of the present problem, will have to be related to the
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density of zeros at the point where they close onto the real activity axis. This prob-

lem is quite open and so the problem of obtaining both necessary and sufficient
conditions appears to be quite hard.

Acknowledgements

We wish to thank Professors E C G Sudarshan, F A Matsen and N Kumar

for useful discussions. Omne of us (G A) wishes to thank CSIR, New Delhi, for
the award of a pool officership.

Appendix A

By using the hypothesis and the form of y,, we will prove that Z in an upper bound

function of Z. 1t is obvious that the sum in (2.11) changes sign as the argument
of the sine function increases from zero to k, where k is some integer. Accordingly
we split the sum (2.11) into two sets of sums, one of which is positive and the
other is negative. Due to the form of y, we use, the sine function changes sign at
approximate intervels of .S characterized by the integer value of m = (2n + 1)/r,
which we denote by m,. Let the number of such my’s be . [For simplicity we
will assume / to be even. Slight modification is necessary when [/ is odd and for

that case Z > v, 5 A,Ssin (28 4+ 1) y,.] Rewriting (2.11) we have

mma={2)

~ m1=(1) .
Z () = SE ys sin (2S5 -+ 1)y, + Z+' ys 8in (2S5 + 1)
=0 1 1

5 yesin@S+Dnt 5 yesin (28 + Dy (A.1)

S=(1—2)41 G—1)+1

k . . -
where (k) = X m,. The odd terms are positive and even terms are negative.

ie=1

Using the hypothesis (2.12a) we replace each term by its upper bound. Thus
we have

(1) (2)
. Y .
Z () < 131’“3, Z A,Ssin(2S + Dy, + Zi%’ Z A, sin QS + Dy,
S=0 ()41
.................................. P
T (%) (k+4-1)
. ¥ .
+ ——dz(’z;) Z A”S Sin (2S —+ 1) Wi + A:?’:) Z A”S S (2S + 1) N
" (k)1
O R R RERRE e
{i—) n
L ren ) A4fsin@S + D+ 4@ ) AssinGs+ Dy
" —2)1 (I=1)+1 ( N 2)

It is easy to show that
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3 ASsin(@S+ Dy
S=0
_ A,™2sin @Qm 4 1)y — A™ sin @m - 3)y + (1 4 4,)siny
o A2 — 24 cos2y -1
The denominator of (A .3) is positive for any y€ (0, 2=) and finite N because
A4,2 — 24, cos2y + 1 =(4, — 1)> +44,sin%2y >0

(Note that 4, > 0). The m,’s can at the most differ by unity. Thus m; -+ m, = 2m
or 2m -+ 1. Consider

(A.3)

5 4,5 sin (25 + 1) y,.

S=0

Using (A .3), the form of y;, and m = (2n + 1)/r, [apart from a denominator
which is exactly the same as in (A .3)], we have

A2+ sin(2w -+ A,2"+1 sin (277 -+

rm . 3y )
202n -+ 1)) 202n +1)
+ (1 + An) sin Y1
(For convenience we have used m = (2n + 1)/r instead of its integer value. The
result that follows from this is equally true even when the integer value of m is

used). When #» is large and » <€ n, we can use sin y =y, Using this we have

rimr

5@n - 1) [4,2 (A4, — 3) + 1+ 4,1

This quantity is less than or equal to zero for 1 < 4, << 3. In particular the form
of A, we use is 4, = 1 + B/(2n + 1). This choice follows from the discussion given
in Appendix B. The equality holds at A4, = 1. [These results hold even if we
drop the restriction that r<€n for A, =14 B/(2n + 1) and ye (0, w/2).]

Thus we have

3 4,5 sin (25 + 1) y, < O.

S=0p
Similarly, we can show that

(x)+2mi-1 .
A,Ssin (28 + 1)y, < O. (A .4

Se(k)+1

[Although eq. (A .4) was shown to hold when (k + 2) — (k) = 2m, it holds even

w]l:len (k +2) — (k) =2m + 1]. Using (A.4) and Yo < Vi /A,® for k> 0 we
obtain

Z < yﬂsz"* ASsin(2S + Dy, = Z
=0

Then Z has the form given in (A .3) with m = n except for the multiplicative

fact-or.y.,. Thus we have obtained Z to be the upper bound of the function Z.
Similarly, using (2.123) it can be shown that (2.145) follows. Although,
these relations have been proved for a specific choice of Y1, clearly they hold for

any choice of y which satisfies the conditions that the total number of changes in
sign is even,
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Appendix B
Consider the function Z given in (2.14¢). Sincey,is positive (for 0 > 8 > oo)

n
it is sufficient to show that 3 A4,Ssin(2S + 1) y, alternates in sign for successive
Swag

values of r/2. From (A .3) it is clear that it is sufficient to show that the numerator

of (A.3) alternates in sign (with n = m) for successive values of r/2. Rewriting
the numerator of (A.3) with m =n and y, = ra/2 (2n 4 1), we get

— Argin T 4w gin T cos

f(4,, y1) = A,"%sin 5 A, sin 7 €08 5 1

— A" cos Z gin =1  + (4, + 1)sin (B.1)

2 2n +

Case 1. , and r/2 are even

rm
20@n+ 1)

rmw

2n -+ 1

The choice of A4, we use is A4, =1 + B/(2n + 1). For all those values of r for
which r/(2n + 1) is within the first quadrant, sin r=/2n + 1) > sin r7/2 (2n + D).
(Note that it is sufficient to consider small angles in the first quadrant, since in the
limit as n — oo there are infinitely many such values.) Thus, f; (4,, y,) is negative
for all finite #n. In the limit n — oo, A," — e5/2and sin rn/(2n + 1) ~ra/2n + 1).
Using these limits, we have

B . rm
fl (Ana yl) = A"n+1 s + (A” + 1) sin 2 (271 + 1)

fr A y) > (=224, + 4, + D 55

Thus f, (4,, y;) approaches zero from the negative side.

(B.2)

Case 2: r is even and r/2 is odd.

In this case, we have

f2(du y2) = 4741 sin 5T + (4, + 1) sin
rm

2n +1

all finite n. Thus in the limit of large n, we have

rmw
200+ )"

For such values of r, and e (0, m/2), fo(As ¥1) is always positive for

fo(dy y) > QA,eB2+ 4, + 1) 5(—2-’2%_1) (B.3)

This approaches zero from the positive side. (Note that these results hold even
when the restriction that r <€ n is dropped for 4, = 1 -+ B/(2n + 1) and ye (0, /2))

Thus, given an arbitrarily small neighbourhood about y =0, the number of
zeros of f(4,, y,) indefinitely increases in the limit as n — co.

Some remarks on the choice of A4, are in order. The constant 4, which is a
function of NV only relates yg to yg_;. These relations imply that yg is an increasing
function of S. Since only the constant relates ys to ys_, one must expect to eliminate
the constant in the calculation (as was seen in the example considered). At the
first sight, it appears that there is a considerable amount of arbitrariness in the
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choice of 4,. However this is only in the choice of B 4, =1 4 B/(2n + 1). All
those choice of A, that alternate the sign of (B.1) for successive values of
y, = ra[2(2n + 1) are permitted. From equation (B.1) [or (B.2) and (B.3)]
it is clear that A, infinitesimally close to unity is the best choice. If 4, is very much
larger than unity and less than 3, then A4,"*! —co. Though this choice alternates
the sign, the function is not well behaved in the limit as N —oo. Thus there is
not much arbitrariness in the choice of A4,.

Appendix C

We argue in the following that (I/N) log vy is intensive. Ip the limit. of large N
the free energy per particle, (1/N) log Z, is an intensive quantity (see Griffiths 1964).
Then it can easily be seen that (1/N) log ys cannot have any dependence on N, N2,
etc. By choosing a proper scale, the following relation holds co > Z > yg > 1.
Thus

1 1
WlogZ>]~vlogys >0

log v, can be expanded in powers of N.

A'N + B'N?2 +~ C'N® + ...
Then it is clear that all constants except 4’ should be zero, otherwise, the inequality
breaks down (The choice of A’ is also restricted to 4’ < (1/N) log Z). Thus we see

that (1/N) log ys is intensive. Thus it is clear that the quantities (1/N) log y, and
(1/N) log y; differ from their limiting values by terms of order of (1/N) and higher.
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A'bs-tract. ‘The possibility of writing the repulsive energy in the Born model of
bmar}./ lonic crystals as a sum of two separate contributfons from the two ions has
been investigated. Such an approach leads to two identities, one connecting the
lattice spacings of a family of ionic crystals and the other connecting their compres-
sibilities. These identities have been tested on the alkali halide crystals over a range
of pressures. The agreement is found to be quite satisfactory. Some further pre-
dictions with respect to crystals which exist as two polymorphs have also been tested.
In all cases, the deviations of the experimental values from the exact identities can
be traced to the fact that second neighbour repulsions in the crystals have been
neglected. It is hence concluded that individual compressive energies for ions in
ionic crystals is a very attractive possibility.

Keywords. Alkali halides; atomic compression; Born model; ionic crystals;
repulsive energy.

Introduction

The introduction of concepts like ionic radius, ionic polarisability, etc., that are
dependent on individual ions has proved of immense value in the development
of the theory of ionic crystals. In this context it seems relevant to ask whether
one could extend these ideas to more complicated properties like compressibility.
The concept of ionic compressibility would require two postulates: (g) the inter-
nal energy of an ion is a function of its size, and (b) the repulsive energy
in an ionic crystal arises from the increase in the internal emergy of the
ions when they are compressed. The repulsive energy would then have to be
written as the sum of contributions from the two ions as in eq. (1) below. This
is a classical picture which would not get theoretical support from the quantum
mechanical approach where repulsion is caused by the overlap of neighbouring
electron clouds. But then one must note that even the concept of the ionic radius
for which there is definite experimental evidence cannot really be justified from
the overlap theory. The full quantum mechanical treatment, in fact, leads to
very messy numerical computation which has only been carried out approximately
for a few compounds, and does not appear to lead to any physical insight. There
seems therefore to be some need for postulating empirical functions for the form
of the repulsive energy. Almost all earlier workers have tried either the function
A[/¥™ or b exp (— r/p) where r is the interionic distance and have succeeded to some
extent in explaining the behaviour of ionic crystals. In this paper, we investigate
the consequence of postulating a function of the type in eq. (1). All functions
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proposed are only attempted approxima'tions to the true repulsive functlgna.L 1:;10::—
ever, the function we have proposed, .lf founfi acccsptabl.e3 1.1as som? a \t'hl Cgm.-
Firstly, this would directly lead to a kind .of inverse a.ddltwlty. rule for :1- om-
pressibilities of ions. Further, if we .c‘ons-lder a family of b_mary 1§n1c a);l als
made up of all combinations of m positive 1ons :'«md n negamye ions, gv gr:ai L
earlier approaches mentioneddabove yvouldlrec%ulri m;'z i‘iizttllgzss to be determ .
t alternative would require only (m + » . . .
thinlil:issegaper, we test this postulate [(eq. (1)] on the al.kah halides. Thde lvafx:(x)iu;
attractive forces between the ions have bee-n treated as in the Born model [
good review of the Born model, see Tosi (1964)]. . ol
Just from the functional form of the repulsive potentla.l assumc.sd, we ared able
to derive two identities which have to be satisﬁe-d by_ cf'ertam experimentally etel:-
minable quantities in sets of crystals. These .1dent1t1es.have.been tested on the
alkali halides. The agreement appears to be satisfactory 1.mp1y1ng.tl.1&.1t the concep}:‘
of individual compressive energy for ioms is an attractive possibility worthy o
further investigation and evaluation.

Theory

In this paper we investigate the possibility of the repulsive energy being completely
separated out into the sum of contributions from the two ioms. Thus

Wiep = W (ry) + W_(ro) (1)

where, W, and W_ are functions of r,. and r_, the radii of the two ions. The func-
tions W, and W_ are presumed to be unique for a given ion and hence transferable
from one crystal to another. Geometrically, we can visualize an ion as a soft
fluffy sphere, the repulsive energy being produced by compression and distortion
at the points of contact with its neighbours. The repulsive energy in this formu-
lation does not depend on the agency causing the distortion. It should be noted
that in the present formulation 7. and r_ are variables which can vary for a given
ion from crystal to crystal and also with pressure in the same crystal.

To keep the discussion as general as possible, we do not specify any parti-

cular functional form for W, and W_. We thus write the total lattice energy per
molecule of a binary ionic crystal as

2 C D
W= 20— 5= S+ Walr) + W_ () &)

where the first three terms on the right hand side give respectively the Madelung
electrostatic energy, the van der Waals dipole-dipole interaction energy and the
van der Waals dipole-quadrupole interaction energy. As it stands, W is a function
of three variables—r, the nearest neighbour distance, r,, the radius of the positive
ion, and r_, the radius of the negative ion.
Now, in our geometrical picture of the crystal, the nearest neighbours are in
contact with one another, so that we immediately have the relation
r=rytro 3)
we hav? one further relation expressing the internal equilibrium
This arises from the minimisation of the energy of the crystal with

In addition,
of the lattice.




