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Formation and propagation of bands in jerky flow:
a coupled lattice map description*
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Abstract. There has been revival of interest in Jerky flow from the point of view of
dynamical systems. The earliest attempt in this direction was from our group. One of the
predictions of the theory is that Jerky flow could be chaotic. This has been recently verified
by us. We have recently extended the earlier model to account for the spatial aspect as
well. Both these models are in the form of coupled set of nonlinear differential equations
and hence, they are complicated in their structure. For this reason we wish to devise a
model based on the results of these two theories in the form of coupled lattice map for
the description of the formation and propagation of dislocation bands. We report here one
such model and its results.
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1. Introduction

Different kinds of instabilities manifest in plastic flow experiments depending upon
the mode of the experimental set up. Jerky flow or the Portevin-Le Chatelier effect
(PLC) arises in a constant strain rate experiment. Although, this has been recognized
as some kind of instability for a long time, it is only in the last decade that it
has been analyzed from the point of dynamical systems. It has been long known
that Jerky flow arises from the dynamic interaction of dislocations and mobile
point defects and is referred to as dynamic strain ageing (DSA). It is this that
induces a negative strain rate sensitivity (SRS) which in turn triggers the instability.
Even so, several aspects of the phenomenon were not well understood until recently.
In the past few years, there has been renewed attempts (Ananthakrishna and Sahoo
1981; Ananthakrishna and Valsakumar 1982; Valsakumar and Ananthakrishna 1983;
Kubin and Estrin 1985, 1990; Zbib and Aifantis 1988; Jeanclaude and Fressengeas
1993; See also the papers in Viewpoint set 1993) to understand the phenomenon
from the point of view of the theory of dynamical systems (Berge et al 1984;
Hao Bai-lin 1988, 1989, 1990). The essential content of most of these studies is
to re-examine all aspects of PLC in the light of the intrinsic nonlinear nature of
the phenomenon. This has helped to get new insights hitherto not possible. All
these theories emphasize the intrinsic nonlinearity inherent in the phenomenon. Of
course, the details and levels of description of the phenomenon are different. One
of the aims of such theories is to relate the microscopic dislocation mechanisms
to the macroscopic measurable quantities. Even in such theories which stress the
dynamical basis of the PLC effect, the negative SRS is an input in one form or

*The material contained here was a part of the Plenary Lecture presented at the International Conference
on 'Plasticity of Materials: Fundamental Aspects of Dislocation Interactions, Ascona, Switzerland, 1992.
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the other with one notable exception of a model introduced by us. This attempts
to derive all results as a consequence of the nonlinear interaction between the
various types of dislocations (Ananthakrishna and Sahoo 1981; Ananthakrishna and
Valsakumar 1982, 1983; Valsakumar and Ananthakrishna 1983; Ananthakrishna
1992a), including the negative SRS. For this reason, this model is completely
dynamic in character. The method involves setting up the time evolution equations
for the dislocation densities. The negative SRS results as a consequence of Hopf
bifurcation from time homogenecous steady state to the time oscillatory state.
Although, this theory ignored the spatial aspects, it proved to be surprisingly
successful in that it could explain several features of the Jerky flow, such as the
existence of a window of strain rates, temperature and solute concentration over
which the phenomenon is seen, and the emergence of the negative SRS, One of
the predictions of the model is that there is a range of values of applied strain
rate where the plastic flow js chaotic (Ananthakrishna and Valsakumar 1983,
Ananthakrishna 1990, 1992a). Recently, this prediction has been verified by anlyzing
the experimental signals from two distinct groups (Ananthakrishna 1992, 1994;
Ananthakrishna 1993). It must be remembered that the experimental signals correspond
to spatially extended system, and therefore, the existence of a Strange attractor for
the experimental signals with a fractal dimension d, implies that d = 2d,+ 1 degrees
of freedom correspond to collective degrees of freedom of the spatially extended

One controversial aspect of the Jerky flow is devising an appropriate framework
for including the spatial dependence (Kubin and Estrin 1985, 1990: Zbib and
Aifantis 1988; Jeanclaude and Fressengeas [993; Ananthakrishna 1993; See the
Papers in Viewpoint set 1993). There are several approaches which can be broadly
classified as reaction-diffusion schemes. They largely depend on either long range
dislocation interactions or the cross slip mechanism. In most cases, the negative
SRS is an input into diffusion like equations (Zbib and Aifantis 1988; Jeanclaude
and Fressengeas 1993: Kubin et al 1993). In contrast to these models, we have
extended the above dynamical mode] by writing continuity equations which explain
several features of the formation and propagation of the dislocation bands
(Ananthakrishna 1993). The state of art of the subject is well summarized by the
Viewpoint set of papers (Kubin er al 1993). Both these models are complicated

follows. In §2, we will very briefly recall the results relevant for building
the coupled map lattice model. The model presented in §§ 3 and 4 contains

results of the model. We end the paper by some remarks on the utility of
such models,
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2. Chaotic behaviour of the dynamical model for the Jerky flow

In the following we will very briefly recall some relevant results of the model
and make use of the results in setting up a coupled lattice map model. The
dynamical model consists of three types of dislocations, viz. the mobile dislocations,
the immobile dislocations, another type which may be regarded as dislocations with
clouds of solute atoms (Ananthakrishna and Sahoo 1981; Ananthakrishna and
Valsakumar 1982; Valsakumar and Ananthakrishna 1983). The corresponding densities
are denoted by p,, (), P,, (t) and P, () respectively. Using some well known dislocation
mechanisms, we set up rate equations for the densities of the dislocations. Further
details of the model can be found in the above references. These equations are
then coupled to the machine equation for the rate of change of stress. There are
several parameters in the model corresponding to the rate constants of the
transformations. One parameter that must be mentioned is the exponent m which
appears in the dependence of the velocity of dislocations on stress:

v (0) = v, (6/6)",

where v, and G, are constants. Another physically interesting drive parameter as a
function of which the phenomenon occurs is the applied strain rate. There is a
range of values of the parameters for which the steady state is unstable. Most of
the analysis is carried out by keeping the parameter values within the instability
domain and using the scaled strain rate e as the drive parameter. As e varied
across the lower critical value, the behaviour changes from the normal yield to
multiple yield. Simultaneously, we find that the negative SRS property sets in. The
model also predicts an upper and a lower critical value for e and the scaled
concentration of the solute atoms for the existence of the phenomenon. We shall
refer to this model as a dynamical model (DM).

The above model exhibits chaos and has a rich variety of behaviour. There are
several physically relevant variables such as the scaled strain rate, the velocity
exponent, the concentration of solute atoms etc. Here, we summarize the chaotic
behaviour exhibited by the model (Ananthakrishna and Valsakumar 1983;
Ananthakrishna 1990, 1992a) when the strain rate is varied. The chaotic behaviour
is seen in a window of intermediate values of the strain rates ~ 107 sec™
(Ananthakrishna 1990, 1992a). A plot of the mnoisy sequence of p, when the
value of scaled strain rate e =184 well inside the chaotic regime is shown in
figure 1. It is clear that there is no detectable order and the plot looks completely
random. However, this apparent randomness arises from a set of deterministic
differential equations. In such a case, given the exact initial conditions, there is
no uncertainty in predicting the future. However, given two orbits, even the smallest
amount of indeterminancy in the initial conditions very soon explodes at a exponential
rate rendering predictability of the future of the two orbits impossible. This sensitivity
to initial conditions is a characteristic feature of chaotic systems and is quantified
by Lyapunov exponent, which describes the rate of divergence of nearby orbits.
There is an order in this chaotic behaviour which manifests in the form of
self-similarity of the strange attractor in the phase space of the variables. Such a
phase plot of p, vs p,, showing a strange attractor is displayed in figure 2.
Quantifying this self-similar structure distinguishes it from the stochastic noise
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Figure 1. A chaotic plot of p, as a function of time.

arising from many degrees of freedom. As a function of the applied strain rate,
the model exhibits period doubling and period halving (backward) sequences. This

the two different types of time serjes (Grassberger and Procaccia 1983; Wolf et al
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Figure 2. A phase plot of the scaled mobile dislocation densily pm Vs the immobile
density p, . showing a self-similar structure.

The analysis showed that experimental signals of stress were indeed due to
deterministic noise (Ananthakrishna et al 1992, 1994; Ananthakrishna 1993). This
means that the prediction of the theory is correct. This also means that a correct
description of the phenomenon should have a dynamical basis. In addition to this
we could infer the following. As mentioned in the introduction the experimental
sample is a spatially inhomogeneous and any spatially extended system has infinite
degrees of freedom. Yet the signals show that the system behaves as if there are
only a few degrees of freedom. Thus, these modes should con'espond to collective
degrees of freedom. We shall make use of this aspect in constructing a coupled
lattice map for the description of the spatial aspect of jerky flow.

As mentioned in the introduction, devising an acceptable scheme for description
of the formation and propagation of bands has been a controversial aspect. Inspite
of this, several models exist including our own attempt which involves extending
the above model by introducing simple gradient terms for the dislocation densities.
Thus, the starting point is just a set of continuity equations for the dislocation
densities coupled to thé machine equation which acts as a equation of constraint.
For detail of this extended dynamical model (EDM) see Ananthakrishna (1993).
Here we wish to emphasize that even with such a simple spatial term, EDM
predicts the formation and propagation of dislocation bands. The velocity of the
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Figure 3. One dimensional map corresponding (o the scaled stress 0.

band predicted by EDM is consistent with the only experimental measurement
available in the literature (Chihab et al 1987).

3. A coupled map lattice model for the Jerky flow

the two models {DM and EDM). We will extrac
a simple enough model compared to the two m
arempt is certainly desirable, since the above
ronlinear differential equations and are diffj
two aspects of DM and EDM. First, we

models consist of coupled set of
cult to analyze. We will use the following
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should be coupled using a first difference. Thus, to simplify the model even further
we use just one dislocation density and the physically interesting density is the
mobile dislocation density. (This limits the extent to which we can interpret the
results as we will see later.) We note further that the values of the variables we
encounter in the one dimensional maps are restricted to the domain [0, 1]. Thus,
all the variables in the coupled lattice model corresponding to the old variables
should be scaled appropriately so that their values are in this domain. We shall
denote the corresponding density by x (n, i), where n refers to the time index and
i refers to the spatial position on a one dimensional lattice. Recall that in EDM,
we have a term V (v (0)p,), in the continuity equation for the mobile density.
Here the velocity of dislocations are functions of the applied stress ©. This will
be function of time alone. We will denote the scaled stress by ¢ (n). We further
recall that the phenomenon occurs as a function of the drive parameter, namely,
the applied strain rate and this parameter appears in the stress equation only. This
means that the parameter that we will introduce the map for ¢ (n) should be taken
to correspond to the applied strain rate scaled appropriately, which we will denote
by s (in such a way that its range is from O to 4). With these observations, we
can write down the simplest form of a coupled lattice map as follows.

x(n, i) = prf (e, i)+ (1= p) [s9,1° [f (x(n,i= 1) =f (x(m, D)1, (M
o(n+1) = sf (¢(n)), )
FO) =yl -yl 3

The velocity of dislocations as stated earlier is some power of the stress. For this
reason we have introduced the term [sci)(n)]2 as a multiplicative term in the gradient
of x(n, i). Note that the exponent used then corresponds to.m = 2. (Recall that it
is for this case that we get a quadratic Poincare map.) The parameter r is a
control parameter for the quadratic map corresponding to x(n,i). From DM we
know that r should be a function of applied strain rate apart from other parameters.
Since we do not know the exact dependence, we will introduce it as a tuning
parameter as a function of which the period doubling bifurcation arises. It is
conventional to introduce an additional parameter p to signify the on-site strength
and (1 —p) to the near neighbour coupling (Kaneko 1989).

4. Results and discussion

The time evolution of the system is studied by preparing the system with random
initial conditions for x(0,:{) and nonzero but small value for ¢(0). We impose
periodic boundary conditions on the lattice. For most part of our computations we
have used a lattice size of 200 points. The values of the parameters used are
r = s = 3.8 and p = 0-1. This means that the on-site term gives period two (because,
rp = 3-42 which falls in the domain of period two) for the dislocation density,
but keeps the stress in the chaotic zone. In a short time, a very heterogeneous
structure develops, with high and low value for the dislocation density as a function
of spatial position. A typical early configuration for n = 60 is shown in figure 4a.
Figures 4b-e show the configurations at various times. As time progresses, we
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Figure 4. a. Dislocation density at various spatial points at an early stage of simula-
tion (n = 60), b. dislocation density at various spatial points at a fairly early stage of
simulation (n = 110), c. dislocation density at various spatial points at a intermediate time
(n = 310), d. dislocation density at various spatial points at a late stage (n = 410) and e.
dislocation density at various spatial points at a late stage (n = 510).

generally see two types of changes. In the early part of the simulation, we see
that the width of the local bands with high and low dislocation densities are
generally increasing. This can be seen by comparing the configuration of n = 60
with n = 110, We see that the bands with high and low dislocation densities have
expanded by suppressing the rapid fluctuations. This is what one would expect
physically in a realistic situation also. Second feature is that at later stages we see
that in general the bands with high dislocation densities are expanding into the
regions of low dislocation density. This can be seen by comparing the configurations
at n =410 and n = 510. Again, one should expect that this general feature is
correct, since if we regard that low mobile dislocation density corresponds to no
other type of dislocations, this would amount to less strain and one should expect
that the front of the dislocation bands move into a region of lower strain, It must
be remarked here that this is a consequence of the simplicity of the model, since,
it is possible that low mobile dislocation density could correspond to high immobile
or forest dislocations. At later stages, for example, an attempt to overlay the
configurations with most parts overlapping (some will not, for reasons that will be
stated below), shows that the system as a whole ‘moves’ forward. For instance, if
the first broad band of high x value from i = 20 to 42 at time n = 410, is taken
to correspond to the first broad band at i = 40 at a time n = 510, we see that
the system as a whole appears to ‘move’ forward. (Note that the sites from 480




Jerky flow: a coupled lattice map description 781

onward at n = 410 then correspond to the sites from 0 to 20 due to the periodic
boundary conditions.) Although, this might give the impression of new bands being
created at the grips which once again pass into the sample, one does not know if
this can be taken as a proper interpretation. One other aspect that need to be
studied is the effect of the chaotic behaviour of the stress equation. In principle,
it should induce newer and newer pulses in to the spatial part. This should induce
new bands created at random. We have not examined this aspect in detail. It must
be remarked here that we have presented the simplest coupled lattice model. It is
possible to develop more realistic models. Further work and perhaps evolving better
coupled lattice map models are worth examining. Such attempts are in progress.
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