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A stochastic theory for clustering of quenched-in vacancies-V.
Temperature dependence of cluster density
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Abstract: It is known that the density of vacancy loops in quenched aluminium
and stacking fault tetrahedra in quenched gold shcw a saturation for low ageing
temperatures. The physical mechanism leading to this effect is not well understood.
- In this paper we consider a simple model which allows us to obtain the temperaure
dependence of total density. The analysis shows that the plateau region arises due
to the fact that the number of absorption sites of a cluster is larger than the number
of emission sites. The temperature dependence of the average number of vacancies
ié; a clu%ter and the single vacancy concentration in equilibrium with the clusters are
iscussed. -
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1. Introduction

The present paper is a continuation of our effort to understand the various aspects
of clustering. Here, we consider a situation concerning the temperature dependence

of cluster density for low ageing temperatures 7. It is found that the cluster density N
saturates for low 7. This behaviour is reported for stacking fault tetrahedra in gold
(Meshii 1965) and vacancy loops in aluminium (Kiritani 1973 and the references
therein). Kiritani (1973) has considered the problem of clustering in detail. His
computer results also show this feature. However, he has made no specific attempt
to analyse the underlying physical mechanisms leading to this feature. Our own
earlier work gave no indication although, we did devote considerable attention to
this problem (Ananthakrishna 1979, b, c, d). We succeeded only in obtaining the

temperature dependence of N given the dependence of the average size or vice versa. .
" The experimentally reported results concern the temperature dependence of the
asymptotic (large time) cluster density. If one wants to obtain information about
this, normally one has to follow the time dependence right from nucleation to the
completion of growth. In the first paper of this series (Ananthakrishna 1979a,
referred to as I hereafter) we have discussed these two aspects of clustering in a
slightly different perspective. In order to emphasize some points, we discuss below
nucleation and growth. (Needless to say that there will be some repetition.) Often
these two are treated separately, although no such clear distinction exists. The two
states of the problem are complementary in the sense that in some respects the prob-
lem of nucleation is simpler than the problem of growth but is more difficult in some
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other aspects. From the point of view of rate theory, the first stage, namely the
nucleation, in principle can be understood by solving the appropriate rate equations
on a computer. The simplicity lies in the smaller number of coupled equations one
has to solve in comparison with the growth problem, where a very large number of
equations have to be solved (see for example Wieberg and Vingsbo 1977). How-
ever, if one wants to get an analytical solution of the problem, nucleation may be
more difficult since the rate constants are complicated functions of the size of the
cluster (through the binding energy). In contrast, during their subsequent growth,
the dependence on the size is expected to be simple (due to the fact that the binding
energy rapidly saturates). This then in principle allows for coarse-grained rate
equations whose number is large but can be handled on a computer. In the case of
clustering of quenched-in vacancies, Kiritani (1973) devised a ‘ coarse * graining pro-
cedure called ¢ grouping method > which can be used to follow the problem right
from the start to the end of clustering. The essential point is jto use different group
sizes to take care of rapid changes in binding energies for small sizes. Hayns (1976)
has extended it to the irradiated situation and concludes that it is perhaps the only
method that affords a way of following the time development continuously. Thus
there is a need for any analytical approach to the problem of clustering.

The object of this paper is to present a straightforward calculation which tempera-
to recognise the cause for this maximum and derive an expression for the allows us

ture dependence of N. The method used allows us to calculate a stationary solution
for the distribution without a need to follow the time dependence continuously (as is
normally required). We will confine our attention to the formation of vacancy
loops in aluminium, although, it should be straightforward to generalize to the
formation of stacking fault tetrahedra. Further, we will closely follow Kiritani’s
model (1973). This is to facilitate comparison with his computer results. For the
same reason we will retain all the principal assumptions in his analysis. (Most
of these can be justified. See Kiritani 1973 and also Ananthakrishna 1979a, b, ¢
and d).

We write down the master equation for the problem of clustering. The rate con-
stants are complicated functions of the sizes of the clusters and therefore it is not
possible to follow the time dependence analytically. However, the stationary distri-
bution can be calculated easily. This form still does not allow us to get either N or
the average number of vacancies in the cluster (n), dus to the fact that they are
functions of the asymptotic value of single vacancy concentration th (which is in
equilibrium with the remaining clusters). An attempt to calculate {n) formally

leads to a differential equation whose solution gives N (Nf’t, T). If we assume that
N3t very nearly follows Arrhenius plot (which should be true over a limited range of
T) just as the equilibrium concentration of single vacancies, we can show that
N ot exp — KT, above a temperature T* ~ 210°K. Both the value T* and the
qualitative nature of N agrees with experiments (Kiritani 1973). Since N and {n)
are related through N,, the quenched-in single vacancy concentration, the behaviour
of (n> as a function of T can be calculated. The qualitative behaviour of N5t
increasing as T is reduced and {n) decreasing as T is decreased below the plateau
region also follow from our analysis.
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2. The model

The model is in essence that of Kiritani which hasiwo principal idealizations, namely,
the absence of sinks and impurities, and the existence of only one mobile species.
We shall also assume no loss of vacancies from the sample. These two idealizations
make the problem transparent and mathematically tractable. For justification (or
the conditions under which these assumptions are valid) we refer the reader to Kiri-
tani (1973) and Ananthakrishna (19792, b, ¢ and d). We shall refer to the papers in
this series as L, 1L, 111 and IV (Ananthakrishna 1979a, b, ¢, d 1espectively) and their
respective equations by (L. 1) etc. The notation used is the same as in I-IV. Follow-
ing Kiritani (1973) we use the relation n = 4mr2/(a2+/3), where a is the lattice para-
meter. The expression for the energy of formiation of a vacancy loop we use is that
of Schoeck and Tiller (1960) with n given by the above relation. Since, we will para-
metrize the constants involved, it is sufficient to write it in the form

€ = An + Bn*®lncn, L N M

where A, B and c are positive constants, The values of these constants we use are
close to the actual values in the work of Schoeck and Tiller (1960). - We shall assume

_that equation (1) holds for small n also. The binding energy b, is given by (1.1).

N, Ny,..., N, are the concentrations of 1—, 2—,...,n— unit clusters. These clus-
ters evolve by absorbing and emitting single vacancy units. The rate equations are
‘given by (I. 2-4). Sin‘ce'we do not have sinks, the total number of -vacancies are
conserved. This is represented by (I. 6). We stress that this result is independent
of the form of the transition rates W’s. In the case of formation of vacancy loops, we
take the same choice of W’s as that of Kiritani (1973)

Wy, = v (1) Z, exp (~EMIKT), @
and Wy, =v¥ () Zyexp (— EM + B)KT), )

where EM is the migration energy of the mobile unit, v is the attempt frequency, Z;
and Z, are coordination numbers for hopping, and ¢ () and -J; (n) are the number
of absorption and emission sites respectively. Following Kiritani (1973), we have
taken the number of capture sites ¢ () to be the number of atomic sites on an equi-
valent circular loop whose radius is greater than that of the vacancy loop by two

atomic units. ¢ (n) is taken to be the number of atomic sites on the equivalent

circular loop.. Thus

Joy=n+ou @ =n @

Z, and Z, have been taken to beequal. Ina realistic situation the number of absorp-
tion and emission sites are functions of the size of the cluster. For small », these
are expected to vary linearly with n. However, for large n the number of capture
sites should be proportional to #1/2. In spite of this, we will retain this assumption
mainly because we would like to be able to compare our analytical results with
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Kiritani’s computer results. (Since we have used his model, we expect to find similar
results for the same values of the parameters.) Clearly the method itself is not

restrictive and the extension of the work to any form of ¢ and P is stralghtforward
including ¢ and Y~ nil,

3, The stationary distribution
Consider (I.4) with the form of W’s given above. We have modelled the process as a

one-step Markoff process (Ananthakrishna 1979a-d). The stationary state is given by
equating the right side of (L4) to zero. This gives

(B — 1) N Wiy 1 N3 (B — 1) Wy, NS =0,

or (E = 1) [Wy, Ny — ELNS Wiy 1 N} =0,

‘where E and E-! are the forward and backward difference operators. Thus

Wip Nyt — EL NSt Wiy 3 Ny = J. (5)

~

This, then, represents the density flow from nton — 1. Our problem is a ° one-step
birth and death process’ with the transition probabilities from a state »’ to n (of
the master equation) given by

Wnin) =r (1) 8nyn'—1 + &) Oy ©

Here g(n) and r(n) correspond to the assoclatlon and the dissociation rates (van
Kampen 1976). Then

gm) =vZ ¥ (1+ 1) Ny exp (— EMIKT) = %, Ny (n + 1) )
and r() =v Zy b (1) exp — (EM + b,)/KT = x,%, (n) ¥ (n), ®)
where X, =v Zyexp — EM/KT and x, (n) = exp — b,/KT.

Equation (5) is not valid for n = 1 and 2. In this sense # = 1 is an artificial boundary.
(However, if we impose (6) be true for n = 1, then we are forced to take r(1) =0,
since, it corresponds to dissociation and N,_, = 0. Thus it should be classified as a
natural boundary according to van Kampen (1976).) Generally artificial boundaries
are relatively more difficult to solve. In the present case since the number of vacan-
cies are conserved, we can assume that there i§ no probability leak at n = 1. Thus,

we take J = 0 in (5). We shall later show that NSt thus determined does, in fact,
satisfy the equation for N;.
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Using (7) and (8) in (5) we get

n 4
st _ meE—1D

"W Y
or NSt = (VFY [Ty (1 + ei=¥®)] [0 %3 (1% ©)
Using (1.1)
F
W5 () = exp| - e + 22|

where we have used by = ZEf — E,. (E, is the energy of formation of a cluster
with two units.) Then .

N3t = (OV5'y fexp + (@B, — <)/KT] [ (L + & 4, (10)

and is exact for any choice of ¢,, Using (1) and (10) we get

st Sty Ef‘ —A_ B 4 B —1/2
N' = (Ny)'|expn 7 g Inen|Mi—a (1 + «i~1®). (1)

It should be noted that Nﬁt is independent of the energy of migration. This is not
surprising since x; cancels off in the asymptotic rates. Only time scales over which
clustering proceeds depend on x;, (i.e. t can be scaled by x;). Our earlier calculation
(Ananthakrishna 1979a-d) also supports this result. We shall now show that NSt
determined by (11) satisfies the equation for N;. Using (9) in (1.2) we get :

z; Woy Ny NSt._1 = ;_1 (m + am¥/?) N5 (Nit m—1

m

1 (4 o) [y R (O

= m NP (e ) k()

This is equal to

S Wi N =S mIy (L ap ) (V)" (I % ()

m=2

% exp —(EF — & + 1)K,

=S mIly (L + et (N (W X ()
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Thus the choice of J = 0 in (5) is consistent with (I.2).  The stationary distribution
can be rewritten using continuum approximation when n is large. (This would be
valid except for very low temperatures. Generally, (n) is.always large enough to
permit this approximation.) C L TTeT

Consider

o T (1-Fam) = £l (¥ = [ g (e sy dm.

From this, we get
(1+am—1/2) & ¢ (1) (exp an1/2) (a+n1"°*)‘“

where ¢ is a constant whose value is determmed at n= 2 For large n, (H— an—12)t —
exp (an'’?). Thus

N'=4 (Ot-l‘nllz)“1== (NS exp [bn+2 ont/2 —dn'/2 Wen), - -(12)

where b = (EF —A)|KT, d = (B[KT), and da normalization constant. In (12) N
is not known and has to be determmed self consistently. As it stands, the dlstnbu-
tion does not have the feature that as n—> o, N,~0. However, a correct self-cons1s—

tent choice of N should ensure this. (At the least as n—>n, N t >0 whcre n is the
maximum of the physmally allowed values of n). We shall assume that such an Ny st
‘¢an be found (at present), then we' can assume that both N= ZJ'N and ZnN,
= (n) N exist. (From now on, (1) and N are used for stationary states.) Then

_ b+ In N, E
| N A ;eXP ([( ++n11112)a:) n + QRa—d ]n c) nl/z dnyz In n. ‘ (13)
Let B exp (b+InN) =z . 3 o o (1-45

and exp (20?7dlng)‘7=4x. § A - o (15)

Any attempt to calculate (n), then 1eads us to an equation of constramt that N
has to satisfy. This constraint is in the form of a differential equa’mon for N. Diffe-
rentiating (13) we get

N 8® N
F (n)N——aan (alnz)2

This is a * diffusion’ equation in the variables In xandlnz A blution of this
equation is

I (16)

L Ve Y[y Bl S
— (nxp — (“" KT)

Bexp ———— Bexp —
P~z o0 &N + (BF — HIKT)
W= e 2 ,an
(4 In V2 EF A 1/2
o A 4 1 N + '
S C : KT
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B is a normalization constant to be determined either by boundary condition on N
or by comparing with experimental data. Although the correct dependence of N s{
on T would be needed, if N(T) is to be determined, in order to assess the qualitative
feature of N (T), a qualitative behaviour of Nit is sufficient. To see this we assume
that ‘

E' F
T KT

then InN, + —”—Ia;,—- = gy With E>0.

n N =
We should expect this from Nit () > Nit (T), the eqﬁilibrium concentration of
single vacancies. Then :

B (KT _Blnc
2EL2

N = ’ E. - 18
N - )KT/4E (18)

exp — (Za

Clearly, this function has a maximum. For temperatures 7 much larger than
Bln ¢/2 Ka,

—  B(KT)2 _
NN"—E-—E-TFZ—"CXP*KK T ~ , (19)

where K is at most a weak function 7. For temperatures T -much smaller than
B In ¢/2Ka, we see that :

—  B(KTV
7 o ZEDE

T exp — KT-1 (20)

The temperature at which 7* is maximum is given by

T* = Bln ¢[2Ka. | | 1)

»Following Kiritani (1973), we choose n= 4nr2/a® 4/3 then a=8='/2/3V4 The value

of B In ¢ we use is 0:37. Then the maximum occurs at 200°K. (The value used by
Kiritani for Bln ¢ = 0-54. We wish to point out that if we use the above relation
to define T* for Bln ¢ == 0-54, we get T* = 270°K. This is exactly the temperature
at which his computer results show a maximum).

Clearly, the assumption that In th + b with E independent of temperature cannot
be expected to hold. Indeed, as the temperature is lowered we should expect that the

fraction of single vacanciés, which go to form clusters decreases, i.e. 'let should
increase. As 70, th—>N0. (Note that we have no sinks). But at higher tempera-
ture th is small compared to N, and should not be expected to vary much over a

limited range. In the following, we shall determine th in an approximate way using
(I. 2). Using the form Wy, and W, we have

T4 (m) N NS = () Ny
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Consider the left side

S k) NN =G a2ty (VS 4+ S [m+ D+ am+ D]
2 . o o 2

* Nst Nst B
1 m?
o Qa2 (VS N Finy + oy NEN
o NN [ny+o (m)?] + (NS2 (2+0243). 22)

Here we have made two épproximations namely changing the summation index
does not alter the averages, (since the upper limit of the summation is large) and that
st

(nti2y = ()M We shall drop (N:%)? compared to thf ' The right side is

W (n exp — bJKT) = N (n) (exp _bJKTY. (23)
We shall use e, given by (1) in (I 1) and using €, — &-17> _&fl' , We get : |
n

B
by = Ef — 4 — 57 ln ent+2]. 24)

This holds as long as-n is large. (The same expression results in the limit of large n,
if we use (1) and the approximation (n—1)2 et — % 12 and In (1—1/n) = (1/n).
We have checked that we can use this form only when n > 250. However, it is
possible to fit the following expression for b, to that of b, obtained when (1) and (I.1)

areused. This holds down to 7 = 10.

b, = — 0-185 + 031 (1 —exp— (nng)*'®), 1y = 30. (25)
Table 1 gives the values calculated using (25) and (1). Thus, we wish to use (25)
rather than (24). Using (25) in (23), and using the approximation of taking average
inside the expression, we get after using (21)

T 049503l m 1,2']'
. st exp[ T KT + XT exp — (m)2[my
. 1 = T [1—‘—& ,<n>--1/2] s

Table 1. 'Con_nparison of the binding energy calculated from equation (1) with the
empirical relation given by equation (25). . _

6)

n - bycalculated from b, calculated from

. equations (1) and (1. 1) - equation 25
10 C 0303 0 0320

20 e o 0357

30 - S 382 ) ' 0387

50 0408 el 0409 . -
90 0-433 _ 0-44

180 . 0-455 e 0-468
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.(We have used the value of EF = (0-67 eV). We can use equatlon (26) in (17) to
.obtain -

Eexp'—— {(2a¥Blnc>2/[4(01+031 exp — <">12) 41n(1+a<n>“]"?')]§

T KT KT KT 172
0- 31 _ mY 2:, TN 172
{[sz' KT OPT Tan n( * A S

For high temperatures (around the room temperature) one can use the approxima-
tion N; < Ny, thus (I.6) implies (n) = Ny/N. (Note f(t) = {(n) N in (1.6)). In
this approximation (27) is a transcendental equation whose solution can be easily
obtained if the normalization constant/ can be fixed. Normally this can be deter-
mined using the boundary conditions. : In the present case both T'=0 and 7= TQ
pose problems. This formula in principle cannot hold for 7= T since there is no -
supersaturation. At the point 7= 0, N = 0, again B cannot be determined. Thus,
we have to use an arbitrary point to determine B. (B should have dimensions of
concentlatlon) We shall later discuss this point again. We have used the value
B =10""cm3, at T=213K. A plot of N as a function of T is shown in figure 1.
The nature of the curve qualitatively agrees with the expernnental curve shown by
the dashed curve. (The circles are the experimental points.) :Even within this
approximation, we find that for low temperatures, N drops sharply below 130°K
(not shown in the figure). Although this trend should be expected, we cannot calcu-
late {n) from N because of the breakdown of the approximation for low'T. For
low temperatures, {n) should also be expected to decrease which implies from
relation (1.6) that NSt = (n). N — N,, increases until it reaches a value of N,
as T'—0. This feature about {n) cannot be calculated. However, we will show

1016
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Flgure 1 Den51ty of vacancy loops as a function of the -ageing temperature.
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below that this qualitative feature can be obtained. For high temperature th £ N,

and thus (n) can be calculated from the relation (n) = NO/]V. A plot of this is
shown in figure 2, along with the experimental curve (dashed line) and the experi~
mental points. ' :

4. Discussion

We show, in what follows, that it is possible to obtain the qualitative behaviour of
{(n). Using N from (17) and using (16) we get

( Bln 0)2
2a —
1 KT

‘umm+m+ummww

= {n).

Clearly, the first term is small. Thus
2‘ B 111 c
*TTKT
2 {n)1’2

In NSt + b= (28)

Using equations (22) to (24), and using the approximation of taking the averages
inside, we get

B
In N§t+b=mﬂn0<n> —2]. 29)
- . ‘ ‘// .
— Theory _ ) i
105 - — =~ Experiment : //

4 Experimental points yd

Average number of vacancies
o-b

QA

BN [ l [ l !
193 - 233 273 313
Ageing temperature (°K)

Figure 2. Average number of vacancies in the cluster as a function of the ageing
temperature. :
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(Here we have ignored the factor 1/(1 + a (n)~*2) in the expression for NSt)
Equating (29) with (28), we get

Blne

KTIZa-—-—
{n) = exp : ) — —2—1Inc|. (30)

- The qualitative nature of (n) predicted by this expression appears to be correct.

For low temperatures (7" < T*) the term BIn ¢ contributes a constant term and
20KT decreases steadily as T is decreased. For T > T*, again 2«K7 increases
steadily. Further, it also predicts a broad shoulder for 7= T*. Thus the qualita-
tive behaviour is correct. However, as for the magnitude, there is a need for a scale
factor of five multlplymg the exponent. We believe that this is related to the in-

adequacy in determining Bin the equation for Nin (27). In principle, B should be a
function of N, (TQ) This can be seen from the fact that, if the quenching tempera-

ture is reduced, (for a fixed ageing temperature) N, decreases. Since B should have

the same dimensions as N, perhaps Ba N,, and the remaining factor 10~ can be
absorbed in the the exponential. This can give rise to the above scaling factor. It

should be pointed out that (25) determines In NS't -+ b self consistently. Hence

(30) should represent the functional form of {n) correctly This also means Ns‘t
does increase at T 0, as is physically desired. From the present analysis, it is clear

that the plateau in N as a Junction of T results from the fuct that the number of absorp-
tion sites is larger than that for emission. As far as the determination of the distri-
bution, it appears that we need more (or better) constraints or a better way of esti-

mating let than we have established here. Although, we have proved these results
for the case of the formation of vacancy loops, the results should hold for stacking
fault tetrahedra with minor changes. It should be possible to extend these consi-
derations to the formation of voids.
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