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A stochastic theory for clustering of quenched-in vacancies—
IV. Continuum model applied to the formation of stacking
fault tetrahedra and vacancy loops
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Abstract. The continuum model for the growth of clusters developed in the previ-
ous paper (paper I11) is applied to the formation of stacking fault tetrahedra in quen-
ched gold and the formation of faulted vacancy loops in quenched aluminium. The
results of the theory namely the distribution of the clusters as a function of their size
and time, and the average size and the total density of the clusters as a function of
time and the ageing temperature are shown to be in good agreement with the experi-
mental results.
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1. Introduction

In the preceding papers (Ananthakrishna 1979a, b, c; referred to as papers I, II and
I1I respectively), we have presented the various physical and mathematical reasons
which lead to the development of a self-consistent continuum model which describes
the growth of clusters under quenching after the initial period of nucleation. The
model is applicable to cases where the number of vacancy units in the cluster is related
to the linear dimension of the cluster in a quadratic way. These cases correspond
to the formation of stacking fault tetrahedra and vacancy loops, both faulted and

unfaulted. In this paper we shall apply the continuum model to the case of quenched

gold (Jain and Siegel 1972) and quenched aluminium (Kiritani 1973). We shall first

recall the two different approaches which describe the growth of clustres and make

the comments which will be relevant for comparing the theoretical results with
experiments.

2. The continuum model

The description of the growth of clusters can be carried out by either regarding the
density of the clusters, N(, t) to be the dynamical variable of interest or by regarding
the concentration of vacancies in a cluster with » vacancy units, p(n, #) as the dyna-
mical variable. In both cases we have used the asymptotic value of the concentra-
tion of single vacancy units. In the former case, after the initial nucleation period of
the clusters, the total cluster density NZ is regarded as constant with a slow influx of

vacancies which does not affect the value of N and contributes only to the variation.

581




582 G Ananthakrishna

in {n). This implies that we have taken only a near quasi-equilibrium to have
prevailed between N, and N(n, t) in a short time during which all the clusters are
formed. In this picture a strict equilibrium between N, and N(n, 1) is attained only
as t—=>c0. In contrast, in the alternative picture, a strict equilibrium between p; and
the rest of the clusters has been assumed to have been achieved in a short time, i.e.,
of the order of nucleation time, This implies that df/dr=0, i.e., the total number of
vacancies is strictly constant throughout the growth period and only a redistribution
of vacancy units among the various clusters are allowed. Equivalently we have
assumed that we have introduced all the vacancy units right in the beginning. Where-
as in the previous picture, ¥ is constant and the time-dependence is entirely hidden

in {n}, in this picture both % and {n) are functions of time in a way which keeps -

the total number of vacancy units in clusters constant. These two approaches give
identical results as far as the dependence on 7 and ¢ ny are concerned. The difference
manifests when the distribution function is considered as a function of time (or
equivalently while following the total number of vacancy units in the system). Only
experiments can decide which of the two approaches is relevant for a particular
situation as it is possible to decide in the case of gold (Jain and Siegel 1972). The
equations describing the growth of clusters in these two approaches are
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The method of obtaining the solution of (1) is given in Appendix A. The method
of obtaining the solution of (2) is similar to that of (1) and has already been given in
Appendix B of paper III, except for inverting the solution obtained in the inverse
space. The method of inverting (III. B.8) and (III. A.6) along with inverting (IV. A.6)
are also given in Appendix B. Although we have given the solution of (1) and (2)
in paper II1, for completeness we have given the solution below. The solutions are

N, 1) = Klexp [—I(n+¢)] I, (Vng ). 3
Ng I _
and p(n, t) = m exp [~ 1 (n+¢)] I (Ve I), 4
where | 2

T Mot rp) =9

and K is a normalisation constant to
(3) can only be fixed as 7~ 0. This co
between N, and N(n, t) is obtained as
from small times (where only a near
times is very small as has been shown

be determined. The integration constant in
rresponds to the fact that a strict equilibrium
t>co. However, the change in the value of N
quasi-equilibrium has been attained) to large
earlier (see the discussion following (III. 16) in
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Ananthakrishna 1979c). We can fix this constants as ¢t->co and compare it with (4).
It is clear that as o0

lim N, t SK 2 ex (~— ot )
f—> 0 ( ) (N0+x2) P No“i"xg (5)

Using (5) in the definition of f @®)
f (o) = f ndn N (n, t) = No?[(Np+ o),
weget K = Ngx2/(No+x). (6)

Using this in (5) we get

Ny 2x,? r XM
N , —_ 0 2 _ 2 :I
) = G L N @

It is clear that the normalisation in both cases is exactly the same as 7—oo. However,'

the total number of vacancies changes gradually in the picture when N is kept
constant. At the start of the growth of the clusters the number of vacancy units is

of the order of
Ny — 2N, xz/(No+x2)-

(The factor of two arises due to the time-dependent part in Ny(¢) at the point where the
decoupling is effected, is taken to be of the same order as Nyxp/(No+x,) see discus-
sion following (III. 16).) The difference in the normalisation constant between the
start and the end of the growth process, is the fraction of the vacancies that falls
from the value Ny ~2Ngxa/(Ny+x,) to strictly the asymptotic value of N; namely,
Nyx,/(Ny+x,). This difference is clearly small and therefore as far as the normalisa-
tion is concerned, we assume that the asymptotic value of Ny has been attained right
at the start of the growth process and thus the normalisation constant for all practical
purposes can be taken to be that given by (7) for all times during the growth process.
The only situation where this can affect is when we consider the distribution function
as a function of time. Even in this situation the difference is not likely to be detect-
able. The true time evolution in many systems is probably midway between the
evolution given by (4) and (3), since in an actual physical situation neither N nor f(t)
can be expected to be constant. The experimental distribution can in some cases
distinguish the two approaches as it happens in the case of gold (Jain and Siegel 1972).
Thus the mathematical representation of the physical situation via N constant or
f(#) constant can only be carried out if one has a knowledge of the coupling that
actually exists between the evolution of the clusters and the single vacancy units.
Fortunately this coupling is very weak in the case considered and therefore the repre-
sentation via (3) and (4) yield consistent results as far {n) as a function of time is
concerned.
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3. Calculation of averages

As far as comparison with experiments is concerned, for a major part of what we
consider here, we shall use (3) with (6). Since experiments are done in the space where
the linear dimension of the clusters is measured, we will have to rewrite (3) in terms of
the radius of the vacancy loop r, or the edge length /, of the tetrahedra. We shall
confine our attention to the formation of stacking fault tetrahedra in quenched gold
(Jain and Siegel 1972) and the formation faulted vacancy loops in quenched alumi-
nium (Kiritani 1973). We use the relation n=a¢?/a* where o« is a geometrical factor
(a=1 for stacking fault tetrahedra and a=4n/\/3 for vacancy loops) and ¢ is the
linear dimension of the extended defect, to convert n to £ It is also sufficient to

consider the leading term in (3) since the next higher order contribution contains
the factor ¢x,?/(Ny+x,)2.  Then the distribution reads

-~ aN-2x.2 é axy &2 ]
N, ’ = 072 - 2 ’ 8)
16D =Gip iy [ 2(1—4) Nytxp) (
d = exp — %" - 9
an ¢ (1) = exp s | | ®

Here we have suppressed the factor

P [“ (1—¢)x(?30+x2)}

since this term is almost unity for all times of practical interest. The calculation of
averages can now be carried out. Using (8) we get

(nys = ol @fary, =NoT%e gy (10)

Xo

the subscript ¢ on the average indicates the time dependence. The maximum of the
distribution in the ¢-space occurs at

= | Wotxg) (T2
Ela / [—_—-sz a—p]".

. ,
Thus (Eladmax = 5 (£Jat. (11)
The total density of the clusters is given by

—_— — = 2
N*=ZN~ZF =Z [Np(gnde= YonZ

(N + xp)2 o (12)
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The value of average 2 would be the same if we use the alternate approach. Using
the leading part of the distribution N(n, t) obtained from (4) we see that the
| total density is '

Nyixy, Z
(Notx2)2 (1—9) ‘

N*=N(@®Z =
Since j p(n, t) dn = N2 [(Ny+xp),
we see that {n), = ZXPxi_fE (1—¢)
2
which is identical with that calculated via the first approach.

gﬂ 4. Comparison with experiments

Several quantities of experimental interest can be calculated from the distribution
function. The distribution function is a function of both time and temperature,
and so are the averages. The results that should be compared with experiments are:
(a) the shape of the distribution as a function of thesize of the clusters and time, (b)
the total density of the clusters as a function of temperature, (c) the average size of
the clusters as a function of time and temperature and (d) the characteristic time for
the growth of the clusters. The other major result that emerges is the decay of the
concentration of the single vacancy units and hence some indirect information about
the nucleation time which we have already discussed in detail in our earlier paper.
(Ananthakrishna 1978b, paper II). We shall discuss these results one by one.

We shall first take up the case of the formation of stacking fault tetrahedra in
quenched gold (Jain and Siegel 1972). Itis clear from (8) that the distribution func-
tion is entirely determined by the value x,, since all the other quantities are known.
In turn the value of x, is entirely determined by the average size given by (10) or by the
total density of the clusters given by (12). Thus this quantity x, should be regarded as a
parameter to be determined from experiments through the relation (10) or (12). Given
the value of (L?|a®) from experiments, every other quantity of interest could be
determined. 1In the case of the formation of stacking fault tetrahedra both the experi-
mental and the theoretical distributions are asymmetric. However, the asymmetry
in the theoretical distribution is somewhat more pronounced. Using the value of
(L2)12 = 408 A and the concentration of quenched-in vacancies N,=3x1074,in (10),
we get a value of x,=3x 1078, This leads to the value of 1

ZN, (L;ax) — 37 10" per cm™

which can be compared with the experimental value

NE ( LE

< max) = 8% 10" per cm™3,
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The position of the maximum of the theoretical distribution occurs at =290 A,
The experimental distribution has its maximum at 380 A. This difference is due to
the fact that the theoretical distribution starts from the origin whereas the experi-

mental distribution starts from 110 A. The total density of the clusters theorctically '
computed is '

Z Ni = 176X 10% per cm™?
and the experimental value is
E 15 -3
ZNS = 2x 10" per cm™3.

Thus we find that the agreement with the experiment is good. The plot of the distri-
bution is shown in figure 1.

We shall now consider the time evolution of the distribution and the average size
of the clusters. It is clear from (8) that as the clusters evolve, the distribution which
sharply peaked for small ¢, evolves into a broad peak as t— oo, Also the average size
increases as a function of time as is clear from (10). These two results are qualita-
tively in agreement with experiments. It is in connection with the time development
of the clusters that one can say whether the growth of clusters is given by (3) or (4).
In the case of gold, under the experimental conditions used by Jain and Siegel (1972),
N remains constant during the time over which the evolution of the clusters was
studied. Thus the time development is governed by the distribution given by (3).
We have already determined the value of x, by using (L*) as t-> 0. The values of
the input parameters are the same as in table 2 of paper II except for the value of the
attempt frequency which we have taken to be ten times more* than the value quoted
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Figure 1. Normalised density of stacking fault tetrahedra as a function of the edge
length. The curve T corresponds to theory and E to experiment (Jain and Siegel 1972).

*This value of v has been arrived at by demanding that the concentration of the vacancies stored
in the clusters as a function of ¢ has nearly the same value of ty;5, Which is the time at which the
concentration of vacancies in the clusters is half of that at ¢ — oo, Thereis a possibility that this -
value v is somewhat high and may be due to the fact that the time development of clusters is a

sensitive function x, being the square of Xs. So a small error in x, can affect the time develop-
ment of the clusters. .
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in paper II (Ananthakrishna 1978b). The time evolution of the clusters has been
shown in figure 2. For the sake of comparison we have plotted experimental distri-
bution for =52 min. The qualitative resemblance is quite clear. Even quantitative
comparison is quite good. The peak height at #=52 min., in the case of theory is
1-9 times the hight at t=oco. This is in good agreement with the factor of two for the
corresponding quantity in the experiment. For the same case, we have calculated

¢ L“*)f as a function of time. A plot of (L2>% as a function of ¢ is shown in figure 3.

Tt is clear that the theoretical curve closely follows the experimental curve.

Another feature that can be considered is the temperature dependence of the total
density and the average size. From (10) and (12), it is clear that their dependence
on the ageing temperature are opposite, so that if the total density of the clusters falls
as a function of temperature, the average size increases.  This result is in agreement.
with experiments. Quantitative comparison can be made if either the average size
or the total density of the clusters is given, since one of them would determine the
value of x, as a function of temperature. We shall compare our theory with the

2r " 1=52min |~ t=112min {=c0

Normalized density of
tetrahedra (cm™3)

/
V| AN L [N
0 200 600 0O 200 600 O 200 600 1000
Edge length of tetrahedra (A)
Figure 2. Time evolution of the distribution of stacking fault tetrahedra for r=52

min, 112 min and r==c0. The density that has been normalised to the value at r=c0.
The curve T corresponds to theory and E to experiment (Jain and Siegel 1972),
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Figure 3. Time evolution of the average size of stacking fault tetrahedra at a func-
tion of time. The curve T corresponds to theory and E to experiment (Jain and
Siegel 1972).
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data given by Kiritani (1973) for the case of quenched aluminium. In this particular
case the number of quenched-in vacancies has been estimated by using the relation

4 |
No =7 (rijat)E NY Z7, (13)

where 7 is the radius of the loop. (Using the values of (rtYE and Ng quoted in the

paper, we find that the concentration of quenched-in vacancies stored in the vacancy
loops is different at different temperatures in the range 7,4=—20°C to 30°C. - This is
at variance with the value of Ny quoted in the paper.) Using the experimental value
of (r®)¥ for various values of the ageing temperature, we have calculated the total
density of the vacancy loops, as a function of the ageing temperature. The tempe-
rature dependence of the total density of the vacancy loops as a function is shown
in figure 4. The agreement between the experiment and theory is seen to be good.

5. Discussion and conclusions

In this series of papers, we have developed a theory of clustering which has been
shown to give results which are qualitatively and quantitatively in good agreement
with experimental results. The basic idea is to be able to develop a model which gives
a closed form expression for the distribution of clusters. This involves two aspects of
the problem. The first part involves the formation of small clusters which can be
called the nucleation period. The second is the growth of clusters. The first problem
is somewhat tough in the sense that if the exact size distribution is to be obtained at
any instant of time, it would depend on the binding energy of the cluster and thus
closed form expressions are difficiilt to obtain (in our framework). On the other
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Figure 4. Temperature dependence of the total density of the faulted vacancy loops

as a function of ageing temperature. The curve T corresponds to theory and E to
the experiment (Kiritani 1973).
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hand, the growth, problem is simpler in the sense, after the initial incubation period,
which includes the nucleation period, the growth of the clusters is expected to proceed
smoothly and the dependence on the binding is very minimal (Jain and Siegel 1972).
Thus if in some way, information about how many clusters are formed or how much
is the concentration of vacancies stored in clusters at the end of nucleation period,
can be obtained the growth problem should be simpler. The idea we have pursued
is to treat the first problem in a way which gives only just sufficient information to
attack the growth problem. This has been done by assuming the binding to be const-

ant even for the first part of the problem. Obviously the information obtained
cannot be expected to give a correct description of the process of nucleation; yet it
appears that a comparison with Kiritani computer calculation shows that our nuclea-
tion time obtained is only slightly lower than his result. This indicates that although
our purpose is not one of calculation of the nucleation time, it gives confidence about
the time scale and the asymptotic value for the decay of the concentration of single
vacancy units which are sufficient to consider the problem of growth of clusters. In
our formalism, these two are necessary ingredients that allow us to tackle the problem
of growth. Indeed, it is this information that allows us to decouple the equation
for the growth from the equation for the decay of N;. However, the distribution that
we obtain in the discrete model is rather unphysical and is probably due to the assump-
tion about the constant binding energy, and improper choice of the absorption and
the emission sites. This difficulty is overcome by going over into a continuum model
by imposing an appropriate physically required behaviour of the distribution for
small 7. The resulting continuum model is also self-consistent yielding results
which are in good agreement with experiments.

One important remark that we would like to make is about x,. This quantity,
now regarded as a parameter to be determined from experiment corrects for many
idealisation at least partially. For instance, it is known that the impurity content
of the specimen enhances the density of the clusters. Although our theory does not
include the existence of impurities and their effect on the total density of the clusters
or their average size, these have been included indirectly through the parameter Xs.
This is clear because, x, is determined either by the, total experimental density or
the experimental value of the average size. Since the other quantities of interest
depend on x,, they also depend on the impurity content in the specimen indirectly.
Also this parameter possibly corrects for the non-inclusion of the next mobile species
which may contribute to the growth of cluster at late stages of growth.

The method of constructing continuum models for the formation of voids can
be carried out along the same line with obvious complications. Also it i possible
to apply the methodology to calculate the effect of impurities except for the lack of
one crucial information about the ‘ enhancement * factor for the density as a func-
tion of the concentration of the impurities, which would help in determining the
approximate value of the range of interaction of the impurity atom with the vacancy.
The method can also be applied to the formation of interstitial loops, vacancy loops
and voids during irradiation. Work in these directions are being attempted.

Appendix A

Let s, ) = J';o N (n, t) exp (— sn) dn. A1)
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Using the boundary condition on N (n, t) namely

lim N (n, )0,

n—>o0

lim aN(,t)>0, N(©O,1) =0 A (A2)

n—>0

and lim n2 QJ—V -0,

n-»0 on
in (1) we get

ég:—Asa_c——BSC(s, t)«—Bsza_g. | (A3)

ot os os

The characteristic solutions are

¢ A = K — 4 Ad
A (—A) =K, =4 TBT (A.4)
and {[(4/B)+ 5] =K, (A.5)

Going through the usual algebra of eliminating K, and K, and using the usual
boundary condition we get |

A A¢
{(s, t) = P [_ “/B) (4/B) + S(1—¢)] (A.6)
’ B[(4/B) *s(1—9)] ) :

Appendix B

In this Appendix, we outline the method of inverting formulae of the type given by
(A.6), (111 B.8) and (IIL. A.6). All these three can be written in the form

A5, 1) = — d @ 1. B.1
6.0 = exp § d[d+s(1~¢>1} @rsa—gp T @D

The inverse transform is given by
1
O t)y=_ 56 exp (sn) A (s, 1) ds. (B.2)
2mi Ve :

Consider writing the integrand in an appropriate manner. Setting

df(1—¢) =1 and l+5s=2
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We can write

TR S L

I+ I+ s Z
Then O (m t) = ——r § exp {n(@Z—1) —BU —UD]} 4,

2mi (1 — )1 ZH1
@ exp (—ng—18) [ exp [nZ + ($/2)]

or 0, t) = e ¢ o dz, (B.3)

where we could have taken the integrand over an appropriate contour since the
integrand satisfies the necessary conditions (McLachlan 1963).
Equation (B.3) is of the form of the integral representation of /.

L.(t2) = (i;): § exp [ZZ‘*;+(1’2/4Z)] iz, (B4)

with the series expansions

. _ () pem
T (12) zm —0oml T (t+m+1) (B-3)

Using this and the exact form of (A.6), (IIL. A.6) and (IIL. B.8) we obtain the cor-
responding expressions for N(n, ) given by equations (3), (1L 7) and (4) for p(n, t)
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