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Abstract. The model introduced for clustering of quenched-in vacancies in the first
part of this series of papers is considered. Using a generating function, the rate
equations are converted into a first order partial differential equation for the generat-
ing function coupled to a differential equation for the rate of change of the concen-
tration of single vacancy units. A decoupling scheme is effected which gives an

exponentially decaying solution with a very short time constant for the concentration
of single vacancy units. The differential equation for the generating function is
solved for times larger than the time required for the concentration of single vacancy
units to reach its asymptotic value. The distribution for the size of the clusters
is obtained by inverting the solution thus obtained. Several results that follow are
shown to be in reasonably good agreement with the experimental results.

Keywords. Vacancy units; vacancy ‘loops; stacking fault tetrahedra; generating
function ; Fokker-Planck equation.

1. Introduction

In the previous paper (Ananthakrishna 1979a, referred to as paper I hereafter), we
introduced a model which can be solved in closed form. This model specialises to a
situation where the total number of vacancies in the cluster is quadratic in the linear
dimension of the cluster. This corresponds to the formation of stacking fault
tetrahedra and vacancy loops. The approach of this model consists in writing down
a system of n-coupled rate equations (the differential-difference equations) for the
growth of clusters assuming that only single vacancy units are mobile. The general
rate equation given by equations (2), (3) and (4) of paper I cannot be solved even on
a computer when the number of such equations exceed about 10% It is for this
reason that Kiritani (1973) resorts to a grouping method (which in essence 1s coarse
graining). The resulting equations are then solved on a computer. Thus the ev.olu-
tion of clusters cannot be followed in a precise way when the number of equations
is large. The grouping operation itself has been criticised by Kiowa (1974) based
on comparison of results of a solvable model (Montroll 1967) with the numerical
results obtained on a computer using the grouping operation. Hayns (1976) has
studied the effect of the grouping operation and finds that it yields consistent results
when handled carefully. He also observes that the grouping method is the only

method that offers hope of obtaining solutions to problems where such large number

of coupled equation are involved in the absence of any analytic method. Thusflilii
desirable to evolve a solvable method which preserves the essential fleattluies Ohavé
physical system and which can be solved in closed form, The {ngdc that we have
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introduced in paper 1 is a first step in this direction and will form the basis for further
work presented in papers III and IV (Ananthakrishna 1979b and 1979¢). Although
the model gives a rather peaked distribution possibly due to the choice of the number
of absorption and emission sites, and the assumption of constant binding energy,
some comparison is possible with experiments. We shall discuss the advantages,
disadvantages, possible reasons for the drawbacks and how these inadequacies will
be overcome in subsequent papers. In the present paper we deal with the solution of
this model in detail as this model will serve as a starting point for a continuum model
(paper II1, Ananthakrishna 1979¢c, Ananthakrishna 1977). We shall first recall the
major idealizations in this model. We shall try to give some justification for these
assumptions.

The rate equations have been written down by assuming the growth of clusters
proceeds via the absorption and emission of single mobile units. (In the case of gold
and aluminium, divacancies are considered as the mobile units.) This assumption is
justified in most cases, particularly for the cases considered namely for aluminium
and gold. For instance, the mobility of the monovacancies are two to three orders
of magnitude smaller than that of divacancies at temperatures of interest and the
other clusters are practically immobile (Kiritani 1973). Further the results of
computer calculations of Kiritani (1973) with one mobile unit compare well with
experiments thus offering a justification for this assumption. It is expected that the
next mobile species may become important only at late stages of clustering. We have
also considered the system to have no sinks. This assumption is not serious since as
far as the phenomenon of clustering is concerned, only supersaturation of vacancies
is required. So ignoring sinks would effectively increase the supersaturation and
would thus aid clustering. This in turn may lead to increased concentration of
clusters. The support for this claim can again be had from the computer calculations
of Kiritani (1973). ' His work demonstrates that a system without sinks is sufficient
to describe the phenomenon of clustering. Now if we wish to solve these equations
in closed' form further assumptions have to be made. This involves assuming that
the binding energy of a vacancy unit in a cluster is independent of the size of the
cluster as far as the growth of clusters is concerned. The JuStlﬁCatIOIl for this
assumption is three-fold. First, the binding energy for vacancy loops and stacking
fault tetrahedra saturates very rapidly, reaching a near asymptotic value for n=ny~
250, ‘whereas the number of vacancies in a cluster of average size is of the order of
{05, which suggests that the assumption is justified. In view of this, the emission
rate depends on (n) as we will show later, where ¢ > is taken over the distribution
N,. 'In table 1, we have given the variation of b, as a function of » for aluminium.
The binding energy changes rapidly only for n < 50. Thus the variation of b, as a
function of », can be seen to be small for the region of interest. Second, by taking
the same binding energy for all clusters, we will be essentially overestimating the
density of small clusters. This can be seen from the binding energy curve (Kiritani
1973 and table 1) which suggests that the probability of emission from smaller
clusters is larger than that from larger clusters. Third, and probably the best in our
view, with this assumptlon the equations are mathematically tractable in closed form.
Further, the emission probability, as will be shown later, will be related to experi-
mentally measurable’ quantities and therefore can be regarded as a parameter to be
fixed by comparison with experiments. Thus x, which was originally a function of
n has been regarded: as a function of {n). (For this reason, this factor takes into
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Table 1. Binding energy b, as a function of » for aluminium.

n by (V) exp [—bu/kT); T=230°K
10 0-303 1-14 x 10-¢
20 0-357 3-75 X 10-7
30 0-382 1:33 x 1077
40 0-398 685 x 10~7
50 0-407 472 X 10-8
100 0437 1-36 x 10-¢
150 0-450 794 x 107
200 0458 570 x 10~°
300 0-470 3:46 x 10~°
400 0-481 219 x 10-*

account and corrects for the various idealisations in the theory. See § 4.) Once this
assumption is made, these equations can be solved using a generating function.

The problem we wish to solve is: given that initially we have a supersaturated system
of vacancy units with a concentration Ny, could we predict the distribution of N,(t)
at any instant of time 7? Our main aim would only be the statistical aspects of clus-
tering. Given the transition probabilities for the association and dissociation, we
would only be interested in obtaining the distribution function N,(¢). The details
and the precise mechanisms by which a particular type of defect aggregate is formed
will not be relevant. (For example the growth of tetrahedra may be due to the
movement of vacancy ledges). However, the energies associated with these mecha-
nisms of formation of the defect aggregates would enter into the transition probabi-
litles. Making use of the method of generating function we obtain a partial
differential equation for the generating function coupled to a differential equation for
rate of change of the concentration of single vacancy units. Although we are not
interested in short time aspects of clustering, we do obtain some information about
the nucleation times via the solution of the concentration of single vacancy units which
has already been outlined in paper I and will not be repeated here. The basic idea
involved is to decouple the differential equation governing the rate of decay of the
concentration of single vacancy units from that of the differential equation for the
generating function in an appropriate way. This is possible because the total number
of vacancies in the system is conserved. As we have seen this yields (paper I) an
exponentially decaying solution for the concentration of single vacancy units with a:
small time constant, which means that the ‘concentration of single vacancy units:
attains an equilibrium with the configuration of small clusters in a very short time:

Then using the asymptotic value of the concentration of single vacancy umits; the -~ -

solution of the equation for the generating function is obtained.. By inverting- this
solution we obtain the distribution function for the cluster sizes. The results of the
average quantities that follows are in reasonably good agreement with the experi-
mental results on the formation of stacking-fault tetrahedra in quenched gold (Jain
and Siegel 1972a), and the formation of faulted vacancy loops in quenched aluminium
(Kiritani 1973; Yoshida er al 1963). " -
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2. Solution of the model

We shall briefly summarise a few results on the formation of stacking fault tetra-
hedra and faulted vacancy loops in quenched gold and aluminium respectively.
Stacking fault tetrahedra are formed in quenched gold with their four stacking-fault
A58 ' sides on the four non-parallel {111} planes arranged in a tetrahedral shape. The
edges of the tetrahedran are parallel to the six (110) directions. In the case of
2k aluminium, the loops formed are hexagonal and are formed on the {111} planes
AN bounded by (110) directions. As much as 95% of the vacancy loops formed are
R faulted under certain conditions (Kiritani ez al 1964). Other types of extended defects
o which are formed will not be considered in this work. (However, the theory holds

L for all planar configurations and stacking-fault tetrahedra.) For simplicity we shall
assume that the tetrahedra are regular and the loops circular. We shall use the total
number of vacancies contained in the cluster to be L2/a® or 4w r*/a®+/3, where a is
the lattice constant, L the edge length of the tetrahedra and r the radius of the loop.
The energy of formation of such tetrahedra and loops as a function of the number of
vacancies contained in the cluster is given by (Cotterill 1965).

k € = Ayn+B, nt*In(c;n);i =L, T, ) @

with Ar=ya@\/3, 4, =ya® /3, Cr=8,C, =4,

By = Ga¥[24n(1—")] and

B, = Ga®¥/[dr 612 (1—v")]

The subscripts refer to tetrahedra and loops respectively. (In the above expression, G
is the shear modulus, ' the poissons ratio, and y the stacking-fault energy). The
binding energy is

b,, = E;F/ — [e,, - en—l]:o

.which for large n takes the form

g s by~ EL— A, — B, [2 4+ In ¢, +1In (n — 1)]/22%2, 2)
“This formula has been obtained by using
(n— D2 o p¥2 — 122 and In [1 — (1/n)] =~ 1/n.

Therefore (2) approximates the exact one for n > 1. (Indeed, it agrees reasonably
well for n2>100). This above equation tells us that b, is a slowly varying function of
n for large n. An exact calculation indicates that b, saturates very rapidly reaching
the asymptotic value for n~200. (See for example Kiritani 1973.)

The concentration of single vacancies between the usual quenching and the ageing
temperatures differs by ten orders of magnitude. This excess of vacancy concentra-
tion leads to the formation of clusters of finite size via the collision of single mobile
units,  We shall also assume that the quenching is instantaneous and nearly 50% ,
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‘of the single vacancies are in the form of divacancies before the sample temperature
reaches that of the temperature of the bath. In cases where there is some uncertainty
in the concentration of vacancies stored in the clusters, we have estimated it by using
the average size and density (as we have done in the case of the data given by Kiritani
1973, for aluminium).

The rate equations have been written down in the earlier paper (paper I). We shall
refer the equations in paper I by (I.n.). In the following we shall show that x, in this
picture should be regarded as a function of {n) instead of n. This is a consequence
of our assumption about the constancy of the binding energy. From (2) it is clear
that the term #~1/2 In (n—1)}/2 is the slower term of the two. Using this fact and ¥(n)

,,,,, %Z_Ytl E xlN;z‘ —i" x]_Nl >: nN,, - z nx1x2(n) Nﬂ'
2 2

This can be written as

- .E]_gl = x; NZ 4+ ;N1 (t) — x1%, (m)) f ).

If b, rapidly saturates as we have pointed out namely for n~200. This is permissible
under the condition that x,(n) is a rapidly saturating function whereas the peak of the
distribution occurs in experimental situations at a very large values. (see table 2).
Strictly

z nxy (n) Ny = {nxs (0> N,
5 _
where N = }: N,. Now if we use
2

(xealminy 22 (n) (x(m)y =2 {n) xy ({1)),

we get the result indicated above. This is somewhat the mathematical equivalent of
the assumption about constant binding energy. We shall later show that this is-what
follows in the final analysis. In fact, here it would have been sufficient to have taken
x, as a constant. This approximation does not affect N; and the average values
much, but affects the distribution. We remedy this problem in the next paper (paper

Table 2. The values of the parameters used

M M ‘ z Z,
EY E) Epy Stk v 1 )
(eV) (eV) V) in sec”
Au 0-94 0-86 0-55 10 . 3 x10%¥ 10 ig

Al 0-76 0-56 0-46 244 3 X 10 10
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III). The validity of these two statements can be seen by the fact that both dN,/dt
and df/d: depend on

z X, (n) nN,
2

which we have approximated by x, ((n)) f(r) and thus the effect on N, should be
less in contrast to the effect on &, which depends on x, (n) approximated by x, ().
It is worthwhile commenting on the choice of i (1) and ¢ (n). This choice has
been made since it is the only choice that allows the decoupling of equations
(L3) and (1.4) from (I.2) even with the assumption that Xy is independent of .
We shall demonstrate this point shortly. Before that some observations can be
made about ¢ and . These factors correspond to the number of absorption and
emission sites respectively. In a real physical situation the number of emission and
absorption sites are functions of the size of the cluster. For example, in the case of a
vatancy loop the number of absorption and emission sites which depend linearly on n
for small n can be expected to reach an asymptotic value of n'/2 for large loops. Never-
theless, for simplicity we shall use the above relation to hold in our model. This may
be one of the factors which is responsible for the unphysical nature of the distribu-
tion. We shall comment more on this later. Rewriting equations (1.2), (1.3) and
(L.4) using (I.17) and (1.18) we have,

dN.

= D () — NSO | 3
.‘%% =E N (D) N 3w ) M= 20 Ny Ny, (4
and D ) N, Ny + 00D 3, 3, () N
— 1% Ny N, — n %, x, ((n)) N, S ®
Since  f()=) nN,=N,— N, | - (6)

2

equation (3) is entirely a function of N, and thus leads to an exact solution of Ny
We can now show that we cannot decouple the equation for N; from that for N,
unless ¢ and y are chosen to be (n—1) and 7 respectively. It is clear that any devia-,

tion from linearity like 4 (n) ~n'2 or any power of 1 leads to a hierarchy. of equation
in functions

S ) = ) Ny, fo(t) = > N, 2 (n, ete.

Thus the decoupling of the equation is not possible. Even a slightly different cljoig:e:_
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of ¥ and | (preserving the linearity in n) would also disallow such g d
Consider using

ecoupling,
(n) = f(n) + a,
and f(n) = Ji(n) + b.

__dN,
dt

Then == (a+x) N2+ 2 Ny f(t) +ax; Ny z N,
2

— Xy Xy f(t) — b xy X Z-Nn.
2

This equation cannot be solved unless N=2X2; N, is known. The factor ¥ is a strong
function of time for short times. This can be seen by the following argument. For
short times after quenching, the rate at which the single vacancies are depleted is the
cause for the production of small clusters. Also from the analysis when ¢ and b are
Zero we know ﬂl&t N, has a very short time constant. Since f(¢) is linear in N, and
N = f(¢)/{n), N would nearly have the same dependence as N; because in this short
time {n) does not change much.

The solution of (3) has already been given. (see equation (1.19)). Here we shall
discuss the result. Tt is clear that the asymptotic value of Ny is Nyx,/(Ny-+x,). This
expression, apart from giving the time dependence of Ny, also provides an estimate
of the nucleation time of small clusters. If we regard the nucleation time as the time
required to reduce the concentration of single vacancy units to approximately a few
percent of the initial value, then the nucleation time for gold aged at 313°K and alu-
minium aged at 283°K is of the order of 1072 sec. (The value of N, used is 3x 107
and 2% 1074 respectively. These numbers have been obtained using the parameters
listed in table 2. In the case of the formation of tetrahedra, the effective migration
energy of divacancies decreases by 0-07 eV due to the temperature dependent sink
efficiency of tetrahedra. See Jain and Siegel 1972b; Sahu et al 1976.) This result
agrees with the computer calculations of Kiritani (1973) for the case of aluminium.
The time constant is determined by the product of the mobility and the initial concen-
tration of single vacancy units (since x,< N, as will be shown later). Thus the nuclea-
tion time rapidly increases as the temperature is reduced. (The above definition
of the nucleation time has the simple interpretation that it is the time required for the
formation of clusters of small sizes having a few vacancy units on an average.) The
fact that the concentration of single vacancy units decreases rapidly with a S}nall tiz_ne
constant coupled with (6) tells us that the concentration of single vacancy unlts.attamys
an equilibrium with the configuration of small clusters in a very short time. Since N,
is monotonically decreasing, we can decouple (5) and (4) from (3) and solve (5) and
(4). This decoupling scheme is permissible because the decay time of Nj is very .s‘mali
in contrast to the time scale involved for the formation of large cluster‘s as wxll' be
‘shown later on. Here it would be sufficient to indicate it by the following physical
argument. In the initial stages of clustering only small clusters are form.ed..gn f:ours?
of time some clusters grow at the expense of other clusters via a redistri utlog 0

single vacancy units among themselves. '




550 G Ananthakrishna

In order to solve (4) and (5) we use the generating function approach. We define

x(Z,0) = N, Z™ |Z] > 1. ©)
2
Clearly both
-4
X(1, t) =ZN,, and——az = [ (1)
)

exist, since we know that the latter represents the total number of vacancy units in
clusters of all sizes. Therefore X(Z, t) is an analytic function of Z for all Z>1, and
all its derivatives exist in that region. Now we wish to transform (5) and (4) into a
differential equation for X(Z, t).. This is done by multiplying (4) by Z=% and (5) by
Z-" and summing over n. After suitable manipulations we get

X xiN2Z-t |
o _ w27 | 0X
ot 2

1) (NI““ZX2) xl + X2xlN2 (Z“g——ZZ"l). (8)

‘We can see that if we set Z=1, we get the equation for f(¢). Equation (8) is a first

order partial differential equation. We have obtained the solution of this differential
equation for regions of time after N, has reached its asymptotic value with the assump-
tion that ignoring the term N, does not affect the solution very much. The method
of obtaining the solution and the justification for the above assumption about ignor-
ing the N, term has been outlined in appendix 1. The solution that we have obtained
with the initial condition that X(Z, 0) = 0, which reflects the fact that there are no
clusters of finite size at ¢ = 0, is ‘

__51+b Z(1—b) L
& =21 In [Z—b——qﬁb(Zml)} e T

L pEDtb—2
bb—Z+4b(Z—1)]

©)

where b = Ny/(Ny+x5); ¢ = x; Xy and a= x, cb?/2.
In order to obtain N,, we have to invert the above function, which mvolves per-
forming the contour integral

w1y | 10
271952 Z, 1) dZ. (10)

Instead, we expand the left hand side of (9) in inverse power of Z and collect the co-
efficient of Z™. This gives

N"(t) ab"* (1“¢\"[1+bq{ 96(b 1) ]

(0
c(1=bdy L n  (1—¢) (1—bg)
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As £ 0, clearly N, = 0, which means that there are no vacancy clusters of finite
size at t = 0. Ast— oo, N, takes the form given by

v kb _ a(l+b)
" b*cn = binc

exp [n1n b], ' (12)

which is the stationary solution of (5). The distribution given by (11) and (12) are
peaked at the origin and therefore is not a realistic distribution. The reason for the
non-evolution of the peak and the peaked nature of the distribution can be many-
fold, some of which have been mentioned in §1. We have investigated this problem
in detail and the development of a continuous model presented in the next paper
(paper IIT) is the result of this investigation. Here we mention a few points in this
connection. .

The basis for the continuum model is this discrete constant binding energy model.
A Taylor series expansion for p,,, is used upto second order. The resulting partial
differential equation is slightly modified to satisfy the conservation of the total num-
ber of vacancies. This equation looks very similar to a Fokker-Planck equation but
should be only regarded as a differential equation for the distribution function for
the sizes of the clusters. The method used in developing the continuum model sheds
some light on the problem at hand.

Tt may be recalled that the choice of the number of absorption and emission sites
have been chosen to be y(n)=n—1 and J{n)=n respectively. Ina realistic situation
these can vary as the clusters grow for instance from n for small loops to nl/? for
large loops. Such a change in the choice of ¢ and J can give Tise to very different
partial differential equation for the distribution of clusters. The solutions will be
very different and the position of the peak will be at non-zero value of n. Even in
the case of the choice we have made for () and J(n), if we make a small change, it
produces a different distribution as we have shown in the next paper. (see paper III).
Indeed the differential equation which we have evolved self-consistently corresponds
to a change by a factor of % for both y(n) and y(n). Another factor which may
have contributed is the assumption about constant binding energy.

In the discrete model, it is possible to make the peak of the distribution evolve in
time by choosing y(n)=|n—n,—1| and J(n)=| n—ne|, where o is the position of the
peak at £ co. The value of n, has to be supplied by experiments. The method of
attack is exactly the same and will not be given here as it does not give any better
insight into the problem except for the final result. The distribution obtained in this
case is

[ A N, (ny—1) (&*—b")

X,, for n<<n,
(ng—n) (1—b) '

N, = -
A No(no"—‘ 1) (ba__blln) bn—"o xé’ for n>n0,
(n—ny)

where A is normalisation constant. Although the distribution is not strictly" s;fmmetrllc
about n,, a plot of N, for typical values of No, X and 7, shows that it 1 nearly
synmimetric.
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- In view of all the above statements we regard 7 in (1 1) and (12) to be measured from
the peak or we can rewrite the distribution in the form

2%, 2Nyxp) BP0l
(No+x2) | n—ng|

Ny = (13)

The position of the peak n, should be supplied by experiments.

3. Comparison with experiments

Having obtained the distribution function, we can compare several results with
experiments. These are: (a) the decay of the concentration of single vacancy units
and the nucleation time of small clusters, (b) the total density of the clusters as a
function of time and temperature, (c) the average size of the clusters as a function of
time and temperature, (d) the characteristic time for the growth of large clusters. We
shall compare these quantities with the results on quenched gold and aluminium.
(Kiritani 1973; Yoshida et al 1963; Jain and Siegel 1972a).

The first main result that emerges out of our theory is that the concentration of
single vacancy units decreases exponentially with a very short time constant. This
indirectly leads to information about the nucleation time. In a realistic situation, a
cluster that becomes stable at some size may be regarded as a nucleus. In the case
of vacancy loops, it has been experimentally well established that there is no stable
cluster and the binding energy increases gradually with size (Kiritani ez al 1969). In
contrast there is sufficient indication that the formation of the stacking-fault tetra-
hedra has a stable size below a certain temperature. The exact mechanism leading
to the formation of stable nucleus is not clear. In any case, our theory provides a
useful information about the nucleation time. We have defined the nucleation time
', as the time required for the concentration of single vacancy units to reduce to a
few per cent of its initial value. This definition has a simple interpretation that there
are few vacancy units in each cluster on an average. This definition yields a value of
10~2 sec for +' at 283°K for aluminium which agrees with the value obtained by Kiri-
tani (1973) on computer. In his approach he defines two quantities namely the tran-
sient time and the nucleation time. Our definition of the nucleation time is the same
as his transient time. The value of the nucleation time (in his definition) is larger
by an order of magnitude than the transient time. We do not have an equivalent
of Kiritani’s nucleation time due to the nature of the decoupling used. Although we
have only indirectly obtained information about the nucleation time, it does give an
idea of the time scales involved. Experimentally the time scales involved can only
be estimated indirectly and therefore no quantitative comparison can be made.
(Kiritani et al 1969). A plot of the nucleation time for the formation of vacancy loops
in quenched aluminium and the formation of stacking-fault tetrahedra in quenched
gold is.shown in figure 1. The nucleation time rapidly decreases with temperature.
This should be expected as the mobility of the vacancy units increases. In all proba-
bility, the estimated nucleation time is only a lower bound.

The shape of the distribution is not realistic. Experimental curves are nearly
Gaussian often with some asymmetry. However, as for the calculation of averages,
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Nucleation time (sec)

104 | 1 : |
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Ageing temperature (°C)
Figure 1. The nucleation time for faulted loops and stacking-fault tetrahedra in

aluminium and gold respectively. The curve Al (K) corresponds to the work of
Kiritani (1973). »

the agreement with the experiment will be shown to be quite good. Consider the
calculation of mean square number of vacancies in a cluster.

o 0
RPNV —
et/ 2 Tl
2 2 ’

The prime on the summation indicatés nn, in the summation. The value of ny
is generally large, at least at temperatures of interest in this paper. If we use this
fact, we have

s S e B /S
CEDN D W/_Zzsml’

—ny+2
o0 o0}
' bm ! bm
S ot /158
1 1
So {n?S — ”(2) — Ny (Ny+x3) (14)

X2 In [(Ny+ xa)/xs)

Thus we see that x, is directly related to {n*) anfl ng, and .therefore Xy C?n Ee
regarded as a parameter to be determined from experiments. Given the valpe 0 51:11)
and n, -at any temperature x, can be determined. The total concentration of the

clusters, .

. N+ | (N0+X2) _ (15)
T __ — el n g —m
Ns _g Nu = 4% o =) X
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It is clear from (14) and (15) that the temperature dependence of the total density N
and the mean squared average of the number of vacancies is opposite. (If (n?)1/2
increases with temperature, 7, also increases. However, the temperature dependence
of these two quantities would be in general different.) Thus if {n?} increases with
temperature, N7 decreases and vice versa.

Now if we wish to compare with experiments, a little care would be needed in
identifying the theoretical distribution in n-space with the experimental distribution
in the r-space. Wc have shown in appendix B that the total densities in #- and r-
space are the same. With this identification, we shall proceed to compare the theo-
retical and the experimental densities. (The total density in theory is denoted by
Ng = ZNg, where Z is the total number of atoms per cm~2.) The problem in using
(14) is that {n*) is not generally supplied by experiments. In cases where the distri-
bution is given, these can be easily calculated. The case of gold (Jain and Siegel
1972a) and aluminium (Kiritani 1973, Jain and Siegel 1972b) where the distributions
are given will be first considered. The concentration of vacancies contained in the
clusters is calculated from the experimental data using the expression Ny=aa {r*>
N§/4 where N¥ is the total density of the clusters experimentally measured, {r*) is the
- mean squared radius of the clusters and « is equal to unity for tetrahedra, and 4=/4/3
for vacancy loops. (We wish to remark that the value of N, that we will use for
computing N will be different from that used for calculating the nucleation time for
vacancy loops earlier. While computing the nucleation time, we used a value of
2x10~* to facilitate comparison with the value obtained by Kiritani (1973). In the
present case, the value of N, has to be consistent with the total number of vacancies
in the clusters.) The value of (n*)!/2, 5, and N, have been listed in table 3, (Table
3 also contains data as given in Kiritani 1973, Jain and Siegel 1972a, Yoshida et al
1963. Incidentally, there is an error in scale of the y-axis of figure 16 of Kiritani
1973. The y-axis should be multiplied by a factor 10" for experimental curve
and a factor of 10 for the theoretical one (Kiritani 1977).) The calculated values of
the total density along with the corresponding experimental values have also been
listed in table 3. The agreement in the case of gold is seen to be quite good. In the
case of aluminium, the theoretical values are nearly 25 times larger than the corres-
ponding experimental values. This is due to the fact that the theoretical distribution
is highly peaked in contrast to the experimental ones. In addition the experimental
distributions are nearly symmetric which generally lead to small values of variance.
(The value of (n) is close to ny in these cases. For example, in the case of alumi-

nium quoted in column one, row three, {r) —=276A with ro=27 5;;.) Thus these values

Table 3. Total density of clusters

Total density per cm®

(rayte . -
(&) (n*y12 g N, X3 Experimental = Theory
ZNT
Aus 410 85259 62977 3 X 10~ 151 x 10~® 2-00 X 105 4-34 x 10t
Alb 642 193347 172897 6 x 10-° 196 x 10~ 2:00 x 10®* 596 x 101
Ale 276 36204 33716 54 x 10-° 125 x 10~ 100 X 104 3-26 x 10

a Jain and Siegel 1972a; b Yoshida er a/ 1963 ; ¢ Kiritani 1973.
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of {n?)!/* and n, lead to larger theoretical densities. In the case of gold, due to the
asymmetry the difference between (n®) and n, is larger than the corresponding
symmetric case, i.e, a distribution with the same value of (n?) and n,. Therefore
the agreement is better.

Now we can consider the temperature dependence of NI. In order to obtain this,
we need the temperature dependence of (n?) and n,. (This is necessary since x, is
now a parameter.) Generally (n?) and n, are not given. These can be obtained
in the cases where the distribution is given. The two distributions given for vacancy
loops (Kiritani 1973, Yoshida et al 1963) indicate that there is very little asymmetry
in these distributions. We take this feature and other features of these two cases to
be representative at other temperatures as well. For these two cases, we find that
the values of (n?)1/4/{r?/a%)1/2 and n1/2/{r?/a*)1/? to be very close. The values of
these quantities that we have used for calculating »n, and {n®) at other temperatures
are 1-047 and 0-996 respectively. The data used (first four column of table 4) have
been obtained from figure 18 of Kiritani(1973). We note that the concentration of
vacancy units in these cases (calculated from the data using the formula Ny = aa
{r*y NE/4) is not constant. The values of the theoretical densities ZNT at various
temperatures along with the corresponding experimental values have been tabulated
in table 4. A plot of the temperature dependence of the total densities is shown
in figure 2. It can be seen that the theoretical and experimental curves are nearly
parallel.

The time evolution of the distribution has two contributions, one of which vanishes
identically as ¢ - co. The time required for the formation of large clusters is given by
7"~ (Np-Fx)/%,%,% The value of +” that we obtain for gold and aluminium are
larger than the corresponding experimental values by two orders of magnitude. This
is due to the fact that +/ is sensitive to the value of x,. The additional reason may
be in the very nature of the distribution.

4, Summary and discussion

To summarise the rate equations for clustering of vacancies were writ.ten down' assum-
ing only single vacancy units to be mobile. By defining a generating function, t_hes1
coupled differential-difference equations were converted into a first order partia

differential equation for the generating function. Using the fact that the total

Table 4. Temperature dependence of the total density

Apgeing v Total density/em®
tempe- : 0-
rat(xgir%s <r(i) Lokt Mo N107 e Experimental ~ Theory
s 1
—20 66 2173 1973 275 l1x 10 86x10¢ f:;ﬁ'il?oze
—10 97 4591 4131 411 689 x 10 62X igu 79 w 101
0 150 - 10976 9887 436 340 x 10— 30X 101 32 x 10
10 276 36204 33716 54 125x 1070 10X o8 16 % 108
20 438 © 93082 8406 94  62x107%0 68X io“ 92 5 104
30 700 302812 274238 134 295x 107 v-?fz' X e e
Pu""‘g
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Figure 2. Temperature dependence of the total density of clusters. ’

number of the vacancies is conserved, an exact solution for the decay of the concen-
tration of single vacancy units was obtained. The form of the solution is exponential
with a short time constant. This allows us to decouple it from the differential
equation for the generating function. The solution of N; apart from giving the
nucleation time for small clusters, also suggests that the collapse time for cascades
produced during irradiation would be (N,x,)~! where N, is the local concentration of
the vacancies produced during irradiation. . This time is expected to be of the order
of 10-2 to 10~ sec at 300°C in aluminium if we assume N,~ 10~4to 10-6. Then, the
solution of the differential equation for the generating function was obtained. The
distribution function which was obtained by inverting the gemerating function
predicts the total density as a function of temperature and time given {n*) and ngy as
.a function- of temperature. The results agree well with the experiments. The
theory- also predicts the characteristic time required for the formation of large
clusters. : : ' oo

- We shall recall the idealisations and approximations made in obtaining the solution
of the problem and comment on them. The number of absorption (and emission)
sites has been taken to be proportional to n—1 (and n) in order to facilitate decoupling
as has been mentioned earlier. In the'case of vacancy loops the number of absorption
sites and emission sites are functions of the size of the loop and for small size it is
linear in n, changing over to nl/% for large sizes. From the connection that we have
investigated between the solution of differential-difference equation and ‘the associ-
ated continuum equation, it appears that this may be one of the factors contributing
to the non-evolution of the peak. The major idealisation in modelling the physical
situation is in the assumption about the binding energy of a vacancy unit being inde-
pendent of the size of the cluster. Some justification has been offered in §1. The
idealisation is possibly another factor responsible for the unphysical features of this
distribution. In a separate paper (paper No. III) we shall see how the unphysical
nature of the distribution can be overcome, The quantity x, is dependent on {n)
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and has to be regarded as a parameter, and therfore many factors which have not.
been taken into consideration while modelling such as the effect of impurities, the
presence of various kinds of sinks has been taken care of (at least partially), since
these have a direct effect on the sizes of the clusters and the total densities which are
in turn a function of x,. , o

Two approximations have been made in obtaining the solution of the differential
equation for the generating function. The first one is to ignore the term containing
N,. The justification for this has been given in appendix A. The other approxi-
mation is the decoupling approximation, wherein we use only the asymptotic value
N, to solve for X(Z, 7). This approximation assumes that there is a smooth evolution
of N,(t) for shorter times which matches with the solution obtained at the start of
the growth process (i.e., after Ny has reached its asymptotic value). This statement
appears to be justified since the solution N,(t) obtained is. consistent with the initial
condition that we have used in obtaining the solution X(z, t).” This is to be expected
for two reasons namely, first, the decay time for Ny to reach its asymptotic value is
very small and second, after decoupling, the vacancy units redistribute’ themselves
-among the several clusters. Thus the evolution clusters proceeds in a smooth way.
This is supported by experiments done by Jain and Siegel (1972a). For shorter times
the theory is incapable of predicting the distribution. However, there may be short
transients superimposed on the present solution obtained. This aspect can be seen
from the fact that N,(f) goes to zero as ¢ is-allowed to go to Zero.

Acknowledgements

The author is very thankful to Prof. S K Rangarajan for many helpful discussions
and valuable comments, to Dr G Venkataraman for his interest in this work and to
Drs S Dattagupta, D Sahoo and V Balakrishnan for their suggestions and help.

Appendix A

In this appendix we. shall outline the method of obtaining the solution of the differen-
tial equation for the generating function. At the outset we wish to state that we
have been able to obtain the solution only if the term containing N, can be disre-
garded and over the interval of time after N, has reached its asymptotic value. Consi-
der the equation without N, term. Later we shall provide some justification for this
assumption that ignoring the term containing N, does not affect the solution of
X(Z, t) seriously. First, we observe that even with this assumption, this equation
‘cahnot be solved in closed form if the full time dependence of Ny is used. Fortu-
aately Ny has a very short time constant and N; attains its asymptotic value in less
than a second. So we could use the asymptotic value of Ny in (8) and solve the diffe-
rential equation assuming that there is some kind of a smooth evolution of the clus-
ters for time interval shorter than this. This-would mean that we have to extend the
time domine upto zero. . Using the asymptotic value of Ny in (8) we get

ox - ox “ A1
i A U |




where the'constants are
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b=Ny/(Ny+x,), c=x;x, and a = Xoch? /2.

The subsidiary system of equations take the form

d___dZ__dy
1 e@Z=DZ—b) dz—

The solution for these equations are

a 1 1--b Z 1 Z—1 ;
g 1 | = K, A2
X c[ e Rt nZ—b] (A.2)

Z—1 ‘__ Z—1 [~ -
and ;-Z-__bexp [—c(1—b)t] _Z—__br;S @) = K". (A.3)

Eliminating &’ and k" from the above two equations we get

' all+b, Z 1 Z—1 1 Z—1 )
Z, 1) =2 I 1 L &1 ., (A4
X(Z, 1) b[b2 T T T e bZ]+F(Z—b¢(t) A4

where F(y) is an arbitrary function of its argument to be determined by using the
initial conditions. At =0, all N, are zero except n=1, which implies that ¥(Z, ¢)=0,
At this point it may be appropriate to point out the apparent inconsistency of using
the asymptotic value of N; and. using the initial condition x(Z, t)=0. After having
used asymptotic value of N;, we do not expect the solution of x(Z, t) to be valid for
times shorter than the time required for N, to reach its asymptotic value. (Note

- that this is less than a second.) Therefore there will be inconsistency for shorter times,

in particular at =0. (#=01is a point in this region.) If the full time dependence of
N; was used, then it is clear that more and more single vacancy units would flow back
from N, to N;. Thus by disregarding the time dependence of N;, we have prevented
the back flow and therefore cannot account for some vacancy units in this region, in
particular -Ny—N; (o) vacancy units at =0, (An alternate initial condition that
suggests itself as a possibility is to use x(Z, 0)=N3/(Ny+x,) which means that at
=0 itself so many clusters are formed. Apart from the fact that this would be
unphysical, it also raises a question about the distribution for N, to be used for
computing x(Z, 0) which is required for the initial condition. Thus we will use
x(Z, 0)=0 as the initial condition. As we see later, this condition gives N, which is
consistent with the initial condition i.e., as t-0, N,;->0.) With these remarks in mind,
we shall use the condition (z, 0)=0. Then the solution that we obtain is

Z =4 fl4b [ Z1—p) 1 1
XZ: 1) c% B n[z—b—¢b(2-1)J+1-—b né—

$(Z—1)+b—Z } ;

56— 2196z &




Stochastic theory—?2 559

Now we shall consider the justification that can be offered in support of the assumption
that throwing away the term containing N, should not affect the solution of x(Z, ¢)
seriously. First, recall that we solve for x(Z, t) only after N; reaches its asymptotic
value. By this time several clusters would have formed and N, happens to be just
one of them. Thus ignoring the term x;x,Np(Z2—2 Z™) may change only the magni-
tude of the coefficient N, in the expansion of x(Z, t), since this term is equivalent to a
source term. However, the total number of vacancy units contained. is proportional
to 2N,, whereas, X(Z, t) contains several N,. Thus ignoring this term should have
very little effect on x(Z, t). Further there are other terms which contain N, in the
equation for x(Z, t). These terms arise from

— %% xy (2-1) (Z-D)

and give a contribution of
+22Z-8 x, %Ny (Z—1) (Z—D).

The term with the coefficient Z-* cancels the corresponding term in the source term.
_ The other terms are, however, larger by a factor of two. Thus the number of vacancy
units that we have ignored (contained in the term N,) is small. In addition the value
of N, at the beginning of the process of growth of the clusters is small. This can be
seen by the following argument. We shall first argue that N, would have reached
equilibrium with N, by the time N, reaches its asymptotic value. Since AN, is mono-
tonically decreasing and since we have used the asymptotic value of Ny (due to its
short time constant), it means that N; has attained equilibrium with the remaining
clusters, particularly with N,. Only a redistribution among the various clusters can
occur and any vacancy emitted from N, or any other clusters is to be interpreted as
going into another cluster. This is due to the fact N, has already reached its asymp-
totic value. (It may be noted that a similar argument would not hold for shorter
times.) Thus &, is in equilibrium with Ny and therefore, it is most likely to be of
the order N;2 exp by/kT, where b, is the binding energy of the divacancy unit. Thus
the number of vacancy units contained in this term is small right at the beginning of
the process of clustering. (Note that there is possibly a time dependence of N,. This
may give raise to a short transient.) Also we wish to stress that there may be.some
effect of this approximation on the value of N, at any instant of time, but we would
not be interested in small clusters, since (n) is of the order of 10% B

Appendix B

Tn this appendix we will show that the total density of the clusters measured in
n-space is equal to the total density of clusters in r-space. This follows from: the fact
that the total number of vacancy units in beth the spaces should be the same. Con-
sider the concentration of vacancies in the clusters int n-space. - —

f@) = C,,=2n'N = J:an(n)dﬁ,,
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where N(n) is the concentration of clusters in this space. Using the relation n=ar?/ .
(a=1 for tetrahedra and a.=47r/ V3! for - loops), we have ‘

-C _— aﬁf N( 2/a2) 2rdr J 3 PN Lo (B‘l)n

The expenmental dxstrlbutlons are measured in r- or in L-space and the concentra—
tlon of vacanmes:stored in the clusters is given by

5 P 2 . .
F QRIS B SN O faee e

e E e e,
where NS is the number density or the total density. per cm=2 in r-space.

C,=add [ PNQ)r = aa [ P N (Ddrja.  (BI
The distribution of clusters

N“ (r) = 4/a3 )

is i r- space (per cm‘3 per Angstrom umt) and N ‘(r) is the correspondmg concentra-
tion. Comparmg (B 1) and (B 3), we have : '

2a r/azN(r2/a2) = N°¢ (r)

-The total density of vacancy clusters in #n-space is

z j "N('n)&f = [ N*@ydn =20 | rdrja® NG T
= J‘ 2a rdr[a® N* (ra/az) = f N“ (r) dr = N".i‘.‘- . (B4

Thus the total denS1ty inn and r-spaces are equaI

References = ° R
Ananthakrishna G 1977 Reactor Research Centre Report 19, p. 104

Ananthakrishna G 1979a Pramana 12 (referred to as paper I)

Ananthakrishna G 1979b Pramana (in press) (referred to as paper I1I)

Ananthakrishna G 1979c Pramana (in press) (referred to as paper IV)

Qotternl R M J 1965 Lattice defects in quenched metals eds R M J Cotterill, M Doyema, JJY Jackson
‘ and M Meshii (New York: Academic) p. 97
Hayns M R 1976 J. Nucl. Mater. 59175

Jain.X.C and-Siegel R W 1972a. Philos. Mag. 26 637
Jain K C and Siegel R W 1972h Philos, Mag..15 105 i
Kiritani M, Shimomura Y and Yoshida S 1964 J. Phys Soc. Jpn 19 164
Kiritani M 1964 J. Phys. Soc. Jpn. 19 618

Kiritani M, Nishikawa T and Yoshida S. 1969; J.. Phys. Soc. Jpn, 27 67

v




Stochastic theory—2 561

" Kiritani M- 1973 J.. Phys. Soc. Jpn. 35 95

Kiritani M 1977 Private communication

Kiowa M 1974 J. Phys. Soc. Jpn. 37 1532

Montroll E W 1967 Energetics in metallurgical phenomena (New Vork: Gordon and Breach) 3
123 : .

. Sahu R P, Jain K C and Siegel R W 1976 presented at the International Conference on properties
of atomic defects in metals held at Argonne National Laboratory

Yoshida S, Kiritani M and Shimomura Y 1963 J. Phys. -Soc. Jpn. 18 175




