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1. Let k and K be two symmetrical convex domains in the plane with centres
at the origin. Suppose k and K are polar reciprocal with respect to the unit circle
C centred at the origin.

Let A(K) be the critical determinant* of K and c(k) the covering constant of k,
i.e. the upper bound of the determinants of the covering lattices for k, where a
lattice A is called a covering lattice for k if every point in the plane lies in one
at least of the bodies obtained from k by applying to it all possible lattice translations.
Mahler (1948) proved that

1< AWK Ay <3, .. .. .. .o (A)

and that both the inequalities are best possible.
It seems worth noticing that

2< AK) k) < 2, R € 3

and that both inequalities here again are best possible.

2. In this section we prove (1).
Write H (K) for the area of the smallest symmetrical convex hexagont cir-

cumscribed to K and A (k) for the area of the largest symmetrical convex hexagont
ingeribed in k. Then it is known that

and
ck)=h(k); .. .. - .. @
(2) follows from Theorem 1 of Mahler (1948) and Theorem 3 of Dowker (1944) while
(3) is lemma 8 of Bambah and Rogers (1952).
Leet H be the symmetrical convex hexagon circumscribed to K with area a(H) =

H(K). Then H’, the polar reciprocal of H, is a symmetrical convex hexagon
inscribed in k so that

c(k) = hy(k) = a(H'),
where a(H') is the area of H'. Consequently
AE) olk) = JH(K) h(K) = Ja(H) o(H) = 25 .. .. (4
the last inequality following from inequalities 4 of Mahler (1948).

* For definition see e.g., K. Mahler, Proc. Eoyal Soc., A, 187 (1946), 151.
+ By a hexagon we mean a polygon with at most six sides.

VOL. XX~—No. 1.



120 B. P. BAMBAH : ON POLAR RECIPROCAL CONVEX DOMAINS

Now suppose % is the convex symmetrical hexagon of area a(h) = h,(k) inscribed
in k. Then 4/, its polar reciprocal, i8 a convex symmetrical hexagon circamseribed
to K, 8o that

A(K) = 1H(K) < ta(k),
where a(h’) is the area of 2. Therefore we have
A(K) e(k) = 1H(K) h(k) < fa®’) a(h) < §, .. .. (B)

the last inequality following from inequalities 4 of Mahler (1948).
(4) and (5) together prove (1).
Let k& and K be the squares :

k:lz|<1;(yl<1; K:|z{+[y]< 1.
Then
ok) =4, A(K)=13ando(k) AK)=2. .. .. .. (8

If k and K become the unit cirele or the regular hexagon inseribed in the unit
circle and its polar reciprocal, then

3./3 3
o) = 22 Ay =22
and
olk) A(K) =1, .. .. .. )
which together with (6) shows that the inequalities (1) are best possible.

3. From the well-known results
87" V(K) < o(K) < V(K) (Rogers),

2" Vi< A (k) < ai Vik), a,->4921 as n— o
(Minkowski and Davenport-Rogers)
and
2" g,

i)} VR V(E) <J,

(Dvoretzky Rogers and Santalo)

(where J, is the volume of the unit sphere in n dimensions), one can find analogous
inequalities for ¢(k) A(K) and ¢(k) ¢(K) for polar reciprocal symmetrical convex
bodies k and K in » dimensions but they appear to be far from best possible.
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