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If § is a symmetrical convex domain in R, then it is known that the best
general covering density 8 (S) of S is equal to its best lattice covering density
0. (S). Examples of symmetrical as well as non-symmetrical star domains
Sin R, are given for which 6 (S) < 6,(S). Forcylinders @ = S x [~4, 4]
based on symmetrical convex domains Sin R, one has 8, (S) = 0, (C). 1t
is shown that this result need not hold if S is a star domain,

§1. Let S be a set in the n-dimensional Euclidean space R,. Let 0, (S),
6 (S) denote the densities of its best lattice coverings and best general coverings
respectively. If S is a symmetrical convex domain in R, it was proved in the
1950’s that 6 (S) = 6, (S) (Toth 1950, Bambah and Rogers 1952, Bambah et al.
1964, Bambah and Woods 1968). The question whether 0(S)= 6,(S) in R,
for all convex sets S or for all star domains S (symmetrical or not) seems to have
been still open. Stein (1972), however, has produced examples of symmetrical
star bodies in R;, and non-symmetrical star bodies in Ry for which 0 (S) < 6, (S)
(His sets have other nice properties too). In § 4 we give examples of two dimen-
sional star domains S (symmetrical as well as non-symmetrical) for which 6 (S)
< 8, (S).

If € is the cylinder § X [— 4, 1], then, since 0(S)= 0,(S) implies 6, (S)
= @, (C), it follows that if S is a symmetrical convex two dimensional set then
6, (S) = 6, (C) (for an independent proof see Bramah and Woods 1968). That
the result 6, (S) = 6, (C) is not true if Sis a star domain (symmetrical or not) is
shown in § 5. This result is in an obvious sense an analogue of a result of Daven-
port and Rogers (1950) on critical determinants of cylinders based on star sets.

§ 2. Let SC R, and A be a discrete subset of R,. We say that (S,A) is a
covering if R, c U (S+ A) where S+ 4 ={X+ 4: XeS}. If A is a lattice,
AEN

then (S, A) is called a lattice covering. Let S have finite volume V (S). For
any covering (S, A) we define its density (S, A) as follows:

Let ® be the box |x,|=<<s (i=1, 2,...,n). Let N(®)denote the number
of sets S + 4 which have a point in common with . Then

(S, A) = liminf Jl’_(%%)l:—(s).
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If A is a lattice then 0 (S, A) = g((TS)) where d(A) is the determinant of A. We
define

0 (S) = inf { 0 (S)A) : (S, A) is a covering}
and

0, (S) =inf {0(S,A) : (S, A) is a lattice covering}.

0 (S) is called the density of the thinnest covering of S and 0, (S) is called the
density of the thinnest lattice covering of S. If we define the covering constant
C(S) of S by

C(S) = sup {d(A):(S,A) is a lattice covering},
then

V(S
ACES

The theorems we prove are:

Theorem 1—There exist in R, star domains S (symmetrical as well as non-
symmetrical) for which 0 (S) < 6, (S).

Theorem 2—For a set S in R, let @ be the cylinder S x [—1, 3] of height 1
and base S. There exist star domains S, symmetrical as well as non-symmetrical
for which C(€)> C(S), so that 6, ()< 0, (S).

We recollect here the definitions of a star body, a star domain and a star set,
A set S C R, is star body if 0 is an interior point of S and every half ray through
0 meets the boundary of Sin atmost one point. A two dimensional star body is
called a star domain. S is called a star set if it is closed and 2 X e S whenever
0<<Ai<<1 and XeS.

We would like to remark that just as Theorem 2 is in some sense an analogue

of Theorem of Davenport and Rogers, Theorem 1 can be looked upon as an
analogue of a result of Wolf (1962) and Groemer (1964) on admissible sets.

§ 3. In this section we shall construct a symmetrical star set 7" for which
0(T)< 0. (T). Let Py, ..., Py be the points (0, 1), (—1, 1), (—1, 1), (=2, 0),
(—L0), (—=2,—%3), (—2,—1) and (—1,—1) respectively. iLet. n be the
polygon O Py, Py, ... ,Pgand T'= = U(— n), where — & is the image of = in 0.
Then T is a star set with centre 0 (see Fig. 1) and area a (T) = 5. We shall prove
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Theorem 3—O0(T) << 5[4 < 0, (T).

Proor: Let T" be the lattice generated by (4, 0) and (0, 2), then 4 (I') = &.
Let A=TU([ + (1,0). Then (7, A) is a covering with density 6 (7, A) = 5/4.
Therefore 6 (T) << 5/4.

Now we shall prove that 6,(T) > 5/4.

Since T has interior points, its best lattice covering density is attained by
some lattice covering (7, A) (e.g. Bambah 1953, Lekkerkerker). Therefore, it
is enough to show that for every lattice covering (7, A), d(A) < 4.

The following Lemma is easy to prove (see, e.g. Hans-Gill 1971).

Lemma—Let K be a bounded set in the plane with area a. Let A be a covering
lattice for K. Let Ae A, A0 and let o’ be the area of K N (K + 4). Then d(A)
< a-— o

Now we proceed to prove thatif (7, A) is a lattice covering then d (A) < 4.
Since T is closed and bounded and 0 belongs to its boundary, there exists a point
A = (ay,a)5% 0 in A such that 0T + 4 or Ae7. Since T is a star set we can
suppose A is primitive and replacing 4 by —4 if necessary we can suppose that
a, > 0. Now we deal with different cases depending upon the position of A
(see Fig. 2).

Case I: When A lies in one of the following regions:
Fa={x{<1,0<y< 4.
Ke={-2<x<—1L0<y<}(x+2)
Ke={3<<y<<x+ 1, x<0}.

Let K; be the rectangle |x|<<2, |y|<1.
Then A is a covering for K;, because T c K.
For AeqQ,,

aKin K+ ) =Q—a)@—|a,)>2—-HE—-D =4

R
Ry a |R
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For 4 e R,,
aKiN Ky +4) =Q—a)(@ +a)
= R—%(@+2]¢4+a)
=304+ 20, —a,t) >4
and equality holds only if @ =—2 and a,=0.
For 4 € @,
aKbn K+ 4) =Q—a)d +a)
>R—(a+ D@ +a)
= 4—3q,—a?>4.

and equality is needed if and only ifa, =0, a, = 1. Since Aisa covering lattice
for K;,

dA)<a(K)—a(K N K, + 4)<< 4.

with strict inequality except when 4 =(—2,0) or (0, 1). In this case one can
verify that a (TN (T + 4)) > 1 so that

dN<a(T)—a(T+ 4) nT) < 4.
Case II: When A lies in one of the following regions:
Ry={1<x<32 34<y<1}
Ry={1<x<2, 0<y<34NnT
Re=(=<x<1, 23<y<1}.
let K, be the union of the rectangles
T,={—-1<<x<2, —fi<y=<l1}
and
—T,={—2<x<1, —l<<y<{i}.
Since K, O T, A is a covering lattice for K,. a(K;) = 13/2. For Ae Q,,
KNnEK+ADDLn (—Ti+ =T N {Ty + (@ — 1, a,— 3/4)}
Therefore,
a(K.n (Ko + 4) = GB—ay + 1) (5/4—ay + 3/4) = (4—a) 2—ay) > 5/2,
For Ae R, K, N (K, + A) contains the non-overlapping rectangles.
l<x<2 —i<y<ljand {gi —2=<x<1, @~ 1<y<a, + {},.
so that
a(Ken Ky + A) =543 — ay) + 5/4 > 5/2.
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Llet Ae R I a, >3, K,N (K + A) contains the rectangle {—1 << x << 7/4,
0<<y=C1} of area 11/4>5/2. If 2/3<Ca,< 3 K,N (Ks + A) contains the
rectangle {— 1 <<x=<C3/2,—1<<y<<% + 1} of area 35/12 > 5/2. Hence in all
these cases d(A) < 4.

Case IIl: Let R,={32<x<Ty+1, 3/4<y<1}. If 4 R, then the
point — P, = (1,0) does not liein T + kA for k=%0,1. Also it lies on the
boundary of T U (T + A). Therefore to cover the points near it we need a point
B e A linearly independent of 4 such that(1,0)eT + B. Since the slope of 04
is positive and less than 1, the triangle OAB lies between the lines through (2, — h
and (0, 1) parallel to OA. Therefore, a (OAB) is maximum when B = (2, — 1)
or (0, 1). Hence

d(A) << max Qa, + a,, ;) = 2a, + a, <4.

There is strict inequality unless B = (2, —1) and 4 = (2, 1) and A, B generate
A. But this lattice is easily seen to be non- -covering for 7, because the points near
(1, 0) are not covered.

Case IV: AeRy={—3<y<x—1x<2} U{x=214%< y <3}

The point Q = (a, — a,,0) does mnot lie in T + kA for k=40, 1 and is on
the boundary of TU(T + A4). To cover the points near Q one gets Be A, B
linearly independent of A such that Qe T + B, ie. BeT + Q. Sincethe slope
of OA is positive and less than 1, as before

d(A) < max |det (4, B) |
where
={ay—ay+1,—1) or (ay—a,—1,1)
Therefore,
dA)y<<max {(a&y —a, + Da, + a,, ay — (a; — ay— 1) a,}.
=ay +{ay— a, + 1) a,.
The right hand side for fixed a4, is an increasing function of a,, so that
d(A) < 2a, < 4.
with strict inequality unless a, =1, a,=2. But (2,1) & K.
Case V: Ae Ry ={—1<x<y—1,3<y<1}

The point (@, + 1, a;), which lies on the boundary of T + A, does not lie in
T + kA for integers k== 1. Therefore, to cover points near this point we need
Be A, linearly independent of A4 such that Be T + (a; + 1,a,). As before, we
see that

d(A) < max |det(4, B)|,
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where

B=(a +3,a;+1) or (¢,—1,a,—1).
Therefore

d(A)=3a,— a, < 4

with strict inequality unless 4 = (a;,a) =(—1,1), B= (2, 2) and A, B gene-
rate A. But then A is not a covering for 7 because the points near the origin are
not covered.

This completes the proof of Theorem 3.

§ 4. Now we prove Theorem 1, i.e. construct star domains S for which
0(S) < 6, (S). Let Cy— (% %) D, (1 + % 3171) Let S, be the union
of the polygonal region with vertices C,, P,, Py, Py, P,, — D,, Py, P,, Pe,— C,
and its reflection in 0. Then for each natural number », S,is a star domain
symmetrical about 0 which contains 7. Each S, has a maximal covering lattice
A, (see e.g. Bambah 1953). Then d(A,) = C(S,) = C(T). Since A, is a covering
lattice for the rectangle |x|<C2,[p|<1, d(A,)< 8. It follows easily as in
Bambah (1953) that the sequence A, is bounded in the sense of Mahler and so
has a convergent subsequence A, converging to a lattice A which can be shown
to be a covering lattice for 7. From this we see that d(Ay) = C(5,) - C(T) < 4.
Therefore for k large enough, C(S,,) < 4. and

a(S,) a(S,,
BL (Snk) = C(an‘h—)’ > 7 k)d

Since the lattice I generated by (4, 0) and (0, 2) has determined 8 and
ru(r + (1,0)) is a covering for S,,, therefore

0 (Sy) =< Lf"") .

Hence 6(S,,) << 0.(S,,) for large k.

Remark 1: Since the sequence S, is descending C(S,) > C(S,.,) for al
n and so it foilows that 8 (S,) < 8, (S,) for all large a.

Remark 2: If we require S, to be non-symmetric we can for example replace
the vertex— D, of S, by —D,,.

§ 5. To prove Theorem 2, it is enough to observe that if S is one of the star
domains determined in the last section and € is the cylinder Sx[—1, 4], then the
lattice generated by (4,0,0), (0,2,0) and (1,0, 1) is a covering lattice for ¢ of
determinant 4, so that

C(Cy=4> C(S).
Hence

0L (C) < 0,(S).
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