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MR PresipenT, Distinguished Fellows of the Academy, and Friends !

For an Indian mathematician, there cannot be a greater honour than the award
of an Academy medal named after the great Srinivasa Ramanujan. Ramanujan’s
life has provided inspiration to generations of Indian and non-Indian mathematicians
since the early part of this century. His example not only gave a tremendous boost
to Indian Science, when the country was still far from freedom, but the continued
interest in his work all over the mathematical world demonstrates the fact that his
impact has not only been deep but also long lasting. That you have considered me
worthy of the honour fills me with deep gratitude and great humility. Thank you
very much.

I. RAMANUIAN’S FUNCTION «(n)

I would like to start the talk with Ramanujan’s function «(n). 1 was introduced to
mathematical research in 1946 by the great Professor S. Chowla through our study
of some properties of this function. There has been considerable development
in the study of this function in recent years culminating in the proof of a conjecture
of Ramanujan by P. Deligne in 1974. This proof earned for Deligne the prestigious
Field Medal at the International Congress of Mathematicians, 1978. At the Inter-
national Congress of Mathematicians, which meets once every four years, one to four
Field Medals are awarded to Mathematicians below the age of 40, whose work has
been considered most significant. Deligne was awarded this medal in 1978 for
his work on Ramanujan’s conjecture and related topics.

Lagrange proved in 1770 that every natural number is a sum of four squares.
One also knows which numbers are sums of two orthree squares. When one knows
that every number is a sum of four or more squares, it is natural to ask how many
ways such a representation is possible. To be precise, we define r,(n) to be the
number of ways n can be expressed as a sum of s squares and ask for the evaluation
of r.(n) for various s > 4. Ramanujan evaluated r,(n) and found that

ru(n) = ‘61561* o*11 (1) -+ eqq(m),

where op* (n) = (— )" Zua (— 1) d¥ is a known function, while e,,(n) is
a combination of values of the function « (n) introduced by Ramanujan, as follows :
= (n) is_the coefficient of x" in
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o

gx) =x{(1—x) (1—x% ....} 2 =21' <(n) x» ;

the best way to interpret the above is: for a given n, take the terms upto 1—x» on
the left hand side and then t(n) is the coefficient of x* in the resulting polynomial.
The function <(n) is known as Ramanujan’s Tau function. G. H. Hardy in his
tenth lecture on Ramanujan (pp. 161) delivered in 1940 remarked : I shall devote
this lecture to a more intensive study of some of the properties of Ramanujan’s
functions <(n), which are very remarkable and still imperfectly understood. We may
seem to be straying into one of the backwaters of Mathematics, but the genesis of
«(n) as a coefficient in so fundamental a function compels us to treat it with res-
pect.” In the light of the work of various mathematicians like Mordell, Hecke,
Petterson, Weil, Siegel, Rankin, Serre, Swinnerton-Dyer and Deligne, the function
has close connections with theories of modular forms, elliptic curves, quadratic
forms and so on and the function has continued to attract the attention of first rate
mathematicians. Ramanujan himself was fascinated by the funclion, made exten-
sive tables and put forth conjectures based on empirical evidence. He proved,
among other things, that

W(Tm + k)= Omod 7) if k =0, 3, 5,6,
<(23m + k) = O(mod 23) if k has one of 11 values,
(n) = n o(n) (mod 5)
and
o(n) = o,,(n) (mod 691),
where oi(n}) = Zan d* = sum of kth powers of divisors of n, o(n)= oy(n).

Inspired by this, various people, including H. Gupta, K. G. Ramanathan,
D. B. Lahiri, G. N. Watson, J. R. Wilton and others proved further results of the
above type. Working with Professor Chowla in 1946 and 1947, the speake-r proved
together with Professor Chowla, various congruence properties of =(n), typical ones
being,

w(n) = 5 n%0; (n) — 4dnay(n) (mod 5% if (n, 5) = 1,

<(n) = (n? + k) o, (n) (mod 3%, where k = 0 or 9,

(n) = o01,(n) (mod 28) if n is odd
and

%(n) = 0 (mod 20 3¢ 3¢ 74 23« 6917)*

“for almost all” n and given a, b, ¢, d, e, f.

D. B. Lehiri, D. H. Lehmer, M. H. Ashworth and O. Kolberg have proved
similar results for higher powers of some of these numbers; but all the modulii
considered are powers of the primes 2, 3, 5,7,23and 691. Ithas only recently become
clear from the work of P. Swinnerton-Dyer, P. Deligne and J. P. Serre that con-

*This result of S. Chowla is stronger than a similar result of Bambah and Chowla (1947 q, 8)
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gruences like the above can exist for powers of these primes only. There are
indications that there are limitations on the powers involved also (cf. Swinnerton-
Dyer, 1972).

While discussing the function r,, (n), Hardy remarked that it is dominated by

the term

;961 o1.¥(n). To justify the remark, he showed that «(n) = 0(n®), i.e.,
| ®(n) | € C n®for some constant C > 0. Since ¢,,%(n) is of order n'!for large #,
the remark is justified. = Ramanujan proved that «(n) = 0 (r”) and Hardy showed
thatt(n) = 0 (#%). On the basis of his tables and remarkable intuition, Ramanujan
conjectured that t (n) = 0 (n'%/2 *+ ¢) for every e > 0. This conjecture is known
as Ramanujan’s conjecture. R. A. Rankin proved in 1939 that «(n) = 0 (#®-1/5), and
after A. Weil’s results on solutions of Congruences (1948), which are connected with
the so-called Kloosterman’s sums, one knew that «(n) = 0 (n®1/* +5) for all
e > 0. Tt was only in 1974 that P. Deligne finally succeeded in proving the
Ramanujan conjecture, and the more general Pettersen and Weil conjectures, com-
bining formidable tools from Algebraic Geometry of Grothendiek with the classical
analysis of Rankin, Hardy and others.

Although, as already stated, S. Chowla has proved that =(n) = 0 (mod 2a 3% 5¢
7¢ 23e 6914) for almost all n, D. H. Lehmer (1947) showed that « (n) 5 0 for
n < 3,316,799. He also proved that if t(n) = 0, n is a prime. The lower bound
of zeros of =(n) can be increased in view of later results, e.g., it is known that <(n)
# 0 if n < 214, 928, 639, 999. It is generally believed that =(n) is never zero and the
belief is commonly called Lebmer’s conjecture. However, no one seems to know
how to prove this conjecture if it is true.

II. GoLpBacH CONJECTURE

Before going on to areas where my colleagues and I have made some contributions
in recent years, I would like to talk about an old challenge, where a great deal of
progress has been made without, unfortunately, meeting the complete challenge.
In a letter written to Euler in 1742, Goldbach made the conjecture that every
even number greater than 2 is a sum of two primes. Although the conjecture is
mentioned in almost every textbook and a large amount of numerical evidence in its
support has been collected, the conjecture has not been proved or disproved till
today. Infact, there was no progress on the problem till 1920, when the first break-
through took place. The Norwegian mathematician Viggo Brun developed his
famous Sieve at that time and applied it to prove that every large enough even integer
can be written as py -+ p,, where p; is a number which is the product of at most  r
primes. The next breakthrough came in 1923, when Hardy and Littlewood showed
that on the basis of an unproved hypothesis of the Riemann type, every large odd
integer is a sum of three primes, so that every large even integer is a sum of four
primes. As is well known, Riemann Hypothesis is believed to be one of the most
difficult conjectures in the whole of Mathematics. Therefore, the Hardy-Littlewood
result was based on a hypothesis which is likely to be extremely difficult to prove.
The next great advance came in 1930, when Schnirelmann developed his density
results to prove the existence of a number %, such that every integer is a sum of at
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most k primes. Thus, in a sense, Schnirelmann was the first mathematician to prove
a Goldbach type result. Thus between 1920 and 1930, approximations to Goldbach
problem of three types were introduced. Since 1930, improvements have taken
place in all the three directions. Although a large number of people have been in-
volved in these improvements, I shall cite the latest results only in each direction.
In 1937, using his modification of the circle method going backto Hardy, Littlewood
and Ramanujan, the great I. M. Vinogradov proved the Hardy-Littlewood result
without any unproved hypothesis, i.e., he proved unconditionally that every large
odd integer is a sum of three primes. In the Brun direction, the latest result was
proved by J. Chen in 1973, who proved that every large even integer is a p + p,.
In the Schnirelmann direction, the latest result appears to be that of R. C. Vaughan
(1977), who has proved that every even number is a sum of atmost 26 primes.
Thus in each direction, especially the results of Vinogradov and Chen, we have
come almost as close as possible to the Goldbach conjecture without actually
solving it.

III. MiNkOWSKI’S CONJECTURE

Minkowski proved in 1899 the following result :
Let L, = ax - by, L, = cx + dy be two real linear forms with det (ad — bc)
= A 7% 0. Then given any real «;, «, there exist integers x, y, such that

l(L1+“1)(L2+“2)}<[A1/4~
Most people believe that Minkowski also thought an analogous result is true for n
forms in n variables, and the following is known as Minkowski’s conjecture.
Let
L1 - a11 x1 + cee + aln xn

Ly = apy Xy + ... + ann Xp

‘be n real linear forms in n variables with det (@) = A % 0. Then given real
%y, ..., an, there exist integers x;, ..., xo for which

[Ty +a) o Ln +an) [ <] A] /2

One can easily see that such a result, if true, would be best possible. Also the result
can be shown to be true for rational a;;.

The Conjecture was proved for n = 3 by R. Remak in 1923 and the proof
was simplified by H. Davenport in 1939, who gave a very short and elegant version.
Other proofs have been given by Birch and Swinnerton-Dyer (1956) and Narzullacv
(1975).

Fqr n = 4, the conjecture was proved by F. J. Dyson in 1948. The Remak-
Davenport-Dyson proof consists of two parts. For convenience, we shall call
them Part A and Part B. The Dyson proof of Part B is elementary, but complicated.
This has been simplified and extended upto n = 6 by A. C. Woods (19654, b, 1972).
Regarding Part A, the Dyson proof relied heavily on algebraic Topology and he
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.made the remark : “The proof borrows powerful weapons from the armory of Topo-

logy; purely geometrical methods seem quite inadequate,”” Most people seemed to
agree with Dyson and there was no success in simplifying the proof. However, in
‘the years 1972-74, B. F. Skubenko in USSR and A. C. Woods and the speaker,
working together, independently produced- two proofs which can be called simple
.and elementary. Skubenko also gave a proof forn == 5. However, the editor A. V.
‘Malyshev stated in his foreword that ““the exposition as given here is highly incomp-
lete and the paper should be regarded as an initial publication of the proof of this
notable result.”” Alan Woods and the speaker, while trying to understand the proof,
have recently given a proof on Skubenko lines, which we think is complete and consi-
derably simpler in details. One can thus say with confidence that Minkowski’s
conjecture has been proved for n < 5. (Incidentally, the proof uses carlier work
of A. C. Woods, B. J. Birch and P. Swinnerton-Dyer). The problem is open for
npo.

When one is not able to prove a desired result, one often looks for weaker result
in that direction. The first such success for Minkowski’s general conjecture is due
to Chebotoroff in 1934 who proved the solvability of the inequality | = (Li + o) |
< | A /(¥ instead of | A |/ 2" Improvements were made by Mordell,
Davenport, Woods and Bombieri who, using earlier ideas of Chebotoroff, Woods,
Davenport and Siegel, proved the solvabilicy of | n(Li + a) [ < | A |/ ( A2 Ca,
where C7> (3 + 1074 (2 e — 1) as n —> co. Skubenko (1977) has announced that
he can prove the solvability of | n(li+a)| < | A | KA 23*\[ %'—Ig?ﬁ en,
where e, —> 1/easn — co.  The proof is still awaited.

When a problem attracts the attention of the mathematical community and
‘'stays unsolved for a long period, very often it generates a great deal of related work
and throws up numerous other interesting problems. Minkowski’s conjecture also
has stimulated the generation of a great deal of exciting Mathematics and work has
been done all over the world — in U.K., U.S.A., U.S.S.R., Austria, Germany,
Australia, Canada, New Zealand, India, and in other places. In India, my colleagues
and students, R.J. Hans-Gill, V. C. Dumir, V. Grover and Madhu Raka have
made some nice contributions, many of which are in the course of publication at
the moment.

IV. PACKINGS AND COVERINGS

In 1773, Lagrange proved the following result :

Let f (x, y) = ax® + 2bxy + cy® be a positive definite quadratic form with det
f = ac—b® = d. Then there exist integers x, y, not both 0, such that f(x, y) <
«44d/3. The result is best possible. Gauss (1831) extended the result to forms
in three variables. Hermite (1850) showed that results of Lagrange-Gauss type have
analogues for forms in n variables; however, he did not find the best possible results.
Best possible results were found for n = 4, 5 by Korkine and Zolotoroff in' 1870s
and for n = 6, 7, 8 by Blichfeldt in years 1925, 1926 and 1934. The best results
for n » 9 are not known. It was the attempt by Minkowski to prove the Hermite
result that led to the development of Geometry of Numbers as an independent branch
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of Number Theory. Minkowski realised that these results have the following
geometrical interpretation.

Let K be a sphere in the n dimensional Euclidean space. Let & be a family
of translates of K. If no two members overlap, we say & is a packing of equal
spheres. One can give a precise meaning to the notion of the proportion of the whole
space occupied by these spheres, and call it the density of the packing. It is
natural to say that a packing is better if its density is greater. If the centres of the
spheres form a regular pattern called a lattice, the packing is called a lattice pack-
ing. The best results in quadratic form in » variables of Lagrange-Gauss-Hermite
type correspond to the problem of finding the best lattice packings of n dimensional
spheres. Minkowski observed that the fact that the density of a packing is at most
one, itself gives a proof of Hermite’s theorem with better estimates than those of
Hermite. Thus the problem of finding the best lattice packings of spheres is of
interest both from the arithmetical and geometrical point of view. As stated earlier,
these best packings are known ouly for n < 8; for larger n, very good estimates
from above and below have been obtained by C. A. Rogers and W. Schmidt; but
the problem is still far from solved. Incidentally, this problem has close connections
with some problems of error correcting codes.

Although from the number-theoretic point of view it is only the lattice packings
that are of interest, from the geometrical point of view one can ask the natural
question, Do the best lattice packings stay the best if the condition of the centres
forming a lattice is relaxed 7 In other words, can one find better packings of
spheres than the best lattice ones ? Our intuition says it should not be so and most
people believe our intuition is correct. The first proof that our intuition is correct
for n = 2 was given by Thue in 1892. However, the first really complete proofs
were produced only in the 1940’s by L. Fejes Toth and independently by Mahler and
B. Segre. The result was extended to the class of convex sets in the plane indepen-
dently by C. A. Rogers and L. Fejes Toth in 1950. The problem for three dimen-
sional spheres is still awaiting solution, i.e., one has no proof that no non-lattice
packing of spheres is better than the best lattice one. Some progress has been made
among others by C. A. Rogers and A. C. Woods; but the challenge is still far
from met.

The mathematical theory of Coverings has similarities with packings and ana-
logous questions for coverings have been studied during the last thirty years or so.
Let K be an n dimensional body with a volume. Let & be a family of translates
of K that cover the whole space. We say & is a covering of space by K. If the
points of space corresponding to these translations form a lattice, we say & is a
lattice covering by K. One can give a meaning to the concept of the proportion of
the covering volume to that covered and call it the density of the covering. Then
it is natural to say that if the density of a covering is less than that of another, the
former is better than the latter. One is concerned with the questions of best lattice
and the best general coverings by a given set K, say a sphere or a class of sets, say
convex ones. Lattice coverings have number-theoretic interpretations and lead to
results therein. As C. A. Rogers remarked in his book “earlier results may lie
concealed or merely ignored in the vast literature of Mathematics.” The earliest
well-known result seems to be that of R. Kershner who proved in 1939 that for
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circles, no general covering is better than the best lattice one which has density
27/3v/3. A paper by E. Hlawka in 1949 and some work of L. Fejes Toth about the
time has led to a lot of interest inthe covering problems from 1950 onwards.
Regarding the best lattice coverings by spheres in# dimensions, those for # = 3 were
determined by the speaker in 1954, Simpler proofs were given by E. S. Barnes and
L. Fewin 1956. The speaker gave in 1954 estimates for n = 4 and also made a con-
jecture. Barnes and Dickson in Australia and Delone, Ryskov and their associates
in Russia independently developed theories which eventually led to the proof of the
speaker’s conjecture in 1964, The problems for n = 5 was solved by Ryskov
and Baranovsky in 1975 and 1976. The problem is open for n > 6.

Coming to estimates for 8(K), the density of the best lattice coverings by K,
earlier results due to Davenport, Watson, C. A. Rogers, R. P. Bambah and K. F. Roth
were of the type 8(K) < Cn, C > 1 for spheres and more general sets of convex
bodies. However, in 195960 as a result of the work of W. Schmidt and C. A. Rogers,
C. A. Rogers obtained the best known estimates 8 (K) < Cn (logn)} 10827 €
for spheres and 8(K) € nloglognve for convex bodies. In the other direction,
the first lower estimate for spheres was made by the speaker and H. Davenport, who
proved in 1952 that 8(K)2> 4/3 — e, where ex — 0 as n— oo, In 1959, Coxeter,
Few and Rogers proved 6(K) > tn ~ njed e. The gap between upper and lower
estimates has not been reduced since then.

Regarding general coverings, Kershner’s result that in the plane no covering
circles is better than the best lattice one was extended to the more general system of
symmetric convex domains in 1950’s by L. Fejes Toth and jointly by C. A. Rogers and
the speaker. Other proofs were given in 1960’s by R. P. Bambah, C. A. Rogers
and H. Zassenhaus and also by the speaker and A. C. Woods. That the result cannot
be extended to the more general class of star sets has been shown by the speaker,
V. C. Dumir and R. J. Hans - Gill in 1977. For three dimensions, the proof or
disproof of the conjecture that no covering is better than the best lattice coverings
by spheres seems to be a very hard problem. Partial results of Coxeter, Few and
Rogers, as also Bambah and Woods are too far from the goal.

V. Sums oF Two SQUARES

The speaker wishes to end the talk with an intriguing problem where the results one
has been able to obtain are very weak compared to the suspected ones. In 1947, S.
Chowla and the speaker proved :

Let s» denote the nth integer, which is a sum of two squares. Then
Sn+1'—‘Sn == O( Sn1/4).

The proof was very clementary and most people believe Sa.y — sn = 0(s)
for every e > 0. In spite of the interest of many mathematicians, like Littlewood,
Mordell, Erdés and others, no improvement in our weak result is available.
C. Hooley (1971) hasproved some results for the moments 2 (Sapy — So) 0 r

5/3 Sns1l QX
< .



116 R. P. BAMBAH

REFERENCES

(References are given sectionwise. The starred ones contain references to many results stated
without complete reference in the text).

I

Bambah, R. P., and Chowla, S. (19474). Congruence properties of Ramanujan’s function = ().
Bull. Am. math. Soc., 53, 950-955..

———(1947b). The residue of Ramanujan’s function = () to the modulus 28. J. London math. Soc.,
22, 140-147. .

Chowla, S.(1947). On a theorem of Walfisz. J. London math. Soc., 22, 136-140.

Deligne, P. (1974). La conjecture de Weil 1. 1. H. E. S. Publ. Matk., 43, 273-307.

*Hardy, G. H. (1940) Ramanujan. Cambridge University Press.

Lehmer, D. H. (1947). The vanishing of Ramanujan’s function <(n). Duke Math. J., 429-433.

LeVenga W. J., (1974). <“Reviews in Number Theory”, Vol. 2, Ch. 1V., Providence. Am. Math.

oc.

Ramanujan, S. (1927). Collected Papers. Cambridge University Press.

Rankin, R. A. (1970). Ramanujan’s function <(n). Theoretical Physics and Mathematics, 10,
37-4S., Plenum, N. Y.

*Swinnerton-Dyer, H. P. F. (1972). On 1-adic representations and congruences for coefficients of
modular forms. Proc. int. Summer Sch. Modular Functions III, 3-55., Berlin. Springer
Verlag, 1973 (L. N. M.-350).

*Van der Blij, F. (1950). The function () of S Ramanujan (an expository lecture). Marh.
Student, 18, 83-99.

II

Brun, V. (1920) Le crible d’Eratosthene et le theoreme de Goldbach. Skr. Norske Vid-Akad.
Kristiania , 36 pp.

Chen, J. (1973). On the representation of a large even integer as the sum of a prime and the product
of at most two primes. Sci. Sinica, 16, 157-176.

Hardy, G. H,, and Littlewood, J. E. (1923). Some problems of ‘Partitio numerorum’ 1II : on the
expression of a number as a sum of primes. Acta Math., 44, 1-70.

*Richert, H. E. (1978). Lectures on Sieve Methods. Bombay, TIFR.

Schnirelmann, L. (1930 4). On additive properties of numbers (in Russian). Zzv. Donetsk. Poli-
tekhn. Inst., 14, 3-28.

———(1930 b). Uber additive eigenschaften von zahlen. Math. Ann., 107, 649-690.

Vaughan, R. C. (1977). On the estimation of Schnirelman’s constant. J. Reine Angew. Math.,
290, 93-108.

Vinogradov, I. M. (1937). Some theorems concerning the theory of primes. Rec. Math. (Mat.
Shornik), N. S. 2, 179-195.

IIx

Bambah, R. P.,and Woods, A. C. (1974). On a theorem of Dyson. J. Number Theory, 6, 422-433.

——1977). On the product of three inhomogeneous linear forms. In Number Theory and
Algebra, (ed H. Zassenhaus). Academic Press, N. Y., 7-18.

On Minkowski’s conjecture for n= 5: a theorem of B. F. Skubenko. J. Number Theory

(In Press)

Birch, B., and Swinnerton-Dyer, H. P. F. (1956). On the inhomogeneous minimum of the product
of n linear forms. Mathematika, 3, 25-39.

Bombieri, E. (1962-63). Sul Theorema di Tschebotarov. Acta Arith., 8, 273-281.

*Cassels, J. W. S. (1959). An Introduction to the Geometry of Numbers. Springe, Verlag, Berlin.



NUMBER THEORY——MANY CHALLENGES, SOME ACHIEVEMENTS 117

Davenport, H. (1939). A simple proof of Remak’s theorem on the product of three linear forms.
J. London math. Soc., 14, 47-51.

Dyson, F. J. (1948). On the product of four non-homogeneous linear forms. Ann. Math., 49, (2)
82~109.

*Lekkerkerker, C. G. (1969). Geometry of Numbers. Groningen, Wolters-Noordhoff, 1969
(Distributed in the Western Hemisphere by Wiley, New York).

*Leveque, W.J. (1974). Reviews in Number Theory, Vol. 3, Ch. VIII, Providence. Am. marh.
Soc.

Narzullaev, H. N. (1975). The representation of a unimodular matrix in the form DOTU for n=3.
Math. Zametki, 18, 213-221; (1975). Math. Notes, 18, 713-719.

Remak, R. (1923). Verallgemeinerung eines Minkowskischen Satzes. Math. Z., 17, 1-34; (1923),
18, 173-200.

Skupenko, B. F. (1976). A proof of Minkowski’s conjecture on the product of n linear inhomogene-

ous forms in n variables for n < 5. J. Soviet Math., 6, 627-650.

(1977). On a theorem of Cebotarev. Sovier Math. Dokl., 18, 348-350.

Woods, A. C. (1958). On a theorem of Tschebotareff. Duke Math. J., 25, 631-637.

(1965 a). The densest double lattice packing of four-spheres. Mathematika, 12, 138~142.

~———(1965 b). Lattice coverjngs of five space by spheres. Mathematika, 12, 143-150.

————(1972). Covering six space with spheres. J. Number Theory, 4, 157-180.

v

Bambah, R. P. (1954 4). On lattice coverings by spheres. Proc. natn. Inst. Sci. India, 20, 25-52.

- ———(1954 b). Lattice coverings with four-dimensional spheres. Proc. Camb. phil. Soc., 50,
203-208.

Bambah, R. P., and Davenport, H. (1952). The covering of n-dimensional space by spheres. J. London
math. Soc., 27, 224-229.

Bambah, R. P., Dumir, V. C., and Hans-Gill, R. J. (1977). Covering by star domains. Indian
J. pure appl. Math., 8, 344-350.

Bambah, R. P., and Rogers, C. A. (1952). Covering the plane with convexsets. J. London math.
Soc., 27 (1964), 304-314.

Bambah, R. P., Rogers, C. A., and Zassenhaus, H. (1964). On coverings with convex domains.
Acta  Arith., 9, 191-207.

Bambah, R. P., and Roth, K. F. (1952). A noteonlattice coverings. J. Indian math. Soc. (N.S.},

16, 7-12.
Bambah, R. P., and Woods, A. C.(1968). The covering constant for a cylinder. Monatsh. Matih.,
72, 107-117.

~———(1971). The thinnest double lattice covering of three-spheres. Acra Arith., 18, 321-336.

Barnes, E. S. (1956). Then covering of space by spheres. Can. J. Math., 8, 293-304.

Barnes, E. S., and Dickso, T. J. (1967). Extreme coverings of n-space by spheres. J. Austral.
math. Soc., 7, 115-127.

Coxeter, H.§. M., Few, L., and Rogers, C. A. (1959). Covering space with equal spheres. Mathe-
matika., 6, 147-157.

Delone, B., and Ryskov, S.S. (1963). Solution of the problem of the least dense lattice covering of
a 4-dimensional space by equal spheres (Russian). Dokl. Akad. Nauk SSSR, 152, 523-524.

Dickson, T. J. (1967). The extreme coverings of 4-space by spheres. J. Austral. math. Soc., 7,

450-496.

Fejes Toth, L. (1950). Some packing and covering theorems. Acta Sci. Math. Szeged, 12, 62-67.

Few, L. (1956). Covering space by spheres. Matheniatika, 3, 136-139.

*Gruber, P. (1978). Proc. Conf. Geomerry, Siegen, 1978 (in press).

Hlawka, E. (1949). Ausfullung and uberdeckung konvexer korper durch konvexe korper. Monatsh.
Math., 53, 81-131.

Kershner, R. (1939). The number of circles covering a set. Am. J. Math., 61, 665-671.
*Rogers, C. A. (1964). Packing and Covering. Cambridge University Press.



118 R. P. BAMBAH : NUMBER THEORY—MANY CHALLENGES, SOME ACHIEVEMENTS

Ryskov, S. S., and Baranovsky, E. P. (1975). Solution of the problem of the least dense lattice

covering of five-dimensional space by equal spheres (Russian). Dokl. Akad. Nauk SSSR,

222, 39-42. Soviet Math. Dokl., 6, 586-590.

(1976). S-types of n-dimensional Ilattices and five-dimensional primitive parallelohedra (with

an application to covering theory). Izdat. Nauka, 137, 131 pp.

Segre, B., and Mabhler, K. (1944). On the densest packing of circles. Am. Math. Month., 51,
261-270.

v

Bambah, R. P., and Chowla, S. (1947). On numbers which can be expressed as a sum of two
squares. Proc. natn. Inst. Sci. India, 13, 101-103.
Hooley, C. (1971). On the intervals between numbers that are sums of two squares. Acta Math.,

127, 279-297.



