Sulfur Transfer Reactions of Tetrathiomolybdate in Water: Synthesis of Alkyl Disulfides from Alkyl Halides

Palanichamy Ilankumaran; Kandikere R. Prabhu; Srinivasan Chandrasekaran

* Department of Organic Chemistry, Indian Institute of Science, Bangalore, INDIA
SULFUR TRANSFER REACTIONS OF TETRATHIOMOLYBDATE IN WATER: SYNTHESIS OF ALKYL DISULFIDES FROM ALKYL HALIDES

Palanichamy Ilankumaran, Kandikere R. Prabhu and Srinivasan Chandrasekaran

Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012. INDIA

Abstract: Reaction of a number of alkyl halides with tetrathiomolybdate in water as the solvent affords the corresponding disulfides in good yields.

Generally water is not considered as a useful solvent in organic synthesis but surprisingly the use of water as a solvent for conventional organic reactions has found increasing application not only to enhance the rate of reactions but also to perform reactions otherwise impossible. Water is cheap, non toxic and environmentally friendly, and therefore it would be nice if important bond forming reactions can be carried out in water. It is with this perspective that we present our results on a successful sulfur transfer reaction in the synthesis of disulfides from alkyl halides in water.

It has earlier been shown that benzyltriethylammonium tetrathiomolybdate \([\text{PhCH}_2\text{NET}_3]_2\text{MoS}_4\), 1, in CH\(_2\)Cl\(_2\) converts alkyl halides in to the cor-
responding disulfides in good yield.\textsuperscript{2} Although this methodology works very well in most of the cases, substrates containing carboxyl group pose problems where the decomposition of the reagent is predominant. In order to overcome this problem and to explore the possibility of carrying out this important disulfide bond forming reactions in aqueous medium studies of reactivity of tetrathiomolybdate 1 with alkyl halides in water as the solvent were undertaken.

Accordingly, when sodium salt of \(\omega\)-bromo acid 2 (1mmol) in water was reacted with tetrathiomolybdate 1 (1.1mmol) (25°C, 17h) the reaction proceeded smoothly to give the disulfide 3 in 87% yield after acidification (entry 1, Table I). Similarly when sodium salt of \(\omega\)-bromo hexanoic acid 4 was treated with 1 the corresponding disulfide 5 was isolated in very good yield (84%). A particularly noteworthy example is the reaction of sugar bromide 6 derived from glucose with 1 in water (25°C, 72h) giving rise to the sugar disulfide 7 (63%). Although this reaction is slow the formation of the product on the unprotected carbohydrate is quite attractive. Synthesis of similar sugar disulfides has been achieved with great difficulty following a number of steps in low yields.\textsuperscript{3} It is also interesting to note that alkyl halides insoluble in water (entry 5-7) also reacted with 1 in aqueous medium to provide the corresponding disulfides in good yields.

It is pertinent to point out that while the same sulfur transfer reaction does not work when ammonium tetrathiomolybdate is used as the reagent, the reaction takes place readily when catalytic amount of benzyltriethylammonium chloride is added to the reaction mixture (entry 2).

In conclusion we have demonstrated that sulfur transfer reactions can indeed be carried out with tetrathiomolybdate 1 in water as the solvent. Easy access to carboxyl group containing disulfides like 3 will be of interest in micellar reactions. The aqueous sulfur transfer reaction with 1 is bound to have application particularly in carbohydrate chemistry.
Table I Reaction of tetrathiomolybdate 1 with alkyl halides in water

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>Product&lt;sup&gt;a&lt;/sup&gt;</th>
<th>Procedure</th>
<th>Time (hrs)</th>
<th>Yield&lt;sup&gt;b&lt;/sup&gt; (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><img src="image1.png" alt="Substrate 1" /></td>
<td><img src="image2.png" alt="Product 1" /></td>
<td>A</td>
<td>17</td>
<td>87</td>
</tr>
<tr>
<td>2</td>
<td><img src="image3.png" alt="Substrate 2" /></td>
<td><img src="image4.png" alt="Product 2" /></td>
<td>B</td>
<td>20</td>
<td>83</td>
</tr>
<tr>
<td>3</td>
<td><img src="image5.png" alt="Substrate 3" /></td>
<td><img src="image6.png" alt="Product 3" /></td>
<td>A</td>
<td>8</td>
<td>84</td>
</tr>
<tr>
<td>4</td>
<td><img src="image7.png" alt="Substrate 4" /></td>
<td><img src="image8.png" alt="Product 4" /></td>
<td>B</td>
<td>72</td>
<td>63</td>
</tr>
<tr>
<td>5</td>
<td><img src="image9.png" alt="Substrate 5" /></td>
<td><img src="image10.png" alt="Product 5" /></td>
<td>A</td>
<td>5</td>
<td>89</td>
</tr>
<tr>
<td>6</td>
<td><img src="image11.png" alt="Substrate 6" /></td>
<td><img src="image12.png" alt="Product 6" /></td>
<td>A</td>
<td>7</td>
<td>61</td>
</tr>
<tr>
<td>7</td>
<td><img src="image13.png" alt="Substrate 7" /></td>
<td><img src="image14.png" alt="Product 7" /></td>
<td>A</td>
<td>48</td>
<td>60</td>
</tr>
</tbody>
</table>

<sup>a</sup> All the products gave satisfactory spectral data.

<sup>b</sup> Yield refers to purified products.

**Procedure A:** To a stirred solution of bromoacid 2 (1mmol) in water (7ml) Na<sub>2</sub>CO<sub>3</sub> (1.1 mmol) was added. After CO<sub>2</sub> evolution has ceased tetrathiomolybdate 1 (1.1 mmol) was added. After the completion of the reaction, Dil HCl was added and the disulfide 3 was extracted with chloroform and purified by crystallisation (mpt 92°C, lit<sup>4</sup> 93°C).

**Procedure B:** Instead of 1, ammonium tetrathiomolybdate (1.1 mmol) and benzyltriethylammonium chloride (10 mol%) were used.

**Acknowledgment:** The authors thank the Department of Science and Technology, New Delhi for financial support of this investigation.
References & notes


(Received in The Netherlands 17 June 1997)