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Abstract: The paper proposes the use of Kohonen’s Self Organizing Map
(SOM), and supervised neural networks to find clusters in samples of gamma-
ray burst (GRB) using the measurements given in BATSE GRB. The extent
of separation between clusters obtained by SOM was examined by cross val-
idation procedure using supervised neural networks for classification. A
method is proposed for variable selection to reduce the “curse of dimension-
ality”. Six variables were chosen for cluster analysis. Additionally, principal
components were computed using all the original variables and 6 components
which accounted for a high percentage of variance was chosen for SOM anal-
ysis. All these methods indicate 4 or 5 clusters. Further analysis based on
the average profiles of the GRB indicated a possible reduction in the number
of clusters.
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1. Introduction

It is of great interest to astronomers to know whether the measurements on
gamma-ray burst (GRB) can be characterized by a single probability distribution
around some central value or as a mixture of probability distributions around
different central values. Clustering is an exploratory data analysis (EDA) for
investigating such problems by looking for groups of observed samples which
are well separated using a suitable criterion. The ultimate aim is to seek for a
physical interpretation of differences between the groups. An interesting example
in a different context is the discovery of three clusters of the general population
of individuals based on some blood tests for diabetes, one identified as diabetes
free, and the other two representing individuals with 2 different types of diabetes
A and
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Table 1: Initial Variables

# ID Description Mean of Log S.d. of Log

1 T50 time measure representing the arrival 1.33 2.18
of 50% of the flux

2 T90 time measure representing the arrival 2.29 2.19
of 90% of the flux

3 F1 time-integrated fluence in spectral -15.61 2.11
channels 20-50 keV

4 F2 time-integrated fluence in spectral -15.15 1.99
channels 50-100 keV

5 F3 time-integrated fluence in spectral -13.94 1.82
channels 100-300 keV

6 F4 time-integrated fluence in spectral -13.56 1.96
channels over 300 keV

7 P64 peak flux measured in 64ms bins 0.74 1.02
8 P256 peak flux measured in 256ms bins 0.49 1.05
9 P1024 peak flux measured in 1024ms bind 0.05 1.14

10 T64 trigger threshold, i.e., number of counts in 4.20 0.05
64 ms required to trigger the second most
brightly illuminated detector

11 T256 trigger threshold on the 256 ms 4.89 0.07
timescale

12 T1024 trigger threshold on the 1024 ms 5.59 0.09
timescale

13 Lat galactic latitude 4.95 0.87
14 Lon galactic longitude 4.95 0.94
15 FT sum of the four fluencies 0.69 0.71

(F1 + F2 + F3 + F4)
16 H32 spectral hardness, obtained from 1.21 0.64

fluence relation F3/F2
17 H321 spectral hardness, obtained from -12.62 1.71

relation F3/(F1+ F2)

B (Reaven and Miller, 1979). Another example is the discovery of 2 clusters of
individuals suggesting 2 types of cancers (Golub et al., 1999). Cluster analysis is a
valuable tool in knowledge acquisition. In the literature there are two approaches
to cluster analysis. One is parametric assuming a mixture of a given number of
probability distributions such as multivariate normal. Another is nonparametric
which offers a great flexibility in discovering the number of clusters and their
shape without going through model selection procedures.

There are a number of methods of cluster analysis, a good review of which
can be found in Jain, Murty and Flynn (1999) and Jiang et al. (2004). We use an
unsupervised neural network known as SOM (Self Organizing Map) for finding



Unsupervised and Supervised Neural Networks 329

(a) (b)

(c) (d)
Figure 1: Clustering using Kohonen’s maps of 5× 5 nodes (a), 7× 7 nodes (b),
10 × 10 nodes (c), and 15 × 15 nodes (d)

clusters and discuss methods of validating them by cross validation and profile
analysis. We also propose two methods of reducing the number of variables for
obtaining stable results. Some references to early work on cluster analysis of
GRB are Mitrofanov et al. (1998), Bagoly et al. (1998), Mukherjee et al. (1998),
Hakkila et al. (2000), and Rajaniemi and Mahonen (2002).

2. Cluster Analysis

2.1 Data

We consider the original BATSE 3B catalogue from the Compton Gamma
Ray observatory, which is composed of 1122 GRB trigger samples with 14 mea-
surements of astrophysical interest made on each sample. In addition we also
list 3 other measurements usually considered in astrophysical research described
in Murkerjee et al. (1998), Mitrofanov et al. (1998), Rajaneimi and Mahonen
(2002). Since the computational complexity of the data mining process is not
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increased dramatically by including additional variables, we used all 17 variables.
The list of 17 variables is given in Table 1 with the mean values and standard
deviations of log variables. Log transformation is made to reduce the variables
to uniform scale.

2.2 Cluster analysis using SOM

There were 422 GRB samples with all variables present. A SOM was used for
clustering these GRB patterns. Four different topologies were tried to test the
clustering process. Figures 1a -1d show the number of patterns in each cluster
over squared Kohonen’s map of different dimensions with nodes: 25(5×5), 49(7×
7), 100(10 × 10) and 225(15 × 15). As can be seen, the nodes representing the
classes are well separated from each other in the 2 dimensional map provided by
the topology. For a brief description of SOM and the underlying concepts, refer-
ence may be made to Rejaniemi and Mahonen (2000). All topologies clustered
the 422 samples into 5 clusters designated as classes 1, 2, 3, 4 and 5. The fifth
class had a small frequency and did not appear to be different from the fourth.
They were combined to form one cluster as class 4.

2.3 Cross validation

Working with the 15 × 15 topology (the one which presented the maximum
relative distance between classes), the input patterns were divided into two groups
called in sample set (317 patterns) and an out of sample set (105 patterns) with
a random algorithm using stratified sampling. A supervised MLP (Multilayer
Perceptron) neural net with Bayesian regularization (see Mackay, 1992) was used
to train the in sample set for classification of patterns into four classes. Ten
different trainings were performed and the patterns in the out of samples were
classified into four classes. The overall mean accuracy of classification was 92.4%
and the error for each class is as given in Table 2.

Table 2: Misclassification error

Classified as class Total % Correct

1 2 3 4

Belonging 1 47 2 2 0 51 92.15
to class 2 2 14 0 0 16 87.50

3 2 0 33 0 35 94.28
4 + 5 0 0 0 3 3 100.00

It is seen that classes 1, 3 and 4 are well separated while 2 is not so well
separated from 1. While this needs further discussion, we consider the four classes
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to explain the method for reducing the number of variables.

2.4 Reduction of dimensionality

In multivariate analysis, one is faced with the curse of dimensionality as orig-
inally pointed out by Rao (1952) and referred to in the statistical literature as
Rao’s paradox. For obtaining stable results, a proper selection of variables has to
be made. We suggest two procedures for this purpose, one of which is described
in this section. The second is based on principal component analysis as detailed
in the next section 3.

(a) (b)

Figure 2: Relative importance of each input variable: (a) before pruning (
listed in table 1) and (b) after pruning (T50, T90, F1, F2, F3, and F4).

Figure 2 (a) presents, for each input variable of the feedforward neural net-
work, the sum of the absolute values of the weights (Si) connecting the cor-
responding input to the hidden layer neurons. Taking the mean (M) and the
standard deviation (SD) of theses sums and using as threshold (T) the value
T = M − SD, we eliminated the variables whose Si were below T . The neural
network was trained 10 times, for randomly chosen sets of the initial weights, and
the pruning criterion was used to confirm the eliminated variables. The average
of the misclassification error for these 10 samples will be denoted by AVj .

After eliminating variables, further 10 training samples were used and the
misclassification errors were computed. If the average of these errors (AVj+1)
was more than the AVj value, then the variables would be definitively aban-
doned.The procedure is repeated iteratively until the elimination of variables
does not improve the misclassification error.

Figure 2 (b) shows the relative importance of each of the remaining input
variables that were considered most relevant for the classification process (re-
spectively T50, T90, F1, F2, F3 and F4). For this final configuration, the misclas-
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Figure 3: Percent of the total variability explained by each principal compo-
nent.

sification error was 5.9% for the out of sample set and 1.4% for the in sample
set).

Considering six variables, the number of the available observations (without
missing values) increased from 422 to 632. Using again a 15 × 15 topology for
SOM, now for the six remaining input variables and for 632 patterns, the classes
and frequencies found were similar to the classes obtained using all seventeen
input variables.

A feedforward neural network trained with the final six variables and 498 in
sample and 134 out of sample observations resulted in an out of sample misclas-
sification error of 5.9% compared with 7.6% with the 17 variables of the initial
network with 317 in sample and 105 out of sample observations.

However, considering that the objective is to compare this methodology with
the next one (described in section 3), only the 422 patterns initially considered
will be used to compare the two methods.

3. Principal Component Analysis

A second approach to reduction of dimensionality is PCA (Principal Com-
ponent Analysis) where the variables are replaced by a smaller number of linear
functions of the variables. In computing the principal components only the first
14 variables of Table 1 are used. It may be noted that the last 3 variables of
Table 1 are functions of the variables F1, F2, F3, and F4 in the list. The com-
putations made on 422 samples where all the variables are available provided 14
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linear combinations of the variables with the associated eigen values as indicated
in Figure 3. The first six principal components accounted for 98% of the total
variance, and the SOM was used for clustering based on these components only.
The analysis provided the same 5 classes as discussed in Section 2.

Table 3: Principal components according to PCA algorithm

Variables Components

1st 2nd 3rd 4rd 5rd 6rd

log T50 0.414 -0.449 -0.103 -0.021 -0.033 -0.363
log T90 0.432 -0.388 -0.074 -0.049 -0.007 -0.355
log F1 0.441 0.016 0.288 0.079 0.015 0.513
log F2 0.420 0.068 0.253 0.063 -0.009 0.337
log F3 0.374 0.197 0.029 -0.001 -0.007 0.039
log F4 0.299 0.432 -0.823 -0.005 0.015 0.086
log P64 0.060 0.405 0.210 -0.049 -0.035 -0.338
log P256 0.097 0.387 0.231 -0.052 -0.028 -0.370
log P1024 0.169 0.321 0.246 -0.053 0.009 -0.290
log T64 0.000 -0.001 -0.001 -0.004 0.001 0.004
log T256 0.000 0.000 -0.001 -0.007 -0.001 0.003
log T1024 0.001 0.002 -0.001 -0.013 0.002 -0.007
log Lon 0.020 -0.015 0.022 -0.575 0.815 0.048
log Lat -0.002 0.021 -0.001 0.805 0.577 -0.137
% variance 70.003 16.267 5.150 3.448 1.983 1.569
% cumulative 70.003 86.270 91.421 94.869 96.852 98.421

From the results of Table 3, we conclude that variables T50, T90, F1, F2, F3 and
F4 are the most important. This result agrees with the previous one obtained
using the MLP with a regularization technique which showed these same six
variables as the most relevant to the classification process.

Using this method, we obtained the same 5 classes of the previous analysis,
with the same patterns in each class. The full table with the composition of each
class is available from the authors. Labeling the classes found by SOM’s training
process with numbers 1 to 5, it is possible to draw the patterns into graphs with
the first versus the second and the third principal components provided by PCA
analysis. These classes are clearly seen in Figure 4 and 5, where there is evidence
of three classes (1,2 and 3). The status of classes 4 and 5 is not clear. However,
some possibilities are that they may be considered as separate classes, class 5
may be merged with class 3, and 4 with 2. The profile analysis carried out in the
next section also suggests similar grouping.



334 B.de B. Pereira et al.

Figure 4: Patterns classified by SOM projected in their 2 main principal com-
ponents (supplied by PCA) – class 1 represented by ‘x’, class 2 by ‘•’, class 3
by star, class 4 by ‘o’ and class 5 by ‘¤’.

Figure 5: Patterns classified by SOM projected in their first and third principal
components – class 1 represented by ‘x’, class 2 by ‘•’, class 3 by star, class 4
by ‘o’ and class 5 by ‘¤’.

4. Graphical Evaluation of the Classes

There is no recommended statistical method as the best for evaluating the
validity and the number of clusters determined by using one or more of the
numerous algorithms available for cluster analysis. See Sugar and James (2003)
and Jiang et al. (2004). Figure 6 gives the distortion curves recommended in
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Sugar and James (2003), which suggests about 4 classes. Another suggested
method is to examine the profiles of the patterns in different classes, which in
statistical literature is also known as the plot of parallel coordinates of individuals
and mean values as shown in Figure 7. It is seen that Classes 1 and 3 are distinct
with class 2 occupying an intermediate position. The positions of classes 4 and 5
are not clear. It is interesting to see that the four classes differ mainly in mean
values of the six variables chosen for clustering in Section 3.

Figure 6: Number of cluster x middle distance and distortion curve
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Figure 7: Profiles and means. Panel (a): Parallel coordinate diagram, Panel
(b): Means of variables (centralized for comparisons).
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5. Conclusion

Our study indicates the following:

a) The profile plot and the scatter plot of the first two principal components
indicate a clear separation between Classes 1 and 3. Patterns in Class 1 are
characterized by long duration, bright fluency and soft spectrum while Class 3,
by short duration, faint fluency and hard spectrum.

There is some overlap between Classes 1 and 2 in the profile plot, but the
distinctiveness of Class 2 is brought out in the plot of principal components.
Patterns in this class are characterized by intermediate duration and fluence,
and hard spectrum. The positions of Classes 4 and 5 are not clear. However, the
profile plots of classes 4 and 5 appear to be similar. Patterns in these classes can
be characterized by intermediate duration, fluency and spectrum.
b) The means of the variables T50, T90, F1, F2, F3, F4 and H321 of the 3 clusters
are well differentiated while the means of the other 10 variables P64, P256, P1024,
T64, T256, T1024, Lat, Lon, Ft and H32 are not. The latter variables may not
be useful in predicting the class to which a future GRB belongs. Any physical
interpretation of the clusters should take this into account.
d) SOM seems to be an appropriate tool for clustering and graphical display of
the results.
e) The choice of the dominant principal components is a computationally con-
venient way of reducing the curse of dimensionality due to a large number of
variables in cluster analysis and classification problem
f) SOM provides non overlapping clusters and the distinction between the Classes
1 and 2 cannot be easily specified. A parametric approach such as fitting a
mixture model may reveal three components as demonstrated in the paper by
Mukherjee et al. (1998).
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