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Abstract

Several nonparametric goodness-of-fit tests are based on the empirical dis-
tribution function. In the presence of nuisance parameters, the tests are
generally constructed by first estimating these nuisance parameters. In such
a case, it is well known that critical values shift, and the asymptotic null
distribution of the test statistic may depend in a complex way on the un-
known parameters. In this paper we use bootstrap methods to estimate
the null distribution. We shall consider both parametric and nonparamet-
ric bootstrap methods. We shall first demonstrate that, under very general
conditions, the process obtained by subtracting the population distribution
function with estimated parameters from the empirical distribution has the
same weak limit as the corresponding bootstrap version. Of course in the
nonparametric bootstrap case a bias correction is needed. This result is used
to show that the bootstrap method consistently estimates the null distri-
butions of various goodness-of-fit tests. These results hold not only in the
univariate case but also in the multivariate setting.

AMS (2000) subject classification. 62F40, 62F12, 62G10.
Keywords and phrases. Brownian Motion, empirical process, bootstrap,
Kolmogorov-Smirnov statistic, Cramér-von Mises statistic interquartile range.

1 Introduction

The paper revisits a well discussed problem of goodness-of-fit tests when
parameters are estimated. It is customary in certain applied circles to use
the goodness-of-fit tests suited for fixed nulls with the same critical values
even when the null is composite and contains unknown parameters. It is of
course well known that the cutoffs shift. However, it is less well known that
unless some special structure is present, the percentiles depend in a complex
way on the true value of the parameter. Furthermore, the cutoffs do not
seem to have been calculated for important cases, and in most cases, would
not be available in closed form. This problem is illustrated by the following
example.

Example. Let X1, . . . , Xn be i.i.d. random variables from the Uniform
distribution G = G(.; θ) on (θ, θ + 1). Let θ be estimated by θ̂n = Xn − 1

2 ,
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where Xn denotes the sample mean of X1, . . . , Xn. Clearly,

Fn(x)−G(x; θ̂n) = Fn(x)−G(x; θ) +Xn − 1/2− θ,

where Fn denotes the empirical distribution function of X1, . . . , Xn. The
corresponding von Mises-type statistic ω̂2 is given by

ω̂2 = n

∫ ∞

−∞

(

Fn(x)−G(x; θ̂n)
)2
dG(x; θ̂n)

= n

∫ 1+θ̂n

θ̂n

(

Fn(x)−G(x; θ) +Xn − 1/2− θ
)2
dx

= ω2 + n
(

Xn − 1/2− θ
)2

+n
(

2Xn − 1− 2θ
)

∫ 1+θ

θ

(

Fn(x)−G(x; θ)
)

dx+ γn ,

where E|γn| → 0 as n→ 0, and the distribution of von Mises statistic

ω2 = n

∫ 1+θ

θ

(

Fn(x)−G(x; θ)
)2
dx

is free from G and θ. A simple algebra shows that

nE
(

(

Xn − 1/2− θ
)2

+
(

2Xn − 1− 2θ
)

∫ 1+θ

θ

(

Fn(x)−G(x; θ)
)

dx
)

= − 1

12
.

As a result, the expected values differ by 1
12 in the limit. Anderson and

Darling (1952) obtained the explicit limiting distribution of von Mises ω2.
They also gave a table of the percentiles of the asymptotic distribution of
ω2. Consequently the use of these tables instead of the percentiles of ω̂2 will
lead to substantially incorrect critical values. In view of this, it is important
to investigate if a procedure like the bootstrap lead to consistent estimates
of the percentiles of the true limiting distribution of the test statistic when
the parameters are estimated.

There has been lot of work on goodness-of-fit tests, but we shall not
attempt a review here. Asymptotic distribution of test statistics based on the
empirical distribution function, when parameters are estimated have been
extensively studied by Darling (1955), Kac, Kiefer and Wolfowitz (1955)
and others. Extending these results, Durbin (1973) has studied the weak
convergence of the sample distribution function to a Gaussian process under
a given sequence of contiguous alternative hypotheses when parameters are
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estimated from the data. However, the limiting process or the asymptotic
distribution of statistics based on the empirical process depends in a complex
way on the unknown parameter. In this paper, we shall show that the
consistency of the bootstrap resampling scheme in estimating the limiting
distribution. This will help in obtaining critical values in the testing context.

In the multivariate case the Kolmogorov-Smirnov distance is not distri-
bution free, even when the population distribution is completely specified.
Simpson (1951) gave a simple example to illustrate this in the bivariate case.
In this paper we study methods of inference using bootstrap for tests based
on empirical process, when some parameters are estimated.

2 Bootstrap

Let {F (.; θ) : θ ∈ Θ} denote a family of continuous distribution functions,
where Θ is a open region in a p-dimensional Euclidean space. Let X1, . . . , Xn

be i.i.d. random variables from a distribution F . To test F = F (.; θ) for
some θ = θ0 or if θ is partially specified, we consider several tests based
on empirical measures. In particular we consider Kolmogorov-Smirnov and
Cramér-von Mises statistics, when θ is estimated. These statistics can be
viewed as continuous functionals of the empirical process

Yn(x; θ̂n) =
√
n
(

Fn(x)− F (x; θ̂n)
)

,

where θ̂n = θn(X1, . . . , Xn) is an estimator of the true value θ, and Fn
denotes the empirical distribution function of X1, . . . , Xn. We shall develop
a bootstrap procedure and show its consistency, when the parameters are
(partially or completely) estimated. The procedure will also help in the
computation of power under contiguous alternatives λn = θ0 + n−1/2λ.

To describe the bootstrap procedure, let X∗
1 , . . . , X

∗
n be i.i.d. random

variables from F̂n, where F̂n is an estimator of the distribution function F ,
based on the sample X1, . . . , Xn. Let θ̂∗n = θn(X

∗
1 , . . . , X

∗
n). For example,

if F (., θ) denotes the Gaussian distribution function with parameter vector
θ = (µ, σ2), where µ denotes the mean and σ2 denotes the variance, then θ̂n
denotes the vector of sample mean and sample variance. Further, θ̂∗n denotes
the vector of sample mean and sample variance based on the bootstrap sam-
ple X∗1 , . . . , X

∗
n. The resampling method is called nonparametric bootstrap

if F̂n = Fn, and it is called parametric bootstrap if F̂n = F (.; θ̂n).

Under some regularity conditions both parametric and nonparametric
procedures lead to correct asymptotic levels. However, in the case of non-
parametric bootstrap we have to make a correction for the bias. Similar
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situations are encountered in the case of χ2 type statistics (Babu, 1984) and
U -statistics (Arcones and Giné, 1992).

2.1. Assumptions and their validity. Let Λ ⊂ Θ be the closure of
a given neighborhood of a point θ0 ∈ Θ. We use some of the assumptions
listed below on the estimators θ̂n and θ̂∗n, where `(.; θ), θ ∈ Λ is a measurable
p-dimensional row vector valued function:

(E) For some εn = εn(X1, . . . , Xn)→ 0 in probability,

θ̂n − θ0 =
1

n

n
∑

i=1

`(Xi; θ0) +
1√
n
εn.

(P) For some ε∗n → 0 in probability under the bootstrap measure,

θ̂∗n − θ̂n =
1

n

n
∑

i=1

`(X∗i ; θ̂n) +
1√
n
ε∗n.

(N) For some ε∗n → 0 in probability under the bootstrap measure,

θ̂∗n − θ̂n =
1

n

n
∑

i=1

`(X∗i ; θ0)−
1

n

n
∑

i=1

`(Xi; θ0) +
1√
n
ε∗n.

Assumption (E) asserts that the estimator θ̂n is locally asymptotically
linear, and assumption (P) asserts the same for the bootstrapped version,
given the original sample. In the case of nonparametric bootstrap, assump-
tion (N) along with its associated centering correction is more appropriate.
Assumptions (E) and (P), or (E) and (N) hold, in general, for maximum
likelihood estimators, M-estimators and L-statistics.

Babu & Singh (1984) have shown that in the case of the sample median
and L-statistics, condition (N) is satisfied. In fact, in the case of the sam-
ple median θ̂n and nonparametric bootstrap, assumptions (E) and (N) hold
under very general conditions, with

`(x; θ) =
1

aθ

(

I{x≤θ} −
1

2

)

, (2.1)

where aθ denotes the density evaluated at the population median θ (Babu &
Singh, 1984, Theorem 5). In the case of L-statistic, θ̂n =

∫

xω(Fn(x)) dFn(x)
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and θ =
∫

xω(F (x; θ))dF (x; θ), Babu & Singh (1984, Theorem 4 and P9)
have shown that (E) and (N) hold with

`(y; θ) =

∫ ∞

−∞

(

F (x; θ)− I{y≤x}
)

ω(F (x; θ))dx,

when ω satisfies Lipschitz condition of order 1 on each of the intervals
(ai−1, ai), i = 1, . . . k + 1, a0 = 0 < a1 < · · · < ak < ak+1 = 1, and the
quantile function F−1 of F is continuous at a1, . . . , ak.

We now list an additional set of assumptions on ` and F used in the
main results.

(A1) The row vector g(x; θ) = ∂
∂θF (x; θ) is uniformly continuous in x and

θ ∈ Λ.

(A2) For θ ∈ Λ,
∫

`(x; θ) dF (x; θ) = 0.

(A3) For θ ∈ Λ, L(θ) =
∫

`′(x; θ)`(x; θ) dF (x; θ) is a finite non-negative
definite matrix.

(A4) As γ →∞,

sup
θ∈Λ

∫

{‖`(x;θ)‖>γ}
‖`(x; θ)‖2 dF (x; θ)→ 0.

(A5) For all x, the function h(x; .) defined by

h(x; θ) =

∫ x

−∞
`(t; θ) dF (t; θ)

is continuous at θ0.

2.2. Parametric and nonparametric bootstrap consistency. Suppose (A1)
holds and (E), (P) hold for some score function ` satisfying (A2)-(A5). Then
in the case of parametric bootstrap, it follows by Theorem 4.1, that for
almost all sample sequences, the process Y (., θ̂∗n) given by

Yn(x; θ̂
∗
n) =

√
n
(

F ∗n(x)− F (x; θ̂∗n)
)

,

and Yn(.; θ̂n) converge weakly to the same limiting centered Gaussian process
Y , where F ∗n denotes the empirical distribution function of X∗

1 , . . . , X
∗
n. The

covariance function of Y is given by (4.2). Thus both

√
n sup

x
|Fn(x)− F (x; θ̂n)| and

√
n sup

x
|F ∗n(x)− F (x; θ̂∗n)|
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have the same limiting distribution for almost all sample sequencesX1, . . . , Xn.
However, in the case of nonparametric bootstrap,

√
n
(

F ∗n(x)−F (x; θ̂∗n)
)

−Bn(x) =
√
n
(

F ∗n(x)−Fn(x)
)

+
√
n
(

F (x; θ̂n)−F (x; θ̂∗n)
)

,
(2.2)

where
Bn(x) =

√
n(Fn(x)− F (x; θ̂n)) (2.3)

is the known bias term. As above, if (A1) holds, and (E) and (N) hold for
some score function ` satisfying (A2)-(A5), then in the case of nonparametric
bootstrap, we have by Theorem 4.2, that for almost all sample sequences, the
bias corrected process

√
n
(

F ∗n−F (.; θ̂∗n)
)

−Bn and Yn(.; θ̂n) converge weakly
to the same limiting centered Gaussian process Y . Thus, in this case, both

√
n sup

x
|Fn(x)− F (x; θ̂n)| and sup

x
|
√
n
(

F ∗n(x)− F (x; θ̂∗n)
)

−Bn(x)|

have the same limiting distribution for almost all sample sequencesX1, . . . , Xn.
To reiterate, if the bootstrap sampling is done from F (.; θ̂n), then the bias
term disappears.

Additional complications arise for von Mises-type statistics, for example,
∫

(

Fn(x)− F (x; θ̂n)
)2
dF (x; θ0) or

∫

(

Fn(x)− F (x; θ̂n)
)2
dF (x; θ̂n).

For the second statistic above, the function with respect to which the integral
is evaluated is partially estimated. Two approaches are possible here. First,
we might compare the statistic based on the empirical process evaluated
at the quantiles of the distribution with estimated parameters and the one
based on the empirical process evaluated at the theoretical quantiles. Second,
we might impose reasonable conditions on the estimators of the parameters
such as a bounded variation for the score function. Details in the case of
normal family are given in §3.

These ideas can be extended to product-limit estimators.

3 Applications to Location and Scale Invariant Families

Suppose {F (.; θ) : θ ∈ Θ} is a location family of continuous distribution
functions, i.e., F (x; θ) = F (x− θ) for all x, θ, and suppose θ̂n satisfies

θ̂n(X1 + a, . . . ,Xn + a) = θ̂n(X1, . . . , Xn) + a (3.1)

for all a. Note that estimators θ̂n such as sample median and sample mean
satisfy (3.1). Then clearly, for parametric bootstrap, both the processes
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Y(.+ θ̂n); θ̂
∗
n) and Yn(.; θ̂n) have the same distributions in the function space.

Hence, supx |Yn(x; θ̂n)| and supx |Yn(x; θ̂∗n)| have identical distributions, Sim-
ilar results hold for scale invariant families. Details for normal and Cauchy
family of distributions are given below. In particular, these ideas carry over
to parametric families described through a transitive group of one-to-one
transformations on the sample space.

Let Φµ,σ and φµ,σ denote, respectively, the cumulative distribution func-
tion and the density function of the normal distribution with mean µ and
variance σ. Let Φ = Φ0,1. Let V1, . . . , Vn be i.i.d. random variables from
normal distribution with parameter vector θ = (µ, σ2), where µ denotes the
mean and σ denotes the standard deviation. Let V̄ and sV denote the sample
mean and standard deviation of the sample V1, . . . , Vn. Let Fn,V and F̂n,V de-
note the empirical distribution of V1, . . . , Vn and ((V1− V̄ )/sV ), . . . , Vn((V1−
V̄ )/sV ) respectively. Clearly

F̂n,V (y)− Φ(y) = Fn,V (V̄ + ysV )− ΦV̄ ,sV
(V̄ + ysV ).

So,
sup
y
|F̂n,V (y)− Φ(y)| = sup

x
|Fn,V (x)− ΦV̄ ,sV

(x)|.

If a further i.i.d. sample R1, . . . , Rn is drawn from the normal distribution
with mean V̄ and variance s2V , then also we have

sup
y
|F̂n,R(y)− Φ(y)| = sup

x
|Fn,R(x)− ΦR̄,sR

(x)|,

where R̄, sR, Fn,R denote mean, standard deviation, empirical distribu-

tion of R1, . . . , Rn, and F̂n,R denote the empirical distribution of ((R1 −
R̄)/sR), . . . , (Rn − R̄)/sR)). Thus from the discussion in §2 2, it is clear
that both

√
n(Fn,V − ΦV̄ ,sV

) and
√
n(Fn,R − ΦR̄,sR

) both converge weakly

to the same Gaussian process. Thus, both supy
√
n|F̂n,R(y) − Φ(y)| and

supy
√
n|Fn,R(y)− Φ(y)| have the same limiting distributions.

As supx |φR̄,sR
(x) − φV̄ ,sV

(x)|/φ0,1(x) → 0, it also follows that von
Mises-type statistics n

∫

(Fn,V (x)−ΦV̄ ,sV
(x))2 dΦV̄ ,sV

(x) and n
∫

(Fn,R(x)−
ΦR̄,sR

(x))2 dΦR̄,sR
(x) both converge in distribution to the same limit.

In practice, we can start taking samples of size n from standard normal
distribution, and standardize the sample with estimated mean and variance.
Then compute the statistic supy |F̂n,V (y)−Φ(y)|. Repeat this a large number
of times. The histogram of the resultant values approximate the sampling
distribution of |F̂n,R(y) − Φ(y)|. Critical values can be computed from this
histogram.
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Similar analysis goes through for the Cauchy family. Let V1, . . . , Vn
be i.i.d. random variables from a Cauchy distribution with density c(x; θ)
given by

c(x; θ) = c(x; (θ1, θ2)) =
1

π

θ2
θ22 + (y − θ1)2

.

The sample median is a consistent estimator of the location θ1. Note that
the scale parameter θ2 is given by half of the difference between the third
and first quartile. Thus the sample interquartile range consistently estimates
2θ2.

Let Ṽ and 2V̂ denote, respectively, the sample median and the interquar-
tile range of the sample V1, . . . , Vn. Let F̂n,V and Fn,V denote the empirical

distributions of ((V1− V̄ )/V̂ ), . . . , ((V1− V̄ )/V̂ ) and V1, . . . , Vn respectively.
Let Cθ = Cθ1,θ2 denote the cumulative distribution function induced by the
density c(.; (θ1, θ2)) and C = C0,1. That is,

Cθ1,θ2(x) =
1

2
+

1

π
tan−1((x− θ1)/θ2)).

Clearly
F̂n,V (y)− C(y) = Fn,V (Ṽ + yV̂ )− CṼ ,V̂ (Ṽ + yV̂ ).

So,
sup
y
|F̂n,V (y)− C(y)| = sup

x
|Fn,V (x)− CṼ ,V̂ (x)|.

If a further i.i.d. sample R1, . . . , Rn is drawn from the Cauchy distribution
with parameters Ṽ and V̂ , then also we have

sup
y
|F̂n,R(y)− C(y)| = sup

x
|Fn,R(x)− CR̃,R̂(x)|,

where R̃, 2R̂, Fn,R denote the sample median, the interquartile range, the

empirical distribution of R1, . . . , Rn, and F̂n,R denotes the empirical distri-

bution of ((R1− R̃)/R̂), . . . , ((Rn− R̃)/R̂). Thus from the discussion in §2 2,
it is clear that both supy |F̂n,V (y)−C(y)| and supy |F̂n,R(y)−C(y)| have the
same limiting distributions. Note that the estimators involve only quantiles,
as in the case of sample median (see equation (2.1)), the conditions (E), (P),
and (A2)-(A5) are clearly satisfied. Thus the critical values can be computed
as described in the normal case.

4 Technical Results

Recall that {F (.; θ) : θ ∈ Θ} denotes a family of continuous distribution
functions, θ0 ∈ Θ, and Λ ⊂ Θ is the closure of a given neighborhood of
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θ0, where Θ is a open region in a p-dimensional Euclidean space. Suppose
{θn} is a sequence in Λ converging to θ0 as n → ∞ . Let X1,n, . . . , Xn,n

be i.i.d. random variables from the distribution F (.; θn). Let Pθn
denote

the probability measure induced by X1,n, . . . , Xn,n and let Fn denote the
empirical distribution of these random variables.

Suppose θ̂n = θ̂n(X1,n, . . . , Xn,n) is an estimator of θn. In most practical

situations θ̂n is a maximum likelihood estimator or an estimator obtained
from an estimating equation. As mentioned in §2 2.1, the results also hold
for many general estimators θ̂n including M-estimators and L-statistics.

Remark. Even though the estimator θ̂n as a function of the observations
does not depend on the parameter θn, it would be necessary to consider√
n(θ̂n − θn), which would in general depend on θn.

If
∫

‖`(x; θ0)‖2 dF (x; θ0) is finite, then clearly

∫

{‖`(x;θ0)‖>ε
√
n }
‖`(x; θ0)‖2 dF (x; θ0)→ 0.

Consequently, if θn ≡ θ0, then assumptions (A4) and (A5) are not required
in the proof of Theorem 4.1. Assumption (A4) holds if for some δ > 0,

sup
θ∈Λ

∫

‖`(x; θ)‖2+δ dF (x; θ) <∞.

Assumption (A5) holds if (A4) holds and if

{t ∈ (0, 1) : `(ξn(t); θn)→ `(ξ0(t); θ0)}

has Lebesgue measure 1 for every sequence θn → θ0, where ξn(t) denotes
the t-th quantile of F (.; θn), n = 0, 1, 2, . . . This can be seen easily by using
results on uniform integrability (Theorem 16.14 of Billingsley 1995).

We now state the main technical result.

Theorem 4.1 Suppose θn → θ0, (A1) holds, and

θ̂n − θn =
1

n

n
∑

i=1

`(Xi,n; θn)+
1√
n
εn, (4.1)

for a score function ` satisfying (A2)-(A5), where εn → 0 in Pθn
-probability.

If L(θn)→ L(θ0), then the process Yn given by

Yn(x) = Yn(x; θn, θ̂n) =
√
n
(

Fn(x)− F (x; θ̂n)
)
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converges weakly to a centered (E(Y (x)) = 0) Gaussian process Y . The
covariance function R of Y is given by

R(x, y) = Cov(Y (x), Y (y))

= min
(

F (x; θ0), F (y; θ0)
)

−F (x; θ0)F (y; θ0)

−h(x; θ0)g(y; θ0)′−h(y; θ0)g(x; θ0)′+g(x; θ0)L(θ0)g(y; θ0)′. (4.2)

Proof. Let Zn(x) =
√
n
(

Fn(x)− F (x; θn)
)

. Then

Yn(x) = Zn(x) +
√
n
(

F (x; θn)− F (x; θ̂n)
)

. (4.3)

By mean value theorem,

F (x; θ̂n)−F (x; θn) = (θ̂n−θn)g(x;λ)′

= (θ̂n−θn)g(x; θ0)′+(θ̂n−θn)(g(x;λ)−g(x; θ0))′, (4.4)

where λ is a vector lying between θn and θ̂n. Thus by (4.1), (A1)-(A4) and
the multivariate central limit theorem

sup
x
‖g(x;λ)− g(x; θ0)‖ →p 0 and

√
n(θ̂n − θn)→D N(0, L(θ0))

as ‖λ− θ0‖ ≤ ‖λ− θn‖+ ‖θn− θ0‖ ≤ ‖θ̂n− θn‖+ ‖θn− θ0‖ →p 0, where →D
denotes convergence in distribution. Hence by (4.3) and (4.4), we have

sup
x
|Yn(x)− Zn(x) +

√
n(θ̂n − θn) g(x; θ0)

′| →p 0.

Consequently by (4.1),

sup
x

∣

∣

∣
Yn(x)− Zn(x) +

1√
n

n
∑

i=1

`(Xi,n; θn)g(x; θ0)
′
∣

∣

∣
→p 0. (4.5)

By (4.5), the processes Yn and Wn have the same weak limit, where

Wn(x) =
1√
n

n
∑

i=1

(

I{Xi,n≤x} − F (x; θn)− `(Xi,n; θn)g(x; θ0)
′
)

.

Measurability issues are not discussed here; see Pollard (1984, pp 155-159)
for issues associated with measurability.

To prove thatWn converges to a Gaussian process, let U1, . . . , Un be i.i.d.

uniform random variables on (0, 1). Let En(t) = n−1/2
∑n

i=1

(

I{Ui≤t} − t
)

.
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Clearly, for each n, the processes Zn and En(F (.; θn)) both have the same
distribution. As the sequence {En} is tight (Billingsley, 1968), {Zn} is a
tight sequence. Since

√
n(θ̂n − θn) is bounded in probability and g(.; θ0), by

(A1), is a continuous function, it follows that {Wn} is a tight sequence. It is
clear by assumptions (A2)-(A4) and the multivariate central limit theorem
that the finite dimensional distributions of {Wn} converge to multivariate
normal distributions. So it is enough to prove that

Cov (Wn(x),Wn(y))→ R(x, y). (4.6)

Now by (A1) we have for x ≤ y

Cov (I{Xi,n≤x}, I{Xi,n≤y}) = F (x; θn)(1− F (y; θn))→ F (x; θ0)(1− F (y; θ0)).
(4.7)

By (A2),

Cov (Wn(x),Wn(y)) = Cov (I{Xi,n≤x}, I{Xi,n≤y}) + g(x; θ0)L(θn)g(y; θ0)
′

−h(x; θn)g(y; θ0)′ − h(y; θn)g(x; θ0)
′. (4.8)

Since L(θn) → L(θ0), the convergence (4.6) follows from (A5), (4.7) and
(4.8). This completes the proof of the theorem.

Remark. Though Theorem 4.1 can be derived from Theorem 19.23 of
Van der Vaart (1998), the direct proof given above is essentially self con-
tained, and easily adaptable to obtain the bootstrap version to establish
bootstrap consistency.

Theorem 4.2 Suppose (A1) holds, and (E), (N) hold for some score
function ` satisfying (A2)-(A5). If L is continuous at θ0, then for almost all
sample sequences X1, . . . , Xn, the bias corrected process Y b

n given by

Y b
n (x) =

√
n
(

F ∗n(x)− F (x; θ̂∗n)
)

−Bn(x)

converges weakly to a centered (E(Y (x)) = 0) Gaussian process Y . The
covariance function R of Y is given by (4.2).

Proof. The proof is similar to that of Theorem 4.1. As in (4.5), we
have by (N) supx |Y b

n (x)−W ∗
n(x)| → 0 in the bootstrap measure for almost

all sample sequences X1, . . . , Xn, where

W ∗
n(x) =

1√
n

n
∑

i=1

(

I{X∗
i ≤x}−Fn(x)−

(

`(X∗i ; θ0)−
1

n

n
∑

i=1

`(Xi; θ0)
)

g(x; θ0)
′
)

.
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Now it is a matter of simple algebra using strong law of large numbers to
show that the process W ∗

n converges weakly to a Gaussian process with
covariance function R given by (4.2). This completes the proof.
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Billingsley, P. (1968). Convergence of Probability Measures. Wiley, New York.

Billingsley, P. (1995). Probability and Measure, 3rd Edition. Wiley, New York.

Darling, D.A. (1955). The Cramér-Smirnov test in the parametric case. Ann. Math.

Statist., 26, 1-20.

Durbin, J. (1973). Weak convergence of the sample distribution function when param-
eters are estimated. Ann. Statist., 1, 279-290.

Kac, M., Kiefer, J. and Wolfowitz, J. (1955). On tests of normality and other tests
of goodness of fit based on distance methods. Ann. Math. Statist., 26, 189-211.

Pollard, D. (1984). Convergence of Stochastic Processes. Springer-Verlag, New York.

Simpson, P.B. (1951). Note on the estimation of a bivariate distribution function. Ann.
Math. Statist., 22, 476-478.

van der Vaart, A.W. (1998). Asymptotic Statistics. Cambridge University Press,
Cambridge, UK.

G. Jogesh Babu and C.R. Rao

326 Thomas Building

Department of Statistics

The Pennsylvania State University

University Park, PA 16802

E-mail: babu@stat.psu.edu

crrl@psu.edu

Paper received: February 2002; revised August 2003.


