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Abstract: Conditions for approximate frequentist validity of posterior credible sets

based on the score statistic have been derived in the multiparameter case. These

conditions can be helpful in supplementing similar conditions obtainable through the

likelihood ratio statistic and the highest posterior density region. In the process,

explicit expressions are given for the posterior quantiles of the score statistic. Similar

results based on Wald's statistic have also been briey indicated.
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1. Introduction

In recent years there has been a renewed interest in the study of approximate

frequentist validity of posterior credible sets. As noted in Tibshirani (1989), apart

from providing a method for constructing accurate frequentist con�dence regions,

such a study is also helpful in de�ning a non-informative prior which could be

potentially useful for comparative purposes in Bayesian analysis. In other words,

posterior credible sets with approximate frequentist validity are meaningful not

only from a Bayesian but also from a purely frequentist point of view where no

prior is assumed and, as such, priors underlying such credible sets may, in a sense,

be looked upon as non-informative. Even if, for inferential purposes in a given

context, a Bayesian wishes to use a subjective rather than such a non-informative

prior, the latter may help in judging how subjective the former is. We refer to

Ghosh and Mukerjee (1992a) for a discussion on this and other approaches for

de�ning non-informative priors.

Welch and Peers (1963) considered the above problem, with reference to

one-sided credible sets, in the one-parameter case. Their work was strength-

ened and extended in various directions by Peers (1965, 1968), Stein (1985),

Tibshirani (1989) and Nicolau (1993). Tibshirani (1989) showed that, with a

one-dimensional interest parameter, elegant results are available via an orthog-

onal parametrization (Cox and Reid (1987)). In the multiparameter case, Lee

(1989) explored the frequentist validity of elliptic credible regions and half spaces
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while Ghosh and Mukerjee (1991, 1993) considered posterior regions based on

the posterior Bartlett-corrected likelihood ratio (LR) statistic (see Bickel and

Ghosh (1990)) and highest posterior density (HPD) regions. Ghosh and Muk-

erjee (1992b) investigated a similar problem starting from the conditional LR

statistic of Cox and Reid (1987). For further references and a review of the

literature, we refer to Lee (1989); see also Severini (1991) in this connection.

In the same spirit as with the LR statistic, one may wish to investigate

conditions leading to approximate frequentist validity of posterior credible re-

gions based on other popularly used statistics like Rao's score statistic or Wald's

statistic. The present work addresses this issue in the multiparameter case with

emphasis on the score statistic. The resulting conditions are seen to be stronger

than the corresponding condition based on the posterior Bartlett-corrected LR

statistic. In fact, it is seen that conditions obtained via the score statistic can

supplement those based on the LR statistic and the HPD region and can be

useful in making a choice from amongst priors satisfying the latter conditions.

Examples have been given in Section 3 to illustrate this point. Here we shall

be primarily concerned with a slightly modi�ed version, say T �, of the score

statistic, which seems to be natural in a Bayesian set-up. The consequences of

dealing with Wald's statistic or the original version of the score statistic will also

be briey indicated.

It may be of some interest to note that if a posterior region based on T �,

as considered here, has approximate frequentist validity then, apart from having

a Bayesian interpretation, such a region will have a higher order frequentist

behaviour similar to that of one given by the more traditional approach based

on inversion of the LR statistic. Invoking the duality between acceptance regions

of tests and credible regions, this follows from known results on higher order

comparison of tests (Mukerjee (1993)) which can be utilized to show that in a

frequentist set-up a test given by T � will have the same average power, up to

the second order, as the LR test, the average being taken over spherical regions

centered at the null hypothetical value with the per observation information

matrix at the null hypothetical value used as a Riemannian metric. Thus, in

addition to being helpful in the search for non-informative priors as mentioned

in the last paragraph, the present results can be useful in obtaining accurate

frequentist regions with attractive frequentist properties.

2. Posterior Distribution of the Score Statistic

Let fXig, i � 1, be a sequence of independent and identically distributed

possibly vector-valued random variables with a common density f(x; �) where

� = (�1; : : : ; �p)
0 2 Rp or some open subset thereof. We make the asssump-
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tions of Johnson (1970). Let � have a prior density �(�) which is positive and

thrice continuously di�erentiable at all �. If �(�) is not proper, we shall re-

quire that there is an n0(> 0) such that for all X1; : : : ;Xn0 , the posterior of �

given X1; : : : ;Xn0 is proper. Let X = (X1; : : : ; Xn)
0, where n is the sample size,

l(�) = n�1
Pn

i=1 log f(Xi; �) and �̂ be the maximum likelihood estimator of �

based onX. De�ne �̂ = �(�̂) and for 1 � i; j; r; s � p, let �i(�) = Di�(�), �ij(�) =

DiDj�(�), �̂i = �i(�̂), �̂ij = �ij(�̂), ai = fDi `(�)g�=�̂, aij = fDiDj `(�)g�=�̂,

cij = �aij , aijr = fDiDjDr `(�)g�=�̂, aijrs = fDiDjDrDs `(�)g�=�̂, where Di is

the operator of partial di�erentiation with respect to �i. All formal expansions

for the posterior, as used here, are valid for sample points in a set S, which may

be de�ned along the line of Bickel and Ghosh (1990; Section 2 with m = 3), with

P�-probability 1 + O(n�2) uniformly over compact sets of �. The p � p matrix

C = ((cij)) is positive de�nite over S. Let C
�1 = ((cij)).

The original version of the score statistic, as de�ned in Rao (1948), is given by

T � T (X; �) = f�(X; �)g0I�1f�(X; �)g, where �(X; �) = n
1

2 (D1 `(�); : : : ; Dp `(�))
0

and I � I(�) is the per observation information matrix at � which is assumed to

be positive de�nite at each �. This is motivated by the fact that under �, �(X; �)

has a null mean vector and covariance matrix I. However, in the posterior set-up,

up to the �rst order of approximation, �(X; �) will continue to have a null mean

vector but will have covariance matrix C (see (2.2a), (2.3) below). As such, in

a posterior set-up, it appears to be natural (cf. Efron and Hinkley (1978)) to

consider a slightly modi�ed version of the score statistic given by

T � � T �(X; �) = f�(X; �)g0 C�1f�(X; �)g: (2:1)

Here we shall be primarily concerned with T �.

We begin by �nding an expression for the approximate posterior characteris-

tic function (c.f.) of T � which helps in the explicit derivation of posterior credible

sets based on T �. Throughout, unless otherwise stated, the summation conven-

tion will be followed, i.e., summation will be implied over repeated subscripts or

superscripts. For example, aijrhjhr and c
ij �̂ij will stand for

P
j

P
r aijrhjhr andP

i

P
j c

ij �̂ij respectively.

Let h = (h1; : : : ; hp)
0 = n

1

2 (� � �̂). As noted in Ghosh and Mukerjee (1991),

the posterior density of h under the prior �(�) is given by

~�(hjX) = �(h;C�1)

�
1+n�

1

2

�
U11(�; h)+

1

6
U12(h)

�
+ n�1

�
1

2
(U21(�; h)�G1(�))

+
1

24
(U22(h)�G2) +

1

6
(U11(�; h)U12(h) �G3(�))

+
1

72
(U 2

12(h)�G4)

��
+ o(n�1); (2:2a)
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where �(�;C�1) is the p-variate normal density with null mean vector and covari-

ance matrix C�1, and, with c
(1)
ijrs = cijcrs + circjs + ciscjr,

U11(�; h) = �̂�1hi�̂i; U12(h) = aijrhihjhr; (2:2b)

U21(�; h) = �̂�1hihj �̂ij ; U22(h) = aijrshihjhrhs; (2:2c)

G1(�) = �̂�1cij �̂ij ; G2 = aijrsc
(1)
ijrs; G3(�) = �̂�1aijr�̂sc

(1)
ijrs; (2:2d)

G4 = aijrasuv(9c
ijcrscuv + 6ciscjucrv); (2:2e)

each of the implicit summations being over the range 1 to p. Now, for 1 � i � p,

an expansion about �̂ yields

n
1

2Di `(�) = n
1

2Di `(�̂ + n�
1

2h)

=� cijhj +
1

2
n�

1

2 aijrhjhr +
1

6
n�1aijrshjhrhs + o(n�1): (2:3)

Hence by (2.1), (2.2b,c),

T � = h0Ch� n�
1

2U12(h) + n�1
�1
4
U3(h)�

1

3
U22(h)

�
+ o(n�1); (2:4a)

where

U3(h) = cuvauijavrshihjhrhs: (2:4b)

With � = (�1)
1

2 t, by (2.2a), (2.4a), the approximate posterior c.f. of T � under

the prior �(�) is given by

 �(�jX)

=

Z
~�(hjX) exp(� T �) dh

=

Z h
1 + n�

1

2 fU11(�; h) + (
1

6
� �)U12(h)g

+ n�1
n1
2
(U21(�; h)�G1(�))+

1

24
(U22(h)�G2)+

1

6
(U11(�; h)U12(h)�G3(�))

+
1

72
(U 2

12(h)�G4) + �(
1

4
U3(h)�

1

3
U22(h)) � �U12(h)(U11(�; h) +

1

6
U12(h))

+
1

2
�2U 2

12(h)
oi
e�h

0Ch�(h;C�1) dh + o(n�1):

After some simpli�cation with the help of (2.2b-e), (2.4b), the above yields

 �(�jX) = (1�2�)�
1

2
p+n�1

n 2X
j=0

Hj(�)(1�2�)
�( 1

2
p+j)+H3(1�2�)

�( 1
2
p+3)

o
+o(n�1);

(2:5)
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where

H0(�)=�
1

72
f36G1(�) + 3G2 + 12G3(�) +G4g; (2:6a)

H1(�)=
1

24
f12G1(�) + 4G2 + 12G3(�) + 3G4 � 3G5g; (2:6b)

H2(�)=�
1

24
f3G2+8G3(�)+4G4�3G5g;H3=

1

18
G4; G5=c

ijairsajuvc
(1)
rsuv:(2:6c)

For 0 < � < 1, let z2� be the �th quantile of a central chi-square variate

with p degress of freedom. Also, for positive integral �, Let K�(�) and k�(�) de-

note respectively the cumulative distribution function and the probability density

function of a central chi-square variate with � degrees of freedom. Let

Q�(�; �) = z2� � n�1fkp(z
2
�)g

�1
n 2X
j=0

Hj(�)Kp+2j(z
2
�) +H3Kp+6(z

2
�)
o
: (2:7)

Then, writing P �f�jXg for the posterior probability measure of � under the prior

�(�) and inverting (2.5), a step which can be justi�ed following Chandra and

Ghosh (1979), it follows that

P �fT �(X; �) � Q�(�; �)jXg = �+ o(n�1): (2:8)

Hence Q�(�; �) may be regarded as the �th posterior quantile, up to the order

of approximation o(n�1), of T � under the prior �(�). By (2.8), the credible set

R�;�(X) = f� : T �(X; �) � Q�(�; �)g; (2:9)

given by T �, has posterior coverage probability �+ o(n�1).

Remark 1. (a) With reference to a problem posed in Cox (1988), starting from

(2.5) and proceeding as in Cordeiro and Ferrari (1991), it is possible to suggest a

posterior Bartlett-type adjustment for T �. However, arguments similar to those

used in this and the next section show that priors ensuring frequentist validity,

up to o(n�1), of posterior credible sets based on such a posterior Bartlett-type

adjusted version are precisely the same as those obtained through T � itself (see

(3.4) below). Hence this aspect will not be further considered in the sequel.

(b) As noted in Ghosh and Mukerjee (1992b), (2.2a) is in agreement with the

�ndings in Tierney and Kadane (1986). For analytical studies like the present

one, the use of (2.2a) seems more convenient than that of the results in Tierney

and Kadane (1986), whereas for numerical approximations it should be the other

way around.
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3. Frequentist Validity of Posterior Regions

We shall now characterize priors ensuring approximate frequentist validity of

posterior credible sets given by (2.9). This calls for evaluation of P�fT
�(X; �) �

Q�(�; �)g up to o(n�1). We shall follow the approach in Ghosh and Mukerjee

(1991) which is reminiscent of that in Dawid (1991). We take a prior ��(�) satisfy-

ing the conditions in Bickel and Ghosh (1990) which are to some extent stronger

than those in Johnson (1970) and make Edgeworth assumptions as in Bickel and

Ghosh (1990, p.1078). Then, analogously to (2.5), one can obtain the approxi-

mate posterior c.f. of T � under ��(�) and then use (2.6a-c), (2.7) and the facts (i)

K�(z
2
�)�K�+2(z

2
�) = 2k�+2(z

2
�), (ii) k�+2(z

2
�)=k�(z

2
�) = z2�=�, to get

P ��fT �(X; �) � Q�(�; �)jXg

= �+ n�1
2X

j=0

fHj(��)�Hj(�)gKp+2j(z
2
�) + o(n�1)

= �+
1

3
n�1kp+2(z

2
�)[3fG1(�)�G1(��)g+f1 � 2(p+2)�1z2�g fG3(�)�G3(��)g]

+ o(n�1): (3:1)

Let I�1 = ((I ij)) and for 1 � i; j; r; s � p, de�ne I
(1)
ijrs = I ijIrs + I irIjs + I isIjr,

Vi = Di log f(X1; �), Vij = DiDj log f(X1; �), Vijr = DiDjDr log f(X1; �), Lijr

= E�(Vijr), Li;jr = E�(ViVjr), Li;j;r = E�(ViVjVr). Note that I
ij , Lijr, Li;jr, Li;j;r

are functions of �. By (2.2d), (3.1),

E� [P
��fT �(X; �) � Q�(�; �)jXg]

= �+
1

3
n�1kp+2(z

2
�)

�
3I ij

�
�ij(�)

�(�)
�
��ij(�)

��(�)

�
+

�
1�

2z2�
p+ 2

�
LijrI

(1)

ijrs

�
�s(�)

�(�)
�
��s(�)

��(�)

��

+ o(n�1); (3:2)

We now choose ��(�) such that ��(�) and its �rst order partial derivatives

vanish on the boundaries of a rectangle containing � as an interior point. We

then integrate E�[P
��fT �(X; �) � Q�(�; �)jXg], as shown in (3.2), by parts with

respect to such a ��(�) and �nally allow ��(�) to converge weakly to the degenerate

measure at �. After some simpli�cation, this yields

P�fT
�(X; �) � Q�(�; �)g

= �+ n�1kp+2(z
2
�)f�(�)g

�1[M1(�)+f1� 2(p+ 2)�1z2�gM2(�)]+o(n
�1); (3:3a)

where

M1(�) = I ij�ij(�)� �(�)DiDjI
ij=DiDjfI

ij�(�)g�2Dif�(�)(DjI
ij)g; (3:3b)

M2(�) =
1

3
DsfLijrI

(1)
ijrs�(�)g = DsfLijrI

ijIrs�(�)g; (3:3c)
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as Lijr and I ij are invariant under permutation of subscripts and superscripts

respectively.

By (2.9), (3.3a), frequentist validity, up to o(n�1), holds for posterior credible

sets based on T � if and only if �(�) satis�es the partial di�erential equations

M1(�) = 0; M2(�) = 0: (3:4)

Remark 2. Proceeding as in Ghosh and Mukerjee (1991) and using (3.3b,c), it

can be shown that (3.4) is satis�ed by Je�reys' prior, namely �0(�) / fdet I(�)g
1

2 ,

if and only if Di[I
ijIrsLj;r;sfdet I(�)g

1

2 ] = 0 and Di[I
ijIrsLjrsfdet I(�)g

1

2 ] = 0.

The above conditions hold under location, scale and many other models { e.g.,

with p = 1, under the bivariate normal model with zero means, variances 1 and

1 + �2 and covariance �. There are also models where Je�reys' prior does not

solve (3.4) but other solutions to (3.4) are available; see Example 1 below in this

connection.

Remark 3. As shown in Ghosh and Mukerjee (1991), frequentist validity, up

to o(n�1), holds for posterior regions based on a posterior Bartlett corrected LR

statistic if and only if

M1(�) +M2(�) = 0: (3:5)

Also, following Ghosh and Mukerjee (1993), frequentist validity, up to o(n�1),

holds for HPD regions if and only if

Di

�
I ij�j(�)

	
+Ds

�
Lj;irI

ijIrs�(�)
	
= 0: (3:6)

Note that (3.4) is stronger than (3.5). The following examples illustrate how (3.4)

can supplement (3.5) and (3.6) and thus help in making a choice from amongst

priors satisfying the latter conditions. In the process, it will be useful to note

from (3.3b) that M1(�) can also be expressed as

M1(�) = Di

�
I ij�j(�)

	
�Ds

�
(Lj;ir + Lijr)I

ijIrs�(�)
	
; (3:7)

which follows since DuI
ij = I irIjs(Lu;rs+Lurs) (cf. Ghosh and Mukerjee (1991)).

Example 1. (Multiparameter exponential family) Let f(x; �) be of the form

f(x; �) =W (x) exp
n pX
i=1

�iWi(x)�A(�)
o
: (3:8)

For 1 � i; j; r � p, let Ai(�)=DiA(�), Aij(�)=DiDjA(�), Aijr(�)=DiDjDrA(�).

Then it is easily seen that here Iij = Aij(�), Lj;ir = 0, Lijr = �Aijr(�) and

Li;j;r = Aijr(�), the last identity being a consequence of the regularity condition
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Lijr + Li;jr + Lj;ir + Lr;ij + Li;j;r = 0 (1 � i; j; r � p). Hence, by (3.3c), (3.7),

the conditions (3.5) and (3.6), arising from the LR statistic and the HPD region

respectively, are both equivalent to

Di

�
Aij(�)�j(�)

	
= 0; (3:9)

where Aij(�) is the (i; j)th element of the inverse of the p�p matrix with typical

element Aij(�). Similarly, the conditions (3.4), obtained via the score statistic

reduce to

Di

�
Aij(�)�j(�)

	
= 0; Ds

�
Aijr(�)A

ij(�)Ars(�)�(�)
	
= 0: (3:10)

The equation (3.9) can have many solutions. For example, �(�) = constant is a

solution of (3.9). Furthermore, if for any u, Au(�) is either positive or negative

for all � then �(�) / Au(�) is also an admissible solution of (3.9). The conditions

in (3.10), which incorporate (3.9) and hence are stronger than (3.9), can help in

making a choice from amongst these and other solutions of (3.9).

For a more speci�c illustration, consider the inverse Gaussian model with

location parameter (�1=�2)
1

2 and scale parameter �1, where �1; �2 > 0. Then

f(x; �) = �
1

2

1 (2�x
3)�

1

2 exp
h
�(2x)�1�2fx� (�1=�2)

1

2 g2
i
; x > 0;

which is of the form (3.8) with p = 2 and A(�) = � 1

2
log �1 � (�1�2)

1

2 . Hence,

considering A1(�) and A2(�), as noted above, �(1)(�) / f��11 + (�2=�1)
1

2 g and

�(2)(�) / (�1=�2)
1

2 are obtained, in addition to �(0)(�) = constant, as solutions

of (3.9). Also, consideration of priors of the form �(�) / �
�1
1 �

�2
2 yield further

solutions of (3.9) as �(4)(�) / ��21 and �(5)(�) / (�31�2)
�

1

2 . It can be checked

that among these solutions of (3.9) only �(5)(�) satis�es (3.10). Thus (3.10),

obtained from the score statistic, can help in discriminating among priors reached

via consideration of the LR statistic or the HPD region. Incidentally, under the

present inverse Gaussian model, I11 =
1

2
��21 + 1

4
(��31 �2)

1

2 , I12 = I21 = � 1

4
(�1�2)

�
1

2 ,

I22 = 1

4
(�1�

�3
2 )

1

2 , and it may be seen that Je�reys' prior, given by �0(�) /

(�1�2)
�3=4 does not satisfy (3.10).

Example 2. (Multiparameter scale family) Let f(x; �) be of the form

f(x; �) = (�1 � � � �p)
�1
g
�
x(1)=�1; : : : ; x

(p)=�p

�
;

where x = (x(1); : : : ; x(p))0 and �1; : : : ; �p > 0. Then for 1 � i; j; r � p, we have

Iij = bij=(�i�j); I
ij = bij�i�j; Lj;ir = bj;ir=(�i�j�r); Lijr = bijr=(�i�j�r); (3:11)
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provided they exist, where the quantities bij , b
ij , bj;ir, bijr are constants free from

� and bij is the (i; j)th element of the inverse of B = ((bij)) which is assumed to

be positive de�nite. Note that the summation convention is not being followed

in (3.11). By (3.3c), (3.7), (3.11), the conditions (3.5) and (3.6), arising from the

LR statistic and the HPD region respectively, reduce to

bijDif�i�j�j(�)g � �1sDsf�s�(�)g = 0; (3:12a)

and

bijDif�i�j�j(�)g+ �1sDsf�s�(�)g = 0; (3:12b)

where �1s = bj;irb
ijbrs, 1 � s � p. Similarly, the conditions (3.4), obtained via

the score statistic, are now equivalent to

bijDif�i�j�j(�)g � �1sDsf�s�(�)g = 0; �2sDsf�s�(�)g = 0; (3:13)

where �2s = bijrb
ijbrs, 1 � s � p. Unless the vector (�21; : : : ; �2p)

0 is proportional

to (�11; : : : ; �1p)
0, (3.13) can strengthen (3.12a,b) and be helpful in making a

choice from amongst the priors satisfying the latter conditions.

For a speci�c illustration, consider the trivariate normal model with a null

mean vector, unknown standard deviations �1, �2, �3 and a known correlation

matrix 0
B@

1 � 1

2
0

� 1

2
1 � 1

2

0 � 1

2
1

1
CA :

Then p = 3, bij = bji, b
ij = bji, bj;ir = bj;ri, bijr is invariant under permutation

of subscripts, and an explicit calculation shows that b11 = b33 = 5=2, b22 = 3,

b12 = b23 = �1=2, b13 = 0, b11 = b33 = 29=70, b22 = 25=70, b12 = b23 = 5=70,

b13 = 1=70, b1;11 = b3;33 = �8, b2;22 = �10, b1;22 = b2;11 = b2;33 = b3;22 = 1,

b1;12 = b2;12 = b2;23 = b3;23 = 1=2, b1;33 = b3;11 = b1;13 = b3;13 = b1;23 = b2;13 =

b3;12 = 0, b111 = b333 = 13, b222 = 16, b112 = b122 = b223 = b233 = �1, b113 = b133 =

b123 = 0, �11 = �13 = �739=490, �12 = �727=490, �21 = �23 = 1187=490, �22 =

1147=490. We now consider priors of the form �(�) / �
�1
1 �

�2
2 �

�3
3 , where �1, �2, �3

are constants. Such a prior satis�es (3.12a,b) if and only if 29(�21 + �23) + 25�22 +

10�2(�1+�3)+2�1�3+35(�1+�2+�3) = 0 and 739(�1+�3+2)+727(�2+1) = 0,

which have in�nitely many solutions for �1, �2, �3. Out of these solutions, only

the one given by �1 = �2 = �3 = �1, which corresponds to Je�reys' prior, is seen

to satisfy (3.13) as well. Thus (3.13), given by the score statistic, can help in

discriminating among priors obtained via consideration of the LR statistic and

the HPD region.

Remark 4. Along the line of (2.1), one may wish to consider a version of

Wald's statistic given by T �

1 = n(�̂� �)0C(�̂� �). Proceeding as in the derivation
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of (3.4), it can be shown that posterior credible sets based on T �

1 have frequentist

validity, up to o(n�1), if and only if the conditions in (3.4) hold. For the special

case p = 1, we have also studied the corresponding conditions arising from the

original version of the score statistic, namely T , and the original version of Wald's

statistic given by T1 = n(�̂ � �)0I(�̂)(�̂ � �). Consideration of T1 again leads to

(3.4) while consideration of T yields the conditions

I�1(d �(�)=d�)� I�2L1;11�(�) = constant; I�2L1;1;1�(�) = constant;

noting that, with p = 1, I = I(�) is a scalar.
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