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ABSTRACT: A general survey of various measures of diversity within and distance between
populauons in gene frequencies of blood group systems is given. A method of ordering
populations by an il of diversity within and of clustering populations in terms
of differences in pattern of diversity in different blood group systems is developed. Principal
coordinate analysis and multidimensional scaling are used to represent populations with given
distances between them graphically in an appropriate di 1 Euclid space. Such
graphical representations together with dendrograms are of great help in studying inter-
relationships between populations. The methods are illustrated using blood group data on
some human populations. AMS Classification index: 62H30
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1. INTRODUCTION

Blood group data is extensively used to study genetic differences between
populations. The basic statistics used in such investigations are measures
of “diversity within populations” and “distance between populations”. For
recent literature on the subject, reference may be made to papers by Carmelli
and Cavalli-Sforza (1979), Karlin, Kenett and Bonné-Tamir (1979),
Karlin, Carmelli and Bonné-Tamir (1982), Rao and Boudreau (1984) and -
Chakraborty and Rao (1991).

A diversity measure enables us to rank or group populations by homo-
geneity of individuals within a population, while a distance measure enables
us to study interrelationships between populations and throw light on their
evolution. Rao and Boudreau (1984) applied some recently developed
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methods in a study of differences in blood groups of jewish and gentile
populations in Europe and the Middle East.

The purpose of the present communication is to develop graphical rep-
resentations of the populations based on blood group data similar to the
canonical coordinate plots in the continuous case introduced by Rao (1948,
1971).

We provide a general discussion of diversity and distance measures and
choose particular measures based on Hellinger representation of multino-
mial distributions for illustrating the graphical representations.

For this purpose, we use the data on the antigenic blood group systems
HLA-A, HLA-B, ABO, MNSs and Rh for 15 populations considered earlier
by Karlin, Kenett and Bonné-Tamir (1979) and Rao and Boudreau (1984).
A description of these fifteen populations in terms of Jewish-Gentile denom-
inations and geographical locations is given in Table I.

TABLE I
Hierarchial classification of the populations.
Denominations Historical- Individl_xal
Jews-Gentiles geographical populations
H.G. groups
1 Polish (P)
1 Russian (R’)
4 Ashkenazi (A) 1 German (G')
1 Rumanian (Ru")
. 1 Moroccan (M)
[ 9* Jews (J) 2 Shepardi (S) 1 Libyan (L")
1 Iragi (I)
3 Oriental (O) ‘[ 1 chgnite Y"
15 Populations — 1 Cochin (C)
1 Arab (Ab)
3 Middle Eastern (ME) —i 1 Armenian (Am)
1 Samaritan (S)
L 6 Gentiles (G)

1 German (G)
3 European (E) —[ 1 Polish (P)
1 Russian (R)
HO HP H¢ H

* Indicates the number of populations in a category at any given level of classification.
HO, HP, HO, HF are within diversities at different levels.
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2. ANALYSIS OF DIVERSITY WITHIN POPULATIONS

2.1. Some known measures of diversity
We consider the set of multinomial distributions

21) P={p=@,....P0:p20,%p =1),

and define a function H on P as a measure of diversity if it satisfies the
two conditions given in Rao (1982b):

(i) H(p) = 0 if all the components of p are zero except one and > 0
otherwise.

(ii) H(e) is a concave functional on P. As a consequence the diversity
in a mixture of two populations is not smaller than the average of
the diversities within individual populations.

The two conditions, however, do not specify a diversity function
uniquely; other criteria such as easy interpretability in genetic terms may
have to be used in determining an appropriate function. Examples of diver-
sity functions that received wide applications in biology are entropy
functions such as:

Hy(p) = -Zp; log p; (Shannon)

- 1=2pF (a-order entropy of
H.®) 2%t -1 Havrda and Charavat)
Hy(p) = -X[p; log p; + (1 - p) log(1- p)]  (paired Shannon
entropy)

Hy() = (1 - ) log Tp¢ (o-degree entropy of Renyi)

Recently, Rao (1982a, b, ¢, 1984) introduced a general diversity measure
called the quadratic entropy

(22) Hyp) =X X dpp,

where d; is a nonnegative number representing an intrinsic difference
between the categories i and j: the Hy, then is the average difference between
two individuals drawn at random from a population. In such a case, Hy could
be interpreted in terms of chosen numbers dy. Thus, if p,, . . . , p, are
frequencies of different alleles of a gene at a locus on a chromosome and
dy=1if i #jand d; = 0, then

Hop) = 1-3pi = H,

which is the well-known index of gene diversity. If we consider p; as the
frequencies of genotypes in a random mating population and define d;; as
the proportion of genes not common to two genotypes i and j, then

Hy(p) = 1 - Ipf - 3p/(1 - p)* = H,,

(Gini-Simpson index)
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which was intraduced by Latter (1973). Other examples and necessary
restrictions on dy to ensure the concavity of Hy, are given in Rao (1982b,
1982c).

2.2. A new measure of diversity
We start with the Hellinger representation of the multinomial distribution

@3 p=@u....p
by a point
e4 opn.... V)

on the hypersphere in & dimensions. The maximam diversity is usually
associated with the multinomial distribution where each p, is equal to 1/%,
i.e., the point

@5 Wk ..., 14,

on the hypersphere. We may then define the diversity of (2.3) by a monotone
decreasing function of the angle of separation between (2.4) and (2.5),
such as the cosine function

@6 Kp, +...+py.

For some technical reasons, we define the diversity by

@D H@=Vp+...+Vp
by dropping the factor k™. The range of (2.7) is the interval {1, V1, with
unity representing complete homogeneity and vk complete heterogeneity.
We may transform H, in (2.7) to

@® B~ 2Pl

which has the range [0, 1] with zero representing complete homogeneity.
We may also transform H, in (2.7) to

(29) Hy(p) = log H(p)
which has the range [0, log V). It is seen that Hy(p) and Hy(p) belong
sespectively to the classes H.(p) and Hy(p) defined above.

The expressions (2.7), (2.8) and (2.9) are possible measures of diver-
sity when we are considering a single blood group system. If there are m
systerns with associated vectors Py, « - -+ Pu of sizes ki, . . + , ko then 2
composite measure of diversity may be defined as

(2.10) H, Py, - - - » Do) = Hip) + - - - + B
for any chosen H,, i = 1, 2, 3. In our study, we chose H, for the computa-

e af Avrarall divareity
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NOTE 1. The diversity measure Hy(p) has also the representaticsm

Iy, - .- VP - UV, . .., INTD |

@.11) Hyp)=1-
max N, - VB = WK . .., LNB Y2

whese [|-}} is the Euclidean norm. Thus, diversity is measured
(2.4) is from (2.5), with small distances indicating higher divul':){t:o -

NOTE 2. It is seen that the me
properties: asures H,, H,, and H, have whe required

Ea)) gg&-%iﬁmepl-landtherestmzem.

ii) - > 0 otherwise and attains the maximum val

) m valise when all p,

(iii) H(p) is a concave functional over the space of i i P
tributions with k£ alleles. ¢ mveltimomial dis-

(See Burbea and Rao (1982a, 1982b) and Lewontine (1 )
cussion of concave diversity functionals.) (1972) for a dis-

NOTE 3. Letp =(p,...,p) 4= (g,

N . » » s ----,q,)chGClOrs
quencies corresponding to two blood group systems whicks are indepe:dfegz-
inherited. Represent the joint distribution under indepemdence by 7

P Q={pgii=l,....5j=1,..., 7}
Then:

Hi(p, @) 2 AH,(p) + (1 - \)H,(q), 0 A < 1.

Hy(p, @) = Hy(p) + Hy(q).

2.3. Ordering of populations by diversity

Table II gives the values of diversity within a ulation a :
(2.§) for each population separately for each bloodp;gup systenf :n;ﬁ::d o
w.luch is the average over all blood group systems. Judging from the ovmm
diversity values, the general conclusion is that the Samaritans (5) herall
the Jowest, the Yemenite (Y") and Cochin (C") jews have the next Jo ot
and the rest have nearly equal but a higher degree of diversity, The s
cc)::l: hxls; mmntame(;lr generally for individual blood group systems. A sirzzf
fon was drawn using other meas of di ity i
S el g ures diversity in Rao and
The concavity of a diversity functional enables us to deco:
tof.ai.divcrsity (T} in all the populations put together as betwee:p(;s; th;
wyhm (W) populations and compute the percentage of diversity du:n
differences between populations. The decomposition is obtained ag fouow:;o
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,\ Let us denote the gene frequencies in any blood group system for the i-th
g ® t population by
~ 2.12) pi=@u oo puhi=1...,15
| ggesasgssazegsy BE[3 BE(§| e
I ot =3 ot Qoo | i
3 *222RURS58283385  S3ls 33813 I and the average over all populations by
15
213) p=(Pu....p) Pi= X Wi
§_ ?3 ‘ where w;, is the weight given to the i-th population, which is usually the
% <lo °;°f ol ‘ proportion of individuals in the i-th population to the total over all popu-
83285588 3838 % 2 % gc |8 28l8 Jations. (In our study we have given equal weight to all the populations).
= 3&&8 §> 383383833 33 S$318 colao If we de‘note diversity as a functional H.(-_) over the space of multinomial
g distributions, then the desired decomposition can be obtained as
=
2 ‘ (2.14) T=B + W,
> ~_~ ~
§ ?3! g where
° < =
slo| BPE22R35EfREREE 2§ 833 T = H(p), W = Zw; H(p).
Z LEEEIEEZ 5 & SN > | o . . . L.
2| 223333883333333 Ssls  ssls The value of B is obtained as the difference T ~ W, which is called the
Sy Jensen difference (see Rao (1982a)).
$ 2 'é » Table II gives also the values of B and W for each blood group system
: £ = ‘_«: I 2R and over all the systems, considering all the populations and also after
22 £ 22 Z 3 omitting S which has the least within diversity. It is seen that the percentage
< s $ g f diversity betw lations to total varies from about 1 to 9
8§ 2 _somavrozovnosy = 22|z © I8l of diversity een populations varies from about 1 to 9 percent
21g|° 88 é BEiccetog g2g % 8¢ )3 g3|3 over different blood group systems. The highest values are associated with
&< doHodcoRasegoEtnr SRS  REIE Rh and HLA-B systems, which provide the maximum discrimination
%‘ between populations.
S ~ =
3 S 8 2.4. Clustering of populations by diversity
-] ~ v
E] = et In section 2.3, a linear ordering of the populations was obtained in terms
m - —_ 0 — \O > [ e =4 00 00 | O e N
£14< SRg8¢e ‘g § 2s E g E88% =88 2glg of the pooled diversity over all the blood group systems. We can, however,
E|E I2E23333358328338 3Sals  sels differentiate between populations by constructing distances between pop-
ulations based on the pattern of diversities in individual blood group
systems. For instance, if 4,, ..., dsand df, . . ., d§ are the diversities in
& g five blood group systems as recorded in Table II for two populations, say
g g i and j, then the dissimilarity between the two populations { and j in terms
2 asg 2 § 2559 23 58 = 3% § % § § :;' the pattern of diversities in different blood group systems may be defined
= K=
£ RXDATT2RT2L52338 B3l esls
: @.15) 4 i(——‘“d: )
' ’ + r=1 ZW ’
§ = =
! ] £ls g_’ £lz which lies in range [0, o). A different measure of dissimilarity was used
Bl sxvZsnssov2favax R3F[E &F|E in Rao and Boudreau (1984).
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TABLE 11l
Dissimilarities between populations in the pattern of within population diversities in different blood group systems.

c

Am

Ab

L

Ru’

G

R’

37

17.9
9.8

13.2
33
1.9
11.3

15:2 123

326

5.6
47.5

4.6 23.6 18.8

13.6
23,1

L

r

17.2 15.4 66.7
112.1

13.0

183

s44 420 460 784

61.2

Ab

282 18.1 16.9 20.9 13.5 49.1 108.3

8.2
17

173

Am

11.8 14.6

41.0

13.4 10.5 21.4 425 11.2 28.8 4.2 27.1
24.6

11.8
15.1

42.4 233 29

46.6

19.7 19.0 139 15.6 352
343

172.6
513.4

R

41.7
236.0
597.7

47.4
245.7

16.9
113.3

487.3

31.6
158.3
459.0

1147
312.1

79.3
288.0
563.7

28.4
116.5
516.6

20.2
136.7
514.6

43.5
192.5
547.9

333
172.6
494.8

66.6

279.1

v

1l 57§
372.6

c
S

388.1

570.3

606.4

617.3

The values in the table are obtained by using the formula (2.15) and multiplying the result by 10

S S S S—

BLOOD GROUP DATA 199

The values of (2.15) for all pairs of populations are given in Table L
It is seen that in terms of diversity, the populations S and C’ are distinct
from the rest. The dendrogram for all the populations based on the matrix
of dissimilarities (Table IIT), using the method of complete linkage is given
in Figure 1.

From the dendrogram in Figure 1, it is seen that there are four different
clusters

§C, X, L, M, G, Am, G, P, Ru’), (Ab, P, R, I, R")

with different patterns of within population diversities. Within the third
cluster Y’ seems to have a somewhat different pattern of diversity than
the rest and within the fourth cluster Ab seems to differ slightly from the

rest.
8 [——
S
v
-
o
o | o

0.0

ﬁéﬁﬁ“ﬁe’iiil
7‘"!05'05.2 o o T &

Fig. 1. Dendrogram (complete linkage) based on the dissimilarity matrix (Table I) in
diversities.

3. INTERRELATIONSHIPS BETWEEN POPULATIONS

3.1. Distance measures

All studies of interrelationships between populations start with a matrix
of similarities or dissimilarities (distances) between populations. In the
present context, there are various ways of computing dissimilarities or
distances.

Let the gene frequencies at the i-th locus in population wt, be
@1 pf=Ch ...

,p‘,-ii),i-1,...,m;a-1,...,N,



200 ROBERT BOUDREAU AND C. RADHAKRISHNA RAO

where m is the number of blood group systems and N is the number gf
populations. The whole gametic array can be represented by the parti-
tioned vector

G2 p*=@.....p%a=1,...,N
Some examples of distance functions based on (3.2) are given below.

(i) Nei’s minimum distance
m ki

DY} = (84 = (* - PP)(p* - PP) = S (Pe-pB%  (33)
(ii) Nei's standard distance

D = —log cos 64, (3.4

where
. 2] . L1
cos 05 = Sotby/ [Soren]” ooty |
1

DSZA as defined in (3.4) does not satisfy the postulates of a distance
function. However, we may use the angle

8% = cos'[exp(-D@P)1, (3.52)
or the chord length
33 = 2 sin(6%/2), (3.5b)

which are distance functions.

(iii) Nei's maximum distance
D) =-log ( II cos 923;) (3.6)
i=l

where
cos 6% = pi(pf)/[pi(p7) 1 (p) 1"
Instead of D}, we may use the angle
0 = —os™ ( ﬁ cos eﬁ?,,) : (3.7a)
i=1
or the chord length
L 8% =2 sin(6%/2), (3.7b)

which are distance functions. (See Nei (1973), (197§) for. a descrip-
tion and use of the distance or dissimilarity functions introduced
by him.)
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If we denote
= - ., VP5), (3.8)

and apply the formula (3.3), we get what is known as Matusita (1957) or
Hellinger distance

v ew=[5 % omE- ] (3.9)

i=1 =
Applying the formula (3.6), we get
%) D@ =-log ( ﬁl cos 953,), (3.10)
where
cos B0} = }i:’l (PEph"™.

Instead of DY), we may use the angle

8¢} = cos™ T cos 69 (3.11a)
i=]
or the chord length
(B = 2 sin(6y/2), (3.11b)
which are distance functions. We call 8‘3& the composite chord
distance.

In our previous study (Rao and Boudreau (1984)), we used Nei’s distance
functions. In the present study we use Matusita distance 8{ and the chord
distance 8‘“’3 based on the Hellinger representation of gene frequencies.

Tables IV and V give respectively the values of Matusita (5%) and
composite chord (8%) distances between all pairs of populations. The
corresponding dendograms using the complete linkage method are given
in Figures 2 and 3. These dendograms seem to indicate close clustering
of the European gentiles and so also the European (Akshanazi) jews

(G, P, R) and (G’, R/, P, R")

with some separation between the two clusters. The Iraqi (I’), Moroccan
(M), Yemenite (Y’), Cochin (C’) and Lybian (L’) jews seem to be a little
distant from the other jews and also from the European gentiles. The
Samaritans (S), Arabs (Ab) and Armenians (Am) take distinct positions
separated among themselves and from the other groups of populations.

In order to study the interrelationships further and to provide a graph-
ical representation of the populations based on the distances between them,
we have used the method of principal coordinate analysis (PCA) and non-



TABLE IV
The matrix of Matusita distances (3.9) between populations.
P R’ G Ruw’ M L r Ab Am G P R Y’ o4
P
R’ 0.243
G’ 0316 0373
Rv’ 0249 0.286  0.380
M 0519 0510 0538  0.508
L 0527 0465 0569 0509 0571
¥ 0573 0570 0.626  0.591 0516  0.544
Ab 0695 0649 0747 0723 0700 0.637 0.703
Am 0.631 0.661 0633 0658 0705 0585 0628  0.667
G 0595 0.604 0582 0588 0569 0526 0634 0756 0581
P 0602 0598 0552 0606 0560 0539  0.601 0734 0561 0.356
R 0.571 0520 0588  0.561 0538 0474 0577 0692 0607 0445 0335
Y 0625 0679 0692 0642 0685 0699 0756 0810 0747 0729 0705 0745
c 0644 0696 0660 0.677 0692 0700 0763 0869 0762 058 0628 0716  0.637
S 0934 0947 0936 0.956 1010 0943 1020 0983 0929 0994 0978 1.030  0.975 1.042
TABLE V
The matrix of composite chord distances (3.11b) between populations.
P R’ a Ru’ M | 74 r Ab Am ] P R Y [od
P’
R’ 0.242
G’ 0313 0369
Ruw’ 0248 0283 0377
M 0507 0499 0527  0.498
L 0516 0457 0557 0498 0554
r 0559 0555 0610 0576 0503  0.530
Ab 0669 0630 0716 0695 0672 0618 0674
Am 0613 0640 0618 0640 0674 0570 0611  0.647
G 0.581 0.587 0571 0574 0552 0515 0612 0725  0.567
P 0.587  0.581 0544 0592 0545 0526 0583 0704 0547 0352
R 0558 0509 0577 0548 0525 0465 0561 0666 0589 0439 0332
Y 0.603  0.651 0664 0620 0656 0667 0716 0765 0708 0698 0675 0711
[o4 0.623  0.667 0639 0655 0665 0672 0725 0817 0728 0568 0606 0.687 0618
S 0874 088 0875 0897 0933 0879 0939 0902 0866 0928 0910 0948 0909 0965

20T
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Fig. 2. Dendrogram (complete linkage) based on Matusita distances.

a &=
Fig. 3. Dendrogram (complete linkage) based on the composite chord distances.

metric multidimensional scaling (NMMDS). A brief description of these
methods is given in the Appendix. For purposes of illustration, we chose
the Matusita distance matrix as the basis for graphical representation. The
Samaritans (S) are omitted from the analysis as they are quite distant

e P S P P S P N SRS I T G S S R,
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from the other populations and their inclusion might distort the relative
positions of the other populations in the lower dimensional graphical
representations. As a practical rule, we suggest the following. First, con-
struct a dendrogram and/or use PCA (or NMMDS) on the matrix of distances
considering all the populations. Then pick up broad and widely separated
clusters by examining the dendograms and the PCA (or NMMDS) plots.
Then apply PCA or NMMDS separately on each cluster to obtain a graph-
ical representation of populations within each cluster.

Principal coordinate analysis: The 15 x 15 matrix D of distances is trans-
formed into the 15 X 15 matrix B as explained in the Appendix and its
spectral decomposition is obtained in the form

(3.13) B =APP[+ AP, +...

where A2, A2, . . . are the eigen values and P,, P,, . . . are the corre-
sponding eigen vectors of B. We have to choose the appropriate dimension
for representing the 15 populations. This is done by examining the ratios

M AT+

Z}\';; ’ zle R ]

which in the present case turn out to be in terms of percentages
(3.15) 20.2%, 39.4%, 54.6%, 64.8%, 73.3%, 80.8%, . . ..

The number of dimensions needed for graphical representation to capture
most of the differences between populations is judged by the ratios in (3.14).
If the second ratio in (3.14) is large, then a two dimensional representa-
tion is adequate. Otherwise, we may have to consider a higher dimensional
representation. In the present example, it may be necessary to go up to
five dimensions which explain about 73% of the differences between
populations. The coordinates associated with the first five dimensions are
given in Table VI. Figure 4 gives the plot of actual (Matusita) distances
versus the distances in the five dimensional reduced space of principal
coordinates. The association seems to be fairly satisfactory. Using the
principal coordinates, biplots are made for every pair of coordinates as
shown in Figures 6.1-6.10. The broad conclusions form these plots, which
we call the grand tour, are as follows.

The population sets (G, P, R) and (G/, P’, R’, Ru’), are separated, but
within each set the populations stick together in all the plots confirming two
closely knit clusters. C’, Y’, Am, Ab wander around keeping some distances
among themselves and not associate with any other particular population.
I’, M’, L’ behave in the same way though not so widely separated as C’,
Y’, Am and Ab.

The distinctions between I’, M’ and L’ populations are brought out clearly
in the 4-th and 5th dimensions. It is interesting to note that the first dimen-
sion clearly separates the jews (except L’ and I') and the gentiles while

(3.14)
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Table VI ' Table VI
The principal coordinates in 5 dimensions obtained from the distance matrix in Table IV | The Non-Metric Multidimensional Scaling coordinates in 5 dimensions obtained from the
with S omitted. distance matrix in Table IV with S omitted.
X1 X2 X3 X4 X5 X1 X2 X3 X4 X5
P 0.1947 -0.1839 0.0509 -0.0846 0.0149 P -0.0805 0.3503 0.2633 -02514 -0.1421
R’ 0.1160 -0.2333 0.0756 —0.0490 ~0.0632 R 0.1698 0.2180 0.4177 -0.0180 -0.3326
G 0.1669 -0.1195 0.1282 -0.1393 0.0147 ] G’ -0.2242 ~0.0090 0.4165 -0.4918 -0.3506
R’ 0.1860 -0.1833 0.0876 -0.0561 0.0050 ‘ Rv’ -0.1288 0.2826 0.5000 0.0231 -0.1932
M 0.0208 -0.0581 0.0693 0.2743 -0.0298 . M’ ~-0.0625 0.0795 0.5550 0.4248 0.3542
L -0.1125 -0.0477 0.0148 0.0016 -0.0167 | L’ 0.4479 -0.0960 -0.0221 0.2022 -0.3610
r —0.1325 -0.0946 0.0259 0.2620 0.2295 K 0.5404 -0.1533 0.5059 -0.2165 0.6502
Ab -0.2904 -0.2106 -0.3527 -0.0156 -0.2245 Ab 1.2933 0.7497 -0.6495 0.3245 -0.0316
Am ~0.2356 0.0655 -0.1183 -0.2474 0.2560 Am 0.4594 -0.4612 -0.7784 -0.6035 0.0426
G -0.1049 0.2493 0.1445 -0.0443 -0.0638 G -0.2724 -0.5974 -0.2575 0.2809 -0.1092
3 -0.1482 0.2308 0.1391 -0.0170 -0.0289 P -0.1611 ~0.6936 ~0.0976 -0.0425 0.2515
R -0.1864 0.0811 0.1651 0.0365 -0.0801 R 03122 ~0.5731 0.0060 0.2645 -0.0290
Y 0.2764 0.1504 -0.3419 0.0792 0.1005 Y -0.8732 1.0716 -0.4228 -0.1458 0.3135
c 0.2498 0.3539 ~0.0879 -0.0003 ~0.1137 % (64 -1.4204 -0.1682 ~0.4364 0.2494 ~0.0626
% 202* 39.4 546 648 733 '
* The figures rep percentage of diff explained by principal coordinates in ' -
different dimensions. §
|
3
‘ w .
K
P £ .
Ch g 21 "
g 3 T
g ‘ $ e ¥
° : - | E :.
E 3 SN
g 3 2 .t
E ! 37 I
3 . l z 5 o =
. T T T T . i T
B E l 03 04 05 06 07 08
S : ‘ Matusita distances
) : d Fig. 5. Plot of Matusita distances from Table IV vs fitted distances using Non-Metric
os os os s o7 os ( Multidimensionsl Scaling in § dimensions from Table VIL
|

the second dimension separates the Cochin (C’) and Yemenite (Y’) jews

from the rest of the jews, and also the European jews from the European

Fig. 4. Plot of Matusita distances from Table IV vs fitted distances using Principal Coordinates gentiles

in 5§ dimensions from Table VL
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Fig. 6. Grand tour of the two dimensional plots using the 5 dimensional principal coordi-

nates in Table VI. Fig. 6. (Continued).

Non-metric multidimensional scaling: Figures 7.1-7.10 provide the grand 3 3
tour in five dimensions using the non-metric multidimensional scaling | #* g N
program. The coordinates in the five dimensional space are given in Table ‘ o < .
VII. The general conclusions about the interrelationships between popula- « sl L
tions are the same as in the case of PCA. Figure 5 gives the plot of actual 5 I K
(Matusita) distances versus the distances in the five dimensional space deter- @ i+ & 4 88 - B . : 4
mined by non-metric multidimensional scaling. Again the association seems ; 2 H e
to be fairly satisfactory. i i #
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wish to find a representation of the populations in a lower dimensional
Euclidean space such that the difference between the configurations of points
in the original and reduced spaces is as small as possible. Let d%; be the
squared distance between populations i and j in the original space and
represent by A the matrix

(A1) A =(dY).

From A, we derive the matrix

(A2) B=-1@-n'IDAT- D),
where n is the number of populations, I is the # X n unit matrix and 1 is
the n-vector of unities, and obtain the spectral decomposition of B

(A3) B=APP!+...+A\PP,

Note that B is an n X n matrix, A%, . . ., A? are the eigen values of B and
P, ..., P, are the corresponding eigen vectors. Then the coordinates for
representing the populations in the best k-dimensional space are given by
the rows of the matrix

(A4 By =P, AP, ..., AP
We have to make a choice of k depending on the magnitude of the ratios

A+, .. +A
A+ ..+

The larger the ratio, the better is the representation of the populations in
the lower dimensional space.

Though not strictly appropriate, the PCA can be used on any dissimi-
larity matrix, but the success of the method depends on the extent to which
the dissimilarity matrix can be approximated by a matrix of squared
Euclidean distances.

Multidimensional Scaling: A description of this method can be found
in the book on Multidimensional Scaling by Kruskal and Wish (1978) who
are the principal contributers to this area. The method can be applied to
any kind of dissimilarity matrix. Let D = (d;) be a given dissimilarity matrix
and X = (X, ..., X,) be a k X n matrix with the i-th column vector
providing the coordinates of the i-th population in a k-dimensional Euclidean
space. The distance between populations i and j in this space is

(A6)  d=[(X; - X)X - X)]"

To determine the consistency between the configurations determined by (d))
and (d}), we define what is called a stress function

(A.5) bowmi ]y 2, o

sx, ) - 2.2 - fay

(A7) SS@y
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where f is a monotonic function. The problem of multidimensional scaling
is that of minimizing S(X, f) with respect to f and X. Suppose that the
minimum is attained at X*, f*. Then X*, the X associated with the minimum
value of S(X, f), gives the coordinates for the best possible representa-
tion of the populations in a k-dimensional Euclidean space.

The adequacy of fit is judged by the resulting stress S(X*, f*). This value
decreases with increase in %, and in practical work a judgement has to be
made on the choice of k based on the stress value. Some guidelines for
this purpose can be found in Kruskal and Wish (1978).

NOTE

* Research sponsored by the Air Force Office of Scientific Research under Grant
AFOSR-91-0242.
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ABSTRACT: A statistical test is presented that allows investigating the parts of e.g. the
cranium for which discrimination between samples and individual specimens is most
pronounced. The testing procedure uses pairwise comparison of variables to assess the relative
contribution of each variable to this discrimination. The procedure is illustrated by comparing
the Petralona and Kabwe crania with cranial samples of recent Homo sapiens, Neanderthals,
and Asiatic Homo erectus.
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L. INTRODUCTION

The use of mathematical multivariate statistical methods in palaeoanthro-
pology is still controversial. There are several reasons for this (Van Vark



