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ABSTRACR A general survey of various measures of diversity withi and distance between 
populations in gene frequencies of blood group systems is given. A method of ordering 
populations by an overall meesure of divusity witbii and of clustering populations in terms 
of d i f f e r ew  in p a w n  of diversity in different blood group systems is developed. Princiii 
coordinate analysis and multidimensional scaling are used to represent populations with given 
distances beoue.cn them graphically in an appropriate dimensional Euclidean space. Such 
graphical representations together with dendrograms are of great help in studying inur- 
relationships between populations. T1K methods are illustrated using blood group data on 
m e  human populations. AMS Classification indm 62H30 
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Blood group data is extensively used to study genetic differences between 
populations. The basic statistics used in such investigations are measures 
of "diversity within populations" and "distance between populations". For 
recent literature on the subject, reference may be made to papers by Carmelli 
and Cavalli-Sforza (1979). Karlin, Kenett and Bonn6-Tamir (1979). 
Karlin, Carmelli and Bo~6-Tamir (1982), Rao and Boudreau (1984) and ' 
Chakrabotty and Rao (1991). 

A diversity measure enables us to rank or group populations by homo- 
geneity of individuals within a population, while a distance measure enables 
Us to study interrelationships between populations and throw light on their 
evolution. Rao and Boudreau (1984) applied some recently developed 
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methods in a study of differences in blood groups of jewish and gentile 
populations in Europe and the Middle East. 
The purpose of the present communication is to develop graphical rep- 

resentations of the populations based on blood group data similar to the 
canonical coordinate plots in the continuous case introduced by Rao (1948, 
1971). 

We provide a general discussion of diversity and distance measures and 
choose particular measures based on Hellinger representation of multino- 
mial distributions for illustrating the graphical representations. 

For this purpose, we use the data on the antigenic blood group systems 
HLA-A, HLA-B, ABO. MNSs and Rh for 15 populations considered earlier 
by K d m ,  Kenetf and Bonn&-Tamir (1979) and Rao and Boudreau (1984). 
A description of these fifteen populations in terms of Jewish-Gentile denom- 
inations and geographical locations is given in Table I. 

TABLE I 
Hierarchla1 classif~ation of the populations. 

Denominations Historical- Individual 
JewsGentiles g-phaa1 populations 

H.G. groups 

I Polish (P') 
1 Russian (R') 

4 Ashkenazi (A) 1 German (W 
1 Rumaniao (Ru3 

15 Populations 4 
1 Moroccan (M3 
I Libyan (L3 

1 Iraqi (1') 1 3 Odnml (01 1 Yemenitc 0 
1 Cochin (C') 

1 Arab (Ab) 

L 6 Gentiles (G) 
1 German (GI 

3 European Q 1 polish (P) 
I Russian @) 

H" HD HO HP 

Indichtes the number of populations in a category at any given level of chssificatioa 
H", HD. p, Hp arc within diversities at levels. 

BLOOD GROUP DATA 

2. ANALYSIS OF DIVERSITY WlTHIN POPULATIONS 

1 2.1. Some known measures of diversify 

1 We consider the set of multinomial distributions 

( (2.1) P 9 { p - ( P  , ,- . . ,  ~ 3 : P , Z o , Z p , - l ~ .  

and define a function H on P as a measure of diversity if it satisfies the 
two conditions given in Rao (1982b): 

(i) H@) - 0 if all the components of p are zero except one and > 0 
otherwise. 

I (ii) H(*) is a concave functional on P. As a consequence the diversity 
in a mixture of two populations is not smaller than the average of 
the diversities within individual populations. 

The two conditions, however, do not specify a diversity function 
uniquely; other criteria such as easy interpretability in genetic terms may 
have to be used in determining an appropriate function. Examples of diver- 
sity functions that received wide applications in biology are entropy 
functions such as: 

HAP) - -ZP~ log Pi (Shannon) 

1 - ZpP (a-order entropy of 
&@) - Havrda and Charavlt) 

HAPI - -Z[P, log pi + (1 - PI) log(1- ~ 3 1  @aired Shannon 
entropy) 

&(p) - (1 - a)-' log Zpy (a-degree entropy of Renyi) 

Recently, Rao (1982a. b, c, 1984) introduced a general diversity measure 
called the quadratic entropy 

(2.2) %(P) = Z E d @ ~ *  
where dg is a nonnegative number representing an intrinsic difference 
between the categories i and$ the Hp then is the average difference between 
two individuals drawn at random from a population. In such a case, could 
be interpreted in terms of chosen numbers dw Thus, if p,, . . . . p, are 
frequencies of different alleles of a gene at a locus on a chromosome and 
do- 1 if i#jandd, , -0,  then 

Hob)- 1 - w - H 2  (Gii-Simpson index) 

which is the well-known index of gene diversity. If we consider pi as the I frequencies of genotypes in a random mating population and defm dij as 

L 
the proportion of genes not common to two genotypes i and j, then 

H~(P) - 1 - Cp: - CpXl - piI2 - HL, 
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which was introduced by Latter (1973). Other examples and necessary 
restrictions on d,, to ensure the concavity of HQ are given in Rao (1982b. 
1982~). 

2.2. A new measnre of diversity 

We start with the Helbger repmentation of the multinomial distribution 

(2.3) p - @I, . . , p3, 

by a point 

(2.4) ('6, . . . , 6). 
on the hypcrsphen in k dimensions. The maximum diversity is usually 
associated with the multinomial distribution where each p, is equal to Ilk, 
i.e., the point 

(2.5) (I/&, . . . , I/&), 

on the hypersphere. We may then define the diversity of (2.3) by a monotone 
decreasing function of the angle of separation between (2.4) and (2.5). 
such as the cosine function 

(2.6) Irl"(J-6; + . . . + GJ. 
For some technical reasons, we &fm the diversity by 

(2.7) HI@) - 6 + . . . + 6, 
by dropping the factor Eln. The range of (2.7) is the interval [I,  &I, with 
unity representing complete homogeneity and &complete heterogeneity. 
We may transform H, in (2.7) to 

(2.n HZ@) - g e  , 

which has the range 10, 11 with zero representing complete homogeneity. 
We may also transform HI in (2.7) to 

(2.9) - log HI@) 

which has the range [0, log a]. It is seen that Hz@) and H,(p) &long 
respectively to the classes &@) and a@) &flned above. 

The expressions (2.7), (2.8) and (2.9) are possible measures of diver- 
sity when we are considering a single blood group system. If there are m 
systerms with associated vtctm pl, . . . . R. of sizes k,, . . . , 5, then a 
composite measwe of d i v d t y  may be defined as 

(2.10) Hi @I, . . . , ~J HLPI) + . - . + %QJJ 
for any chosen H, i - 1,2,3. In our study, we chose H2 for the computa- 
a- m.or.ll A i r r r r o ; ~  
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) NOTE 1. The diversity measure Hz@) has also the represenwti- 

( where II-)I is the Euclidean norm. Thus, diversity is measund 6y bw fbu 

1 
(2.4) is from (2.5). with small distances indicating higher diversi*. 

NOTE 2. It is seen that the measures HI, Hz, and H, have rtae requw 1 P ~ ~ M .  

(i) H@) - 0 iff one p, - 1 and the rest are zero. I (ri) H(I) > 0 otherwise and attains the maximum v d w e  - 11 p, 
are equal 1 (Yi) El@) is a concave Rmrlonal over 00 space of -1timomid as- 

I tributions with k alleles. 

i (See Burbea and Rao (1982% 1982b) and Lewontine (1972) for a djs- 
cussion of concave diversity functionais.) 

NOTE 3. Let P (PI, . , PJ, c! - (41, . - - , 4,) b~ VwtorS of fre- 
quencies comsponding to hvo blood group Systems which an -dentlv 
inberiad Represent the joint distribution under indqmdencc by 

( p , ~ - ~ ~ i - I , . . . . k j - l v . * . * r ~ *  

Then: 

Table I1 gives the values of diversity within a population as  &fined in 
(2.8) for each population aparately for each blood group sys*m and overall 
which is 00 average over all blood group systems. Judging from the overall 
diversity values, the general conclusion is that the Samaritans (S) have 
the lowest, the Yemenite (Y3 and Cochin (C3 jcws have the next lowest 
and the rest have nearly equal but a hi&a deg- of diversity. The - 
order is maintained generally for individual blood group systems. A similar 
conclusion was drawn using other measures of diversity in Rae and 
Boudreau (1984). 

The concavity of a diversity functional enables US to decompose th, 
total diversity (T) in all the populations p t  together as  an (B) and 
within (W) populations and compute the percentage of diversity due t, 
diffaences behveen populatioos. 'l'be decompositi~ is obtained as follows. 
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where w, is the weight given to the i-th population, which is usually the 
proportion of individuals in the i-th population to the total over all popu- 
lations. (In our study we have given equal weight to all the populations). 
If we denote diversity as a functional H(-) over the space of multinomial 
distributions, then the desired decomposition can be obtained as 

I 
Let us denote the gene frequencies in any blood group system for the i-th 

( population by 

1 (2.12) p i -  (pi;, . . . ,pu) ,  i -  1 , .  . . , 15, 

and the average over all populations by 
1 I5 

(2.13) p - ( p , ,  . . . , P A  p i -  f: W#), 

- - 
5 
6 

s 

(2.14) T - B  + W, 

9 9 g 
g G g c - m o o m -  m m m p .  
m , - m p r g e c g f g s n n  81( !  ~ ? l f  z z z g z = ? z z z z z z z z z  z z  s z  2 

where 

T - H(p), W - Cwi H(p3. 

Tbe value of B is obtained as the difference T - W, which is called the 

9 3 g 2 
m p . m m ~ = ~ g ~ m  m b m m  -rr- - 
Z Z % %  p .mpa3 '8-wa 

m m  In 

q q q q ? q q q y y 9 q % G ?  2 s 1 2  
o o o o o o o o o o o o o o o  

Jensen difference (see Rao (1982a)). 
Table II gives also the values of B and W for each blood group system 

and over all the systems, considering all the populations and also after 
omitting S which has the least within diversity. It is seen that the percentage 
of diversity between populations to total varies from about 1 to 9 percent 
over different blood group systems. The highest values are associated with 
Rh and HLA-B systems, which provide the maximum discrimination 
between populations. 

i 

2.4. Clustering of populations by diversity 

In section 2.3, a linear ordering of the populations was obtained in terms 
of the pooled diversity over all the blood group systems. We can, however, 
differentiate between populations by constructing distances between pop- 
ulations based on the pattern of diversities in individual blood group 
systems. For instance, if d l ,  . . . , d, and d;,  . . . , d; are the diversities in 
five blood group systems as recorded in Table I1 for two populations, say 
i and j, then the dissimilarity between the two populations i and j in terms 
of the pattern of diversities in different blood group systems may be defined 
as 

which lies in range [0, m). A different measure of dissimilarity was used 
in Rao and Boudreau (1984). 



198 ROBERT BOUDREAU AND C. RADHAKRISHNA RAO BLOOD GROUP DATA 

The values of (2.15) for all pairs of populations are given in Table III. 
It is seen that in terms of diversity, the populations S and C' are distinct 
from the rest. The dendrogram for all the populations based on the matrix 
of dissimilarities (Table III), using the method of complete linkage is given 
in Figure 1. 

From the dendrogram in Figure 1, it is seen that there are four different 
clusters 

S' C', (Y', L', M', G, Am. G', P', Ru'), (Ab, P, R, 1', R') 
with different patterns of within population diversities. Within the third 
cluster Y' seems to have a somewhat different pattern of diversity than 
the rest and within the fourth cluster Ab seems to differ slightly from the 
rest. 

Fig. 1. Dendrogram (complete linkage) based on the dissimilarity mauix (Table I) in 
diversities. 

3. -TIONSHIPS BETWEEN POPULATIONS 

3.1. Distance measures 

All studies of interrelationships between populations start with a matrix 
of similarities or dissimilarities (di'stances) between populations. In the + - 
present context, there are various ways of computing dissimilarities or 
distances. 

k t  the gene frequencies at the i-th locus in population % be 
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where m is the number of blood group systems and N is the number of 
populations. The whole gametic array can be represented by the parti- 
tioned vector 

(3.2) pa-(p:,.. . ,p:),a- I , . .  .,N. 

Some examples of distance functions based on (3.2) are given below. 

(i) Nei's minimum distance 

(ii) Nei's standard distance 

D% - -log cos 8&, 

where 

cos 0+ - 5 p~@p)' I [? pt(p:~] In [F P?(P~). ] In 

D!$ as defined in (3.4) does not satisfy the postulates of a distance 
function. However, we may use the angle 

0% - as-'[exp(-D$], 

or the chord length 

8% - 2 sin(0fy2). 

which are distance functions. 

(iii) Nei's maximum distance 

D% - -log ( fi cos 0%) 
i-I  

where 

cos 0% - pyd~/[pp@y)'l'~[p?(#~ll". 

Instead of Dg, we may use the angle 

or the chord length 

I 8% - 2 sin(@&2). (3.7b) 

which are distance functions. (See Nei (1973), (1978) for a descrip 
tion and use of the distance or dissimilarity functions introduced 
by him.) 

BLOODGROUPDATA 

If we denote 

P? - ( 4 x 9  * * . , ~ZJ,  
and apply the formula (3.3). we get what is known as Matusita (1957) or 
Hellinger distance 

Applying the formula (3.6), we get 

where 

cos 0% - 5 (pO,p,)ln. 
r-i 

Instead of D3, we may use the angle 

0% - cos-' fi cos 0% 
i-1 

or the chord length 

(8%) - 2 sin(@&2), (3.11b) 

which are distance functions. We call 63 the composite chord 
distance. 

In our previous study (Rao and Boudreau (1984)). we used Nei's distance 
functions. In the present study we use Matusita distance 62 and the chord 
distance 6% based on the Hellinger representation of gene frequencies. 

Tables IV and V give respectively the values of Matusita (6(& and 
composite chord (6'3,) distances between all pairs of populations. The 
corresponding dendograms using the complete linkage method are given 
in Figures 2 and 3. These dendograms seem to indicate close clustering 
of the European gentiles and so also the European (Akshanazi) jews 

(G, P, R) and (G', Ru', P', R') 

with some separation between the two clusters. The Iraqi (I'). Moroccan 
(M'). Yemenite (Y'). Cochin (C') and Lybian (L.') jews seem to be a little 
distant from the other jews and also from the European gentiles. The 
Samaritans (S). Arabs (Ab) and Armenians (Am) talce distinct positions 
separated among themselves and from the other groups of populations. 

In order to study the interrelationships further and to provide a graph- 
ical representation of the populations based on the distances between them, 
we have used the method of principal coordinate analysis (PCA) and non- 



TABLB IV  
The matrix of Marusita distances (3.9) between populations. 

F" R' G' Ru' M' L.' I' Ab Am G P R Y' C 

P' 
R' 0.243 
0' 0.316 0.373 
Ru' 0.249 0.286 0.380 
M' 0.519 0.510 0538 0.508 
L' 0.527 0.465 0.569 0.509 0.571 
I' 0573 0.570 0.626 0.591 0516 0.544 
Ab 0.695 0.649 0.747 0.723 0.700 0.637 0.703 
Am 0.631 0.661 0.633 0.658 0.705 0.585 0.628 0.667 
G 0.595 0.604 0.582 0588 0569 0.526 0.634 0.756 0581 
P 0.602 0.598 0552 0.606 0560 0.539 0.601 0.734 0561 0.356 
R 0571 0.520 0588 0.561 0.538 0.474 0577 0.692 0.607 0.445 0.335 
Y' 0.625 0.679 0.692 0.642 0.685 0.699 0.756 0.810 0.747 0.729 0.705 0.745 
C 0.644 0.6% 0.660 0.677 0.692 0.700 0.763 0.869 0.762 0.586 0.628 0.716 0.637 
S 0.934 0.947 0.936 0.956 1.010 0.943 1.029 0.983 0.929 0.994 0.978 1.030 0.975 1.042 

TABLB V 
The matrix of composite chord distances (3.11b) between populations. 

P' R' 0' Ru' M' L' I' Ab Am O P R Y' C 

I 
R' 0.242 
G' 0.313 0.369 
Ru' 0.248 0.283 0.377 
M' 0.507 0.499 0.527 0.498 
L' 0.516 0.457 0.557 0.498 0.554 
I' 0.559 0.555 0.610 0576 0.503 0.530 
Ab 0.669 0.630 0.716 0.695 0.672 0.618 0.674 
Am 0.613 0.640 0.618 0.640 0.674 0.570 0.611 0.647 
0 0.581 0587 0.571 0574 0.552 0515 0.612 0.725 0.567 
P 0.587 0581 0.544 0.592 0545 0526 0.583 0.704 0.547 0.352 
R 0.558 0.509 0.577 0.548 0.525 0.465 0561 0.666 0.589 0.439 0.332 
Y' 0.603 0.651 0.664 0.620 0.656 0.667 0.716 0.765 0.708 0.698 0.675 0.711 
C 0.623 0.667 0.639 0.655 0.665 .0.672 0.725 0.817 0.728 0568 0.606 0.687 0.618 
S 0.874 0.886 0.875 0.897 0.933 0.879 0.939 0.902 0.866 0.928 0.910 0.948 0.909 0.965 
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Fig. 2. D c d m p m  (complecc l i a g e )  based on Matusita distances. 

Fig. 3. Demirognun (complete W g c )  based on rhe ~ p o s i t e  chord distanceg 

metric multidimensional scaling (NMMDS). A brief description of these 
methods is given in the Appendix. For purposes of illustration, we chose 
the Matusita distance matrix as the basis for graphical representation. The 
Samaritans (S) are omitted from the analysis as they are quite distant 
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from the other populations and their inclusion might distort the relative 
positions of the other populations in the lower dimensional graphical 
representations. As a practical rule, we suggest the following. Fit, con- 
struct a dendrogram andlor use PCA (or NMMDS) on the matrix of distances 
considering all the populations. Then pick up broad and widely separated 
clusters by examining the dendograms and the PCA (or NMMDS) plots. 
Then apply PCA or NMMDS separately on each cluster to obtain a graph- 
ical representation of populations within each cluster. 

Principal coordinate analysis: The 15 x 15 matrix D of distances is trans- 
formed into the 15 x 15 matrix B as explained in the Appendix and its 
spectral decomposition is obtained in the form 

where 1:. 1L:, . . . are the eigen values and P,. P,. . . . are the corre- 
sponding eigen vectors of B. We have to choose the appropriate dimension 
for representing the 15 populations. This is done by examining the ratios 

which in the present case tum out to be in terms of percentages 

(3.15) 20.2%. 39.4%. 54.6%, 64.8%. 73.3%, 80.8%. . . . . 
The number of dimensions needed for graphical representation to capture 
most of the differences between populations is judged by the ratios in (3.14). 
If the second ratio in (3.14) is large, then a two dimensional representa- 
tion is adequate. Otherwise, we may have to consider a higher dimensional 
representation. In the present example. it may be necessary to go up to 
five dimensions which explain about 73% of the differences between 
populations. The coordinates associated with the f i t  five dimensions are 
given in Table VI. Figure 4 gives the plot of actual (Matusita) distances 
versus the distances in the five dimensional reduced space of principal 
coordinates. The association seems to be fairly satisfactory. Using the 
principal coordinates, biplots are made for every pair of coordinates as 
shown in Figures 6.1-6.10. The broad conclusions form these plots, which 
we call the grand tour, are as follows. 

The population sets (G, P, R) and (G'. P'. R', Ru'), are separated, but 
within each set the populations stick together in al l  the plots confuming two 
closely knit clusters. C', Y', Am, Ab wander around keeping some distances 
among themselves and not associate with any other particular population. 
I', M'. L' behave in the same way though not so widely separated as C', 
Y'. Am and Ab. 
The distinctions between 1'. M' and L' populations are brought out clearly 

in the 4-th and 5th dimensions. It is interesting to note that the fust dimen- 
sion clearly separates the jews (except L' and 1') and the gentiles while 
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Tablc VI 
The principal coordinates in 5 dimensions obtained from the distance matrix in Tabk IV 

with S omitted. 

XI X2 X3 X4 X5 

P 0.1947 -0.1839 0.0509 -0.0846 0.0149 
R' 0.1160 -0.2333 0.0756 -0.0490 -0.0632 
G' 0.1669 -0.1 195 0.1282 -0.1393 0.0147 
Ru' 0.1860 -0.1833 0.0876 -0.0561 0.0050 
M' 0.0208 -0.0581 0.0693 0.2743 -0.0298 
L' 4.1125 -0.0477 0.0148 0.0016 -0.0167 
I' -0.1325 -0.0946 0.0259 0.2620 0.2295 
Ab -0.2904 -0.2106 -0.3527 -0.0156 -0.2245 
Am -0.2356 0.0655 -0.1183 -0.2474 0.2560 
G -0.1049 0.2493 0.1445 -0.0443 -0.0638 
P -0.1482 0.2308 0.1391 -0.0170 -0.0289 
R -0.1864 0.0811 0.1651 0.0365 -0.0801 
Y' 02764 0.1504 -0.3419 0.0792 0.1005 
C 0.2498 0.3539 -0.0879 -0.0003 -0.1137 

% 20.2' 39.4 54.6 64.8 73.3 

* The figuns repe.qcnt the percentage of diffennces explnincd by principal ccordinatcs in 
different dimensions. 

Fig. 4. PIN of Matusita d i ~  from Table N vs fitted distancs using Principal Coordinates 
in 5 dimensions from Tabk VL 
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Table W 
The Non-Menic Multidimensional Scaling coodnates in 5 dimensions obtained from the 

distance mahix in Table IV with S omitted. 

P' 
R' 
G' 
Ru' 

Fig. 5. Plot of Mntusita distances horn Table IV vs fitted distams using Non-Metric 
Multidimensional Scaling in 5 dimartioas hum T a b  W. 

the second dimension separates the Cochin (0 and Yemenite (Y') jews 
from the rest of the jews, and also the European jews from the European 
gentiles. 
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NOR-metric multidimensional scaling: Figures 7.1-7.10 provide the grand 
tour in five dimensions using the non-metric multidimensional scaling 
program. The coordinates in the five dimensional space are given in  able 
VII. The general conclusions about the interrelationships between popula- 
tions are the same as in the case of PCA. Figure 5 gives the plot of actual 
(Matusita) distances versus the distances in the five dimensional space deter- 
mined by non-metric multidimensional scaling. Again the association seems 
to be fairly satisfactory. 

BLOOD GROUP DATA 

Fig. 6. Gtand tour of the hvo d i m e m i d  plots using the 5 dimensional principal d- 
nates in Table VI. Fig. 6. (Continued). 



LBW am ' aSq  s! uo!suaw!p s!ql 31 .suo!snauI!p 30 raqwnu u w a  u 30 
muds wap!png E u! suoyulndod arl] Sqnasa~dar a y o d  uaarmaq s a w s p  
w passaidxa aq w:, suoyu1ndod uaarmaq sayy~!w!ss!p aql uaqm suoy 
- a q s  y rl~pap! alqu:,gdde s! 11 '(~961) ma u! uaA@ s! '(2561) noslaSi0.L 
rlq pasodold 'poqlaw sya JO nopdpxap y :sls@v amu?p~oo3 pd.tz+d 

'pasn samwaw ~ p ~ ! w ! s s p  aqa 30 am1811 aql no 
Su!puadap sya 8yop p spoqlaw orm aqpsap afi .sapylyps!p pufluo 

I 
atp (aaa~ai 30) ~J!M luas!suoa s! a y o d  30 uoprin%guoa Oup~nsar aql 
1uql qans axds neap!~:,~~ puo!suamp m o ~  mudo~dde UE y suopqndod a q ~  

I 
luasa~da~ s! malqoid aql pw (wmn : ,pouox~~ lo) suoplndod uaa- 
sap!reI!or!ss!p 30 xrqew uaafl u aAeq am snop~%!lsa~u! a p o u o m  UI 

I 
I 

m w m CI- 
r S - f 

- e 
I. 

I ". 
a- ". - g  

-4- 

3%. *- 
-t  



ROBERT BOUDREAU AND C. RADHAKRISHNA RAO BLOOD GROUP DATA 

wish to f i d  a representation of the populations in a lower dimensional 
Euclidean space such that the difference between the configurations of points 
in the original and reduced spaces is as small as possible. Let d i  be the 
squared distance.between populations i and j in the original space and 
represent by A the matrix 

From A, we derive the matrix 

where n is the number of populations, I is the n x n unit matrix and I is 
the n-vector of unities, and obtain the spectral decomposition of B 

(A.3) B - h:PIP; + . . . + hpy" 
Note that B is an n x n matrix, h:, . . . , )L.2 are the eigen values of B and 
P,. . . . , P, are the corresponding eigen vectors. Then the coordinates for 
representing the populations in the best k-dimensional space are given by 
the rows of the matrix 

(A.4) Bm - (hip,, -2. - . . 7 SP,). 

We have to make a choice of k depending on the magnitude of the ratios 

The larger the ratio, the better is the representation of the populations in 
the lower dimensional space. 

Though not strictly appropriate, the PCA can be used on any dissimi- 
larity matrix, but the success of the method depends on the extent to which 
the dissimilarity matrix can be approximated by a matrix of squared 
Euclidean distances. 

Multidimensional Scaling: A description of this method can be found 
in the book on Multidimemional Scaling by Kruskal and Wish (1978) who 
are the principal contributers to this area. The method can be applied to 
any kind of dissimilarity matrix. Let D - (d,,) be a given dissimilarity matrix 
and X - (XI, . . . . X,) be a k x n matrix with the i-th column vector 
providing the coordinates of the i-th population in a k-dimensional Euclidean 
space. The distance between populations i and j in this space is 

To determine the consistency between the configurations determined by (d,,) 
and (d;), we define what is called a stress function 

where f is a monotonic function. The problem of multidimensional scaling 
is that of minimizing S(X, fi with respect to f and X. Suppose that the 
m u m  is attained at X*,fC. Then X*, the X associated with the minimum 
value of S Q ,  n, gives the coordinates for the best possible representa- 
tion of the populations in a k-dimensional Euclidean space. 

The adequacy of fit is judged by the resulting stress S(X*,fC). This value 
decreases with increase in k, and in practical work a judgement has to be 
made on the choice of k based on the stress value. Some guidelines for 
this purpose can be found in Kruskal and Wish (1978). 

NOTE 

* Research sponsored by the Air Force Office of Scientific Research under Grant 
AEOSR-914242. 
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1 . and 

I ABSTRACT A statistical test is pnscnted that allows investigating the paas of e.g. the 
j cranium for which diserimination between samples and individual specimens is most 

proaounccd. Ibc tcstiDg procedure uses pPirwise ~mpmbca of ~PriPbks to asses thb relative I d b u t i o n  of each v d . b b  to this d h h i d c i ~  Thc procedure is itlushllted by comparing 
Ihe Pttnlona and Knbwe mania with d a l  samples of recent Hono  sapim. Neandathals. I ~i H- erectw. 

I 1. INTRODUCTION 
I 

The use of mathematical multivariate statistical methods in palaeoanthro- 
pology is still controversial. There are several reasons for this (Van Vark 


