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Abstract. In this paper * we discuss the construction of dflerential 
rnetrics in probability spaces through entropy function& and examine 
their relations with the information metric introduced by Rao using the 
Fisher information matrix in the statistical problem of classification and 
discrimination, and theclassical Bergman metric. It is suggested that the 
scalar and Ricci curvatures associated with the Bergman information 
metric may yield results in statistical inference analogous to those of 
Efron using the Gaussian curvature. 

I 

I 1. Introduction. Distance measures between probability distributions play 
i an important role in the discussion of problems of inference (see, e.g, [19], 

1201, p. 6 - 23, and [24], p. 317 - 332). A wider class of measures, which may not 
satisfy all the requirements of a distance function, called dissimilarity or 

. divergeme measures, are used extensively in problems of taxonomical clas- 
sification in biology. Some diskussion on the choice of these measures and their 
application to live data can be found, for instance, in [15], [18], [23], 
p. 19-34, and [27]. A unified approach to the construction of distance and 
dissimilarity measures is given in recent papers by Burbea and Rao [lo] and 
Rao [25]. 

One method of specifying the difference between two probability distri- 
butions is through the geodesic distance induced by a suitably chosen quadra- 
tic differential metric in th space of probability distributions. This was done in 
earlier papers by Rao [21], [22] where the F i s h  information matrix is used to 
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any purpose of the u ~ t e d  States Government. 
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construct the differential metric for a parametric family of probability distrib- 
utions, which will be referred to as the iqhrmution metric. The choice of the 
information matrix arose in a natural way through the concept of statistical 
discrimination. 

In this paper we discuss the construction of differential metrics through 
entropy functionals and examine their relations with the information metric. In 
particular, we study the connection between the classical Bergman metric and 
the information metric. We suggest the possibility of using the scalar and Ricci 
-curvatures associated with the Bergman it$ormation .metric in statistical 

.. - inference: .. - -  

2. Idumnnation Kflwemthl metric. In this paper p stands for a a -finite 
measure on a a-algebra of the subsets of a sample space S. By 

we denote the inner product and norm, respectively, of the (separable) Hilbert 
space L, (5; p) of complex - valued functions which are square -integrable on 
% with respect to the measure p. We shall also write 

and 

for the unit sphere of L2 (X; p) and the set of probability densities, respectively. 
Let D be a parameter space in R! consisting of k -tuples x = (x,, . . ., x& of 

real continuous parameters. Usually, D is a smooth manifold imbedded in RL;  
however, when k = 2n, it is convenient to consider D as a manifold imbedded 
in C" z R2: consisting of n - tuples z = (z,, . . . , z,J of complex continuous 
parameters zj = xj + iyj, j = 1, . . ., n. In this case we shall use the formalism of 
complex differentiation 

a *J . = 2-'(axj-iayl), dij = 2-'(aXj+iay> - (j.= 1, ..., n), 
and thus, for a C1 -function f around ZED, 

df=(d+J)f,  df =df(z), ZED, 

with 

In this notation, a,-. can be written as ., and if all the yj are zero, i.e, ifD is 
J 

a manifold imbedded m R", then the cornp& formalism reduces to the former 
real setting. 
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In this paper, in view of the above remarks, we shall assume that D is 
indeed a manifold imbedded in 1C" and we shall-freely use the complex 
formalism. A family 9 = S[.g D) of probability density functions p = p ( j  a) 
defined on 9 x D with the property that, for any z ED,  p(. 1 z ) ~  P, is specified 
by the following regularity conditions : 

(i) for p-almost all t sX,  p(t(.) is differentiable in D ;  

(ii) 8, J p (ti 2 )  d p  (0 = J dzj p (t 1 z )  dp (I) and, therefore, the latter is equal to 
. s 5 

zero. 
-. - -  

In certain instances of this paper it may be required to assume additional . . 
regularity properties on p ( 1 a )  E F (31 D) . Sometimes, however, these ad- 
ditional requirements will not be mentioned explicitly in order to avoid lengthy 
discussion. 

The Fisher information matrix of p = p( - 1 .) E F ( X (  D) is the (n x n) - 
hermitian matrix F = CgkJ whose entries are 

This can also be written as 

Since condition (ii) implies also that E (a,, log p( - I 2)) = 0, k = 1, . . . , n, the 
information matrix at z E D is the (hermitian) variance-covariance matrix of 
(d,,log p(.lz): k = 1, ..., n}. 

The information diflme~ttial metric with respect to p( - ]  .)ES(%I D) is the 
her mitian quadratic form 

dSZ (2) = gki dzkdZ,, gki = gkrSI(z), Z I). 
kin= 1 

In terms of the norm of L,(X; p) this form admits the expression 

I ds2(z) = l l ~ ' ~ ~ a l o g  ~112, P = p(-lz), 

and therefore ds2(z) is positive definite. It follows that ds2(z) is (locally) 
invariant under holomorphic transformations of z. Indeed, if q :  D* + D is a 
bijective holomorphic (or, in short, biholomorphic) mapping of D* onto D, 
then p* = p* ( - ( .) defined by 

p*(-jw)=p(-Iq(w)), WED*, 

is in F ( q  D*), and 
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are the entries of its information matrix while 

is the corresponding information metric. Consequently, using the chain rule, we 
have 

which means that the entries of the information matrix are transformed by a 
biholomorphic transformation as components of a covariant tensor of the 
second order. Moreover, this also shows that dst (w) = ds2 (z), as asserted. 

The induced geodesic distance of ds2, with respect to p( - ( + )  E .F(q D), 
defines a pseudo -distance S, on D x D, referred to as the information pseudo - 
distance with respect to p = p(-1.) (see [2], [lo], and [21]). By a pseudo - 
dist~nce on D x D we mean any function 6 on D x D that satisfies all axioms of 
a distance function except that S(z, 1;) can be zero even if z # (. Under some 
additional regularity requirements on p = p ( - ( a ) ,  which guarantee that ds2 is 
strictly positive definite, the information pseudo-distance S, becomes a proper 
distance on D x D ,  known as the irtformation distance with respect to p 

p(-1 .). In the latter case, D becomes a metric space (D, SD). This metric 
space is said to be complete if for each point E D and every r > 0 the closed 
ball {z ED: SD(z, [) < r )  is a compact subset of D. Since SD is induced from the 
Riemannian metric ds2, completeness in the above sense is equivalent to 
completeness in the ordinary sense (see, e.g., [16], p. 53). 

An alternative and simpler expression of g,,(z) in the form of 

(2.1) gkk(~) = -E(dZk2zm10g p(.lz)) ' 

is also available, provided that p(-  1 - )  E F ( ~  D) satisfies the additional regu- 
larity condition: 

(iii) for p-almost all t s b and for every r E D, az;azm log p ( l  z) exists. 
If this condition is fulfilled, then ds2 (z) takes the form - - 

An attractive feature of the information metric ds2 >is based on the 
following considerations: Let z c D and let j' be p - measurable on .T.Since 
1 = (p(  . I  z) ,  I),, we deduce that 0 = (c'p, I),, where p = p( I z)  and p( J . ) E 
.9(5 1 D). Therefore 



for any scalar a and, by the Cauchy inequality, we have 

1(3p,f ),I2 = IVp,  f -a .  lh12 = I(p112 P log p, p112( f - ct - 1))J2 

< l l ~ ' / ~  o" log ((pl/' (f- a a 1)(1,2 

Equality holds if and only if there exists a scalar f i  = B(z) such that 

f 0) = a+Balog ~ ( t l z )  

for fl-almost all t ~ 9 .  Now, the minimum of I(pllz(f-a.l)II~ is attained by ol 

= f (z) ,  where f(z) = Cf, p ( - 1  z ) ) ~ ,  and therefore 

K~~,f)~l~bds'(z)~l~~~~~-f~~).~]~~. . - 

This may also be written as 

The expression in the last curly brackets is non -negative and it vanishes if 
and only i f f  is p - almost everywhere a constant on X. 

The usefulness of the above lower -bound estimate is by now well known 
(see [24], p. 317 -332), and therefore it will not be discussed here. For further 
details on the metric ds2(z), we refer the reader to [2], [lO], and [21]. 

3. Entropies and divergenee rnm- For convenience we regard the family 
F = S(%I ̂ I) as a subset of an open set U, where CT itself is an open subset of 
some Frkhet space 3 of functions f = f ( - 1  .) defined on 2' x D, that includes 
the tangent space of U. The tangent off ( t l z )  at Z E D  in the direction of 
(u, v) E C" x Cn may be expressed as 

where 
n II 

(3.1) 4 , f ( - l z ) = x  a,$(lz)u~, a o . f ( m l ~ ) = ~ ~ z J ( m l z ) ~ ~ .  
A= 1 k= 1 

The tangent, therefore, is composed of the holomorphic direction 8 f (-1 z) 
and the anti - holomorphic direction 8, f ( 1 2). 

Let cp be a concave C2 -function on the interval W +  = (0, a) and consider 
the 9 - entropy functional 

We shall suppress the dependence on ZED and write 
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i 
I The derivative of H ,  at p E U in the direction of f E @ is given by . - 

d 
d H , ( ~ ; . f )  = - ds & ( ~ + s f ) l ~ = ~ ,  

I and so 

dH,(p;f) = j ~'L-P(t)lf (t)dP(t). 
B 

- The derivative of this at p E U in the direction of g E 9 is 
.. - - 

d2 H,(p;f, g) = j F" CP(t)I f It) s( t )ddt)  
6 

while-the (complex) Hessian at p F U in the direction off C 9 is defined by 

I I ' AfHFp(p)=4d2HqI~;f,Ji), 

and sl, 

Since rp is concave, we obtain 

In particular, when f is chosen to be d,p, UEC:  we have 

where a,p(-/ z) is as given in (3.1). When u = (dz l ,  . . . , dz,J E Cn, this may also be 
written as 

We specialize the above concave function cp to the a -order entropy function 
qa, a > 0, defined by 

This function is defined for s E R+ and can be extended to s = 0 by using the 
convention Olog 0 = 0. With this choice of qa = tpa we call H, = H ,  the a - 
order entropy (see [14]). It follows that 



From (3.3143.5) we see that with Ha there is associated a (hermitian) 
differential metric 

which is positive definite and, therefore, a metric of a Riemannian geometry. 
This metric can be also expressed as 

where the metric coefficients are given by 

The (hermitian) matrix Cgf;] and the metric ds,Z will be called the a -order 
entropy matrix and the a -order entropy metric, respectively. 

Of g r e a  importance as far as applications are concerned is the special case 
of a = 1 and for this reason the index a = 1 will be deleted from the above 
quantities. In this special case, H = H ,  is the familiar Shannon's entropy, and 
ds2 = ds: and Cg,J = Cgia are the previously defined information differential 
metric and information matrix, respectively. 

Another natural way for the derivation of the a -order entropy metric is 
via the notion of divergence. We consider any C2 -function F (  ; -) on 
R+ x R +  sothat F(s , t )>OandF(s,  s)=Ofors, t ~ R . F o r p , q ~ P , w e d e f i n e  
the divergence of p and q with respect to F as 

Fixing p~ P, and letting q vary we find that 

In particular, when p = p(t1 z)  and q = p ( t ]  5 )  with z ,  [ED and p( - 1.) E 

9 (XI D),  we have for the (complex) Hessian, in analogy with (3.4), 

This, of course, is also a (hermitian) positive definite differential quadratic 
form. 

A very simple example is furnished by the J -divergeizee (see [Il l)  

induced by the q-entropy functional H,. According to (3.2) we have 
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and therefore 

A ,  {Jf'(p, pII(z) = -4w -4 j rp"~P) l~~ l"~(~) .  
S 

The concavity of rp impties that this is a positive definite form. In particular, 
when tp is the or -order entropy function p& of (3.9, the o! -order entropy metric 
emerges again. 

A more interesting example is furnished by the K-divergence (see [llf) 
which is defined as follows: Let $ be a C2-function in R, with the property 
that s$ (s-I) +$(s) 2 0 and with the normalization $"(I) > 0, The K - 
divergence is .. - 

Its Hessian is therefore 

which is the information metric. If $ = - cp,, where q, is the or -order entropy 
function of (3.5), the resulting K -divergence K, is called the a -order K - 
divergence (a > 0). Note that in this case 

is indeed non - negative for SE R+ and that - ql(1) = a > 0. Moreover, 

In particular, 8K, (p, q) is the familiar Kullback- Leibier divergence (see 
~171). 

Another example of a divergence measure is provided by the Hellinger 
divergence - 

H J P ,  q)  = j [$(PI - $(4)12d~(t), 
it 

where $ is any c2 -function on R+ . Obviously, {H,,(p, q))'/2 defines a pseudo- 
distance on P, x P,. In particular, if p = p(t( z) and q = p(t( () with z, E D and , 

p( 1 - )E B(%I D), we have the function 

which is the Hellinger $ -pseudo-distance on D x D, 



The Hessian, in analogy with (3,4), is given by 

The choice 

gives the u - order Hellinger divergence 
~. - 

and the or - order Hellinger pseudo -distance 

It follows that 

which is (modulo the factor of 16) the a-order entropy metric. 

4. The projective p o d o  - distamce. The 1 - order pseudo -distance el defined 
in (3.6) is known as the Hellinger pseudo - distance on D and is also denoted by 
Q .  Evidently, 

~ ( ~ , ~ = { l - j [ ~ ( t ~ z ) p ( t ~ [ ) ] ~ ~ ' d ~ ( t ) ] ~ ' ~ ~  z,CED, 
a 

with p( - 1  - )  E P(2"I D).  It is also evident that 

, e2(z ,  2) = de2(z,  5)Ic=, = 0 
and 

In particular, ds2(z) = 2d,,g2(z, [)IS== is the information metric. 
In spite of the importance of the Hellinger pseudo -distance e in the 

theory of statistical inference (see [20], p. 6 -  231, it is found more convenient 
for our purpose to study an alternative pseudo -distance R defined below. To 
do so we shall follow the convention of statistical quantum mechanics and 
consider p ( - I  . )ES(XI D) as a Square of the modulus of a normalized waue 
function $ ( 1 a). Thus, 
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, where @(- iz )  is a complex-valued function in Spy the unit sphere of 
J52(%; PI7 i-e.7 

(4.2) l l l l l  = Z E D .  
! 

In this way we obtain 

We define - .. . 

where the minimum is taken over all 81, O z ~ [ O ,  2x1. Since also 

it is seen that A is indeed a pseudo -distance on D. An alternative and useful 
expression for this pseudo-distance in the form of 

is also available. Comparing this expression with that of (4.3) we see that 

Q ,  47 9 C z, CEO. 

A routine calculation based on 

and 12, (z, Z) = dA2 (2, [)Ii== = 0 shows that 

(4.5) d2A2(z, 0 = lld$ll:-II$Y d@)#I2Y $ = ICI( - lz)? 

which is clearly non -negative. 
We call 1 the (p, ~ b )  - projective pseudo - distance of D. The reasons for this 

name lie in the following more general considerations. Let H be an abstract 
Hilbert space and consider any two non-zero elements h, and h, of H. We 
say that h1 is equivalent to h,, in short hi - h,, if there exists a non-zero 
scalar c such that 12, = ch,. The set of all equivalence classes [h], h E H  - [O), 
forms the projective space P(H) which, in general, is of infinite dimension. This is 
a complete metric space with respect to the distance. 



where S is the unit sphere of H .  It follows that 

and thus 

It is also clear that any linear isometry T :  H 4 fi between two Klbert 
spaces induces an isometry P, P ( H )  -, P(@ between the corresponding 
projective spaces, given by P,([h])  = [Thj . 

In our case, the Hilbert space H is L,(X; p) and the unit sphere of H is 
S,. In view of (4.2) for any ZED, the wave function $( - lz )  belongs to S,. We 
define the mapping F :  D + P(L,(B; p))) by F ( z )  = [#(. 1 z)], ZED, and 

I note that this mapping is injective if and only if for any two distinct points 
I z, 5 E D  the wave functions 9 (. 1 z) and $ ( - 1  [) are linearly independent. We 

also define 

which in view of (4.6) is identical with (4.4). 
The difference between the Hellinger and the projective pseudo -distance 

is now more apparent. Both are based on the normalized wave function 
$ ( . I -) of S,, but while the Hellinger pseudo - distance admits the expression 

eVz, 53 = 1-1(11&(-l~)I~ lICI(.I5)1)~, 

the projective pseudo -distance admits the more analytic expression of (4.4). 
Consequently, 0 < ~ ( z ,  0 < A(z, [) < 1 for every z,  ED. Moreover, while Q 
is a distance of D if and only if for any two distinct points z,  ED the wave- 
function amplitudes 1$(.1z)/ and I$(-(c)( are dflerent on % except for a 
subset of X of zero p-measure, 1 is a distance on D if and only if for any 
two distinct points z, C G  D the wave functions $ ( . I  z) and $(.I 5) are linearly 
independent. 

5. Sesgui holomorphic ker~~els. In most cases a given wave function 
g ( - l z ) ~  L2(%; p), ZED, is not necessarily normalized as in (4.2), in which 
case the quantities under considerations wilI involve certain norming const- 
ants detailed below. We write 
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where the norrning constant 

is a positive smooth function of z ED. The reason for displaying K ( z ,  3 instead 
of ,  say, K(z) is that the right -hand side of (5.2) is in effect a function of z as 
well as Z (ZED), a fact which will become more apparent once we further 
require that g ( t l - )  be holomorphic in D for p-almost all t€ .FZ".  With the 
notation of (5.1) and (5.21, formula (4.5) becomes 

(5.3) - d2~2(z '  5)I1=z = K- CK lldgll; - I(& d4I)#l21, 
.- - -  

where % = K(z, Z) and g =g(.lz), Z E D .  
A particularly important case occurs when the non-normalized wave 

function g( - 1  -) has the property that g (ti -) is holomorphic in D for p - almost all 
t E S. In this case, in view of (5.2) and Hartogs' theorem, K ( 2 ,  is holomorphic 
in (2, 3, Z E D ,  and therefore, by polarization, 

It follows that, for any fixed 5 E D ,  K ( *, r )  is holomorphic in D, and because 
the kernel is hermitian, i.e., K(z, T )  = K (6 ,  3 for any z, [ E D ,  it also follows 
that K (l,, .) is anti - holomorphic in D. Another application of Hartogs' 
theorem then shows that K (2, 0 is holomorphic in (2,  c) for (2, [ ) E D  x D.  Such 
kernels are said to be sesqui holomphic on D x D. Any sesqui holomorphic 
kernel K(z, r) which is also positive definite on D x D is called a Bergman 
kernel on D x D  (see, e.g., [12], p. 88 -93). This means that, for any finite system 
of points z,, .. ., z, of D and any corresponding scalars al, . .., a, of 6, 

Now, it follows immediately from (5.4) that K ( z ,  0 is indeed a Bergman 
kernel on D x D .  In fact, 

Applying the classical theory of reproducing kernels (see [I] and [12J, p. 
88 - 93) we deduce the existence of a unique Hilbert space H(D) of functions 
which are holomorphic in D such that kc+) = K (z,O, z ,  6 ED, is its reproduc- 
ing kernel. Let (., -1 be the inner product of H(D); then for any  ED we have 
kc E H (D) and 

f(O=W;k,), f€H(DI. 

In particular, 
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In the other direction, assume that we are given a reproducing kernel space 
H(D), with the inner product (., a), of holomorphic functions in D. Let 
kc = K( ., T), (c  D, be the reproducing kernel of H (D). This kernel, as before, 
is a Bergman kernel on D x D. We now consider any isometry of H (D)  onto 
L, (S; p) and put 

Therefore, it follows that, for z ,  [ E D ,  

. , or, expressed in another form, 

~ t z ,  n = (~(. Iz) .  g(-10)# = j ~ ( ~ I Z ) ~ ( I W P ( ~ ) ,  
Z 

which is precisely that of (5.4). We see therefore that there is a canonical 
correspondence between holomorphic wave-functions g ( - I Z )  E L2 (X; p) and 
the Bergman kernels k,, z E D, of Hilbert spaces H (D) of holomorphic 
functions in D. This correspondence is determined by (5.5) and for this 

I 
reason g(+l.), which is defined on X x D, is called a generating funcrion of 
~52 (X; PI for H ( D )  (see C51). 

I 

I 
' 

Under the above circumstances, the second diflerential in (5.3) takes 
the form 

I 

d2AZ(z, [)Ig=, = K-' [K8K - IdKIZ] 

I 

This is the Bergman metric 

where 

(5.7) ~ i i r ( ~ ) = a , k ~ z , I o g K ( z , T ) ,  ZED, k , m = l , . . ,  n. 

A-special instance of this metric was first introduced and studied by 
Bergman in 1933 (see also 143, p. 182-186, and [6] and 183, for additional 
details). An alternative geometrical derivation of this metric is as follows: 
We define 

r 
S(D) = (f EH(D): llf 11 < 11 and SS(D) = (f ES(D): f (0 = 03 

for a fixed l, E D. For' a direction v E CR, we define 
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Standard Hilbert space arguments show that the extremal problem (5.8) 
admits a solution which is unique modulo a rotation and that 

- In particular, when v = dz = (dzl, , . ., dz,), we have 
.. - - 

b2 (2; dz) = dbZ (2)  

and we once again obtain the Bergman metric. This metric is also Klhler, i-e., 
-- - the two-form 

is closed. For more details on such metrics we refer the reader to the mono- 
graph of Weil [28]. 

The (p, $1 -projective pseudo -distance JZ in (4.4) assumes here a simpler 
expression. Indeed, using (4:4), (5.11, (5.2), and (5.41, we readily obtain 

(5.10) A ,  ) = 1 ( z ,  2 K ( z ,  K ) ] 1 2 1 J 2 ,  Z ,  [ED. 

In this form and when #(z, r) is the classical Bergman kernel (i.e., the 
reproducing kernel of H (D) = HH, (D), where H ,  (D) stands for the space of 
holomorphic functions in the bounded domain D in C" which are also 
square-integrable with respect to the Lebesgue measure on D), this pseudo- 
distance becomes a proper distance which was first studied by Skwarczyliski 
[26]. For this reason, 1 in (5.10) will be also called the Skwarczyriski pseudo- 
distance of D (see [9] for further details). A sufficient condition for 1 to be 
a distance is provided by the following theorem: 
THEOREM 1. Suppose that 1, fl, . . . , f, EH(D), where &(z) = zj, 1 6 j < n, 

and z = (z,, . . ., Z,)E D. Then 1 is a distance on D. 
Proof. Assume that 1(z, [) = 0 for z, [ E D .  Therefore, by (5.10), 

/K(z, r)I2 = K(z, .2)K(l, r), which means that kc = cxk, for some U E C .  It 
follows that f (0 = af (z) for every f E H (D). Putting f = 1 and f = 4,  j 
= 1, . . ., n, we obtain [ = z, which completes the proof. 

In the present setting, a relation of considerable importance, as far as 
applications of statistical inference are concerned, is the fact that the inform- 
ation metric ds2 is nothing else but the Bergman metric db2. Indeed, from 
(4.1), (4.2), and (5.1) we have 

log p(tl z) = log g(tl z) + log g(tlz)- log K (2, 3. 
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By virtue of the Cauchy-Riemann equations we deduce that 

&,azm log ~ ( t l  z) = - log (2, a, 
which is valid for p-almost all t E 9" and all z E D .  This, by (2.1) and (5.7), 
shows that g,&) = T,,(z), z ED, and therefore ds2{z) = db2 (2). 

Summarizing the above results we have the following theorem: 
THEOREM 2. Assum that the probability density function p( I . ) E P ( ~  D) is 

given by . 

I 1 = l % l 1 2 / ?  K (293 > 0, z E o, 

where g (t 1 -) is hlornorphic in D for p -almost all t E 95. Then 
(i) K(z, n is the Bergman kmnei of a Hilbert space HID) of holmrphic 

functions in D ;  
(ii) g(-I-), which is defined on S x D ,  is the genmah'ng function of 

L,tX; PI for HW); 
{iii) the projective pseudo -distance A in (4.4) is the Skwmczyriski pseudo- 

distance in (5.10); 
(iv) for any z,  ED, 0 d e(z, 6)' G A(z, I )  < 1, where Q is the Hellinger 

pseudo - distance i n  (4.3) ; 
{v) the iafvrrmarion metric dsZ is the Bergman metric dbz which may be 

expressed by (5.6) - (5.9) ; 
(vi) A2 (2, Z) = dA2 (z, l)lc=, = 0 and d2A2(z, c)lr =, = ds2(z) = dbz(z) 2 0. 

Associated with the Bergman information metric ds2 are the standard 
invariants as the scalar and the Ricci curvatures which perhaps deserve a 
further study in the present context. Such a study will probably yield results 
analogous to those of Efron (see 1133 and the literature cited therein). For 
example, an analogue of the Gaussian curvature of ds2 may be given (see 
E73). For a direction v E Cn and z ED, the directional cumatwe of ds2 (z) is, in 
view of (5.9), given by 

F& n = 1 this curvature reduces to the usual Gaussian curvature of the 
onedimensional Kgihler metric ds2 (z) = (az& log K) dzdZ. 

The classical Bergman metric and the original Skwarczyliski distance (see 
1263 are also globally invariant under biholomorphic mappings of D. This 
property, in general, does not hold for our ds2 and A. It holds, however, 
when some additional assumptions are imposed. For this and related results 
we refer to [6]. 

In the next section we provide a simple example illustrating the theory. 
More examples can be generated along silimar lines (see also [5J). 

9 - Rob.  Math. Statist. 3 (2) 
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6. Ao example. Let rp be a holomorphic mapping of the manifold D 
(imbedded in C")into the right half - plane R = ( z  E C : Re z > 0), thus 
Re q(z) > 0 for every ZED. Let a > 0 be a real number and consider the 
generating function 

&( t l~ )= . t ( ' l - ~ )~~e -~ * ' ) ,  ~ E R , , ~ E D .  

This generates the Bergman kernel 

It follows that 

In the present situation the sample space X is W+ and the measure p is 
the ordinary Lehsgw measure. The probability density function 
~ ( - / - ) E F ( ~ D )  is therefore 

, The Fisher information matrix has the entries 

and therefore 

- It follows that the rank of this matrix is 1. The Bergman information 
metric is then 

(6.1) ds: (z) = a [2 Re rp (z)]-  '1 d q  (z)] '. 

-- Here, of course, ds; (z) = Bb: (z), and thus, in view of (5.9), for a direction 
v E Cn we have 

, b;(z: v)  = a [2Re cp(z)]-21 dq(z: v)12. 
I 

It follows that 
I A, log b:(z: v)  = 8 [2 Re q~ (z)]-' 1 d q  (z :  v)1', 

and hence the directional curvature is xa(z ,  v) = - 4 ~ -  which is a negative 
constant and independent of the direction u. 



We recognize the metric in (6.1) as the Poincari hyperbolic metric of the 
right half-plane R. The geodesic pseudo-distance S, induced by ds: is also 
the information pseudo-distance and is given by 

where 

. . 
The Skwarczytiski pseudo -distance is now 

where 6' is defined by (6.2). To write this in another form we put w = q(z) 
and 7 = q([), Z, [ED, and thus u = Re w > 0 and u =Re z > 0. Then (see 
also 19)) 

On the other hand, it is easily seen that the Wellinger pseudo -distance 
admits the expression 

and thus, once again, 0 < (2, d A= ( 2 ,  [) ,< 1 for every z, 5 ED 
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