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It has recently been proposed that the broad spec-
trum of interannual variability in the tropics with a
peak around four years resuits from an interaction
between the linear low-frequency oscillatory mode of
the coupled system and the nonlinear higher-
frequency modes of the system. In this study we de-
tertnine the bispectrum of the conceptual model con-
sisting of a nonlinear low-order model coupled to a
linear oscillator for various values of the coupling
constants.

IT has been well-established that the tropical ocean and
the atmosphere interact strongly on time scales larger
than a season and that the El Nino and Southern Oscil-
lation (ENSOQO), an irregularly fluctuating interannual
phenomenon, is a result of such interactions between the
atmosphere and the ocean. For time scales in which the
atmosphere cannot be considered in tsolation, say time
scales of the order of a season or longer, one must con-
sider the tropical coupled ocean-atmosphere system.
Only a few studies'™ have attempted to make a quanti-
tative estimate of the predictability of the coupled
ocean—atmosphere system. Goswami and Shukla'
showed that the growth of small errors in the coupled
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system is governed by two time scales. The fast time
scale has an error-doubling time of about 5 months
while the slow time scale has an error-doubling time of
about 15 months. The slow time scale appears to arise as
a result of the dominant four-year cycle of the system
while the fast time scale appears to arise due to the ape-
riodicity of the system.

In general, aperiodicity may be attributed to nonlinear
interaction between more than one mode (or degrees of
freedom) of the system. Early instability analysis* shows
that the tropical coupled.ocean—atmosphere system pos-
sesses an unstable coupled low-frequency mode having a
period of 26 months and an e-folding time of 5 months.
Recent studies’ have shown that the convergence feed-
back mechanism included in the parameterization of
atmospheric heating introduced some higher-frequency
intraseasonal unstable modes. The existence of more
than one unstable mode can lead naturally to nonlinear
interaction between them and thereby explain the exis-
tence of the aperiodicity. One of the efficient means of
studying the existence of nonlinear interaction between
different modes is by the determination of the bispec-
trum. For a normal random process the third moments
are zero. The bispectrum is a decomposition in the fre-
quency domain of the third moments and thus provides
information on the nonlinear characteristics.

Krishnamurthy ef al.® have recently proposed a con-
ceptual model for the aperiodicity of the interannual
variability of the tropics. The model consists of a non-
linear system (the Lorenz model’) coupled to a linear
oscillator. The nonfinear system represents some aspects
of the general circulation of the atmosphere and the
equations are the same as those of Lorenz’. The linear
part represents the dominant four-year oscillation of the
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Table 1. The ten largest real bispectral values along with their periods (dim ) for ¢ = = 0. The standard devia-
tions of our estimates of the above bispectral values are given in brackets m, w and y refer to months, weeks and

years

X 0 02233; 7 Sm, 6 67m 00156, 7.5m, 6m
(0 00002) (0 00003)

X 0 0027,7.5m, 4.62m 00011, 7 5m, 4 28m
(0.00002) (0 000007)

X 0 0006, 6 67m, Im 0 0005,667m, 1 02m
(0 00001) (0 00001)

Y 0 0084, 7 5m, 2 39w 00077;7 5m, 2 16w
(0.00065) (0 00076)

Y 0 0072, 7.5m, 2 08w 0 0068; 7.5m, 2.34w
(0.00094) (0 00069)

Y 00067, 7.5m, 2 24w 00067, 7 Sm, 2 26w
(0 00061 (0.00064)

Z 0 0062; 2 39w, 4 26w 0 0062,2 30w, 321w
(0 0002) (0.00022)

VA 0 006; 2.39w_ 4 7w 0 0059, 2 39w, 3w
(0 0003) (0 00027)

Z 0 0054, 2.39w, 3 66w 0 0054, 2 39w, 3 42w
(0 00062) (0 00025)

0 0099, 7 5m, 5 45m 0 0055, 7 5m. Sm

(0.00004) (0 00005)
0 0007, 6 67m, 4w 0 0006, 6 67m, 4 06w
(0 00001) (0.00001)

00075,75m, 2 1w 00073, 7 5m, 2.36w

(0.00098) (0.00068)
0 0068, 7 Sm, 2 28w 0 0067, 7 5m, 2 2w
(0 00064) (0.00060)

0 006, 2 39w, 4 64w

(0 00027)

0.0058, 2.39w, 2 98w 0 0055, 4 26w, 2 36w
(0 00028) (0 00019)

0 0054, 4 26w, 2 3w
(0 00026)

Table 2. The ten largest imaginary part of the bispectral values along with their periods (dim ) for = 8= 0. The

standard deviations of our estimates are also given m brackets. m, w and y refer to months, weeks and years

X 0 0005; 7 5m, 6 67m 0.0004; 7 Sm, ém
(0 00002) (0 00003)

X 0 0002, 2w, Im 0 0002, 2w, 4 26w
(0 00006) (0 00007

X 0 0002, 7 5m, Sm 0.0002, 3 94w, 3 66w
(0.00005) (0 00007)

Y 0 0081,1 81m, 2 09w 0 0079,1 8Im,2 11w
(0.00092) (0 00094)

Y 0.0077,1 8&m, 2 13w 0 0076, 1 8m, 2.14w
(0 00093) (06.00092)

Y 00074, 1 81m, 2 24w 00074,1 8lm, 2.28w
(0 00086) (0 00090)

V4 0.0053, 2 39w, 4 64w 0.0052, 2 39w, 3w
(0 00027) (0 00027)

Z 00049, 2 39w, 4 26w 0 0049, 3w, 2 24w
(G 00020) (G 00026)

Z 0 0048, 2 39w, 2 86w 00047, 2 22w, 4 64w
(0 00037) (0 00026)

coupled system arising due to unstable air—sea interac-
tions 1n the tropics and reflection of Rossby waves from
the western boundary®. Due to the very large horizontal
scale involved, the equatorial Rossby number for this
phenomenon is small and hence may be considered
linear.

The equations of the coupled system may be written as®

X =-Y*-Z*-aX +aF, (1)
Y =XY~bXZ—-¢cY+G+aP, (2)
Z =bXY+XZ-cZ+ a0, (3)
P =-wQ - Y, (4)
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0 0003, 7.5m, 5 45m 0 0002, 2w, 3 94w

(0 00004) (0.00011)
00002, 2w, 4w 0 0002, 2w, 4 73w
(0 00009) (0.06004)

0 0078, 1 81m, 2 08w

(0 00094)
00074, 1 8m, 2 22w 00074, 2 4w, 2 4w
(0 00086) (0 00087)
00074, 1 8lm, 2 26w
(0 00090)
0 0051, 2 39w, 3.21w 00049, 3w, 2 22w
(0 00022) (0 00026)
0.0048, 2 39w, 5 09w
(0 00038)
0.0047; 3.02w, 2 2w
(0 00025)
Q = WP — ﬁZJ (5)

where w is the frequency of the low-frequency oscillator
with a period of four years, P and O are the amplitudes
of the sine and the cosine phases of the oscillation and «
and [ are the coupling strengths. Equations (1)—(3) rep-
resent the high-frequency component while equations
(4) and (5) represent the low-frequency component. The
typical period of oscillation of the high-frequency cou-
pled modes is in the intraseasonal range. In order that
the nonlinear system (1)-~(3) contain these intrinsic
scales of the coupled system, we have rescaled Lorenz’s

equations by a factor ¢ as (original variables denoted by
primes)
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Y=cY, Z=cZ"
F=cF: G = c’G’

According to Lorenz, X' may be interpreted as a zonally
averaged ficld while Y and Z may be interpreted as
amphtudes of the two wave components. F is interpreted
as external zonally symmetric forcing (e.g. solar forc-
mes) while G 1s the zonally asymmetric forcing (e.g.
land-ocean contrast). We have used ¢ =0.5 and have
retained the same values of the unscaled coefficients
a’ and b° as used by Lorenz, namely a"=0.25 and
&' =4,

The time series was obtamed by integrating the system
of equations {1)5) for a period of 275 years. The first
S0 years of data were discarded in order to eliminate
transients. Data values with a sampling period of one
week were stored. A record consisted of 260 data points,
i.e a duyration of 5 vears. This yielded 45 nonoverlap-
ping records for the entire 225 years data set. The bi-
specira were obtained for X, ¥, Z, P and Q for the
uncoupled case (&#=f=0) and the coupled case
(a=B=0.1). Also the same was obtained for cases
(xa=0, B=0.1) and (a=0.1, 8=0). The forcings for
the time series had an annual cycle in F (F=7.0+2.0
cos 2nt/T, where T is one vyear) and a constant G
(G =0.125).

The procedure used to compute the bispectra was the
same as employed by Lii et al.” and is as follows:

(1) After removing the mean of each record a cosine
taper was applied. Each record was then Fourier-
transformed to give 131 Fourier coefficients, F(Ay),
where A, =0.1/n 8¢, 2/n 8¢, ..., 130/n dt, where n =260
and of = | week = 1.3846 (dimensionless), i.e. we com-
puted F(Ap), k=0,1, 2, ..., n—1; n=260. Note that by
symmetry we need to compute F(A,) for k=0, 1, ...,
130.

(i1) The bispectrum estimate

h=p"

a= a’c;

b(Pi, X)) = Q)2 7 F(A) F(A) F*(Ae+ A)),
k=1=0,1,...,130, (k+ )= [- 13}

was computed for each record.
(iii)) To reduce the variance we averaged at each

(A4, A;) within a square neighbourhood 17 X 17, i.e. for
the mth record

k43 f+8

m()-&:l!) “‘Z'Ea z Zb(lnl;)

i=k-8 j=I{-8

(iv) To reduce the variance further, we averaged 45
records to get an estimate
13

bl(lk,lf) _———

5 4 bu(AisAy).

We also computed the variance of the estimates as
follows.
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(v) Repeat steps (1)—(iv) in the computation of the
bispectrum estimates for each mth record to get

gm (lh lf)'
(vi) Compute

lrﬁ

Var (;{k., A.;) = 45

[Re b, (A,,4;) - Rebz(lk,l )12
=

and the corresponding variance for the imaginary part.
(vii) Compute SD(Ay, ) = [(1/45) Var(A,, A)]"? for
both the real and imaginary parts. This gives the stan-
dard deviation of our estimates. The bispectral density
can be obtained by dividing the bispectrum by the
square of the frequency interval. The bispectrum values
when multiplied by a factor of 129,600 would yield the
bispectrum density. Since El (A, A) is complex, it is
convenient to express s real and imaginary parts in
normalized polar form to obtain the bicoherence

3 2
R (lk, l})-—-— ___L (45) Ibl(lk!ll’)\ .

ZIF(Ak)t Zlm ) ZlF(»‘tk +l;)12

and the phase

¢(Ak l}):: tan™ _}m{b](lk!lf)}

RE{bl(}.;{,l;)}

There are situations in practice where, because of in-
teraction between two harmonic components of a pro-
cess, there is contribution to the power at their sum
and/or difference frequencies. Such a phenomenon,
which is due to quadratic nonlinearities, gives rise to
certain phase relations called quadratic phase coupling.
It turns out that the power spectrum cannot provide for
detection and quantification of quadratic phase couplhing
and one has to take recourse to the bispectrum. The
physical significance of the power spectrum and the bi-
spectrum is that while the former represents the conirt-
bution to the mean product of two Fourier components
whose frequencies are the same, the latter represents
the contribution to the mean product of three Fourier
components, where one frequency equals the sum of
the other two. The above physical significance be-
comes apparent when expressed in terms of the compo-
nents dZ(w) of the Fourier—Stieltjes representation of
X(k):

a3

1

— 1 K
X(k) = 7= je dZ(w) for all &,
where
EldZ(w)} =0
rO for , F Wy,
E{dZ(w) dZ*(wn)} = -
21 P(w) do  for w, =@, = o,
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Table 3. The ten largest real parts of the bispectrum along with their periods (dim ) for @ = =0 1. The standard

deviations of our estimates are also given in brackets. m, w and y refer to months, weeks and years

s e L, P —

e i —

X 00207.7 5m, 6 67m 00146, 7 5m, 6m 0 0095, 7.5m, 53 45m 0 0056, 7 Sm, 5m
(0 00013) (0 00018) (0 00025) (0 0003 1)
X 0 0026, 7 Sm, 4 62m 00021,6 67m,5 31w 00021,667m, 542w
(0 60009) (0 00008) (0 00008)
X 00021:667m,5 1w 0 0021:6 67m, 5 2w 00021: 6 67m, Sw
(0 00007) (0 00007) (0 00007)
Y 00079, 667m, 2 1w 00078, 6 67m, 2w 00076,667m, 2 iw 00074, 6 67m, 2 14w
(0 00172) (0 00139) (0 0019) (0 00153)
Y 0 0074, 6 67m, 2.02w 0 0073,6 67m, 2 28w 00072, 6 67m, 2 13w
(0 00176) (0 00103) (0.0016)
Y 00072,6 67m, 2 24w 0.0072, 6m, 2 09w 0 0071, 6 67m, 2 3w
(0 00144 (0 00i41) (0 00097)
Z 0 0042: 2 24w, 6 67m 00041, 2 26w, 6 67m 0 0038,491w, 23w
(0 00087) (0 00088) (0 06056)
Z 00037:232w,491w 0 0036, 2 05w, 2w 0.0036, 2 02w, 2 05w 0.0036, 5w, 2 3w
(0 00059) (0 00075) (0 00094) (0 00050)
Z 0 0035; 202w, 2 02w 0 0035, 5w, 2 32w 0 0035;236w,4 91w
(0 00115) (0 00053) (0.00070)
P 0 03299: 6 67m, 7.5m 0 02697, 6m, 7 Sm 001714, 5.45m, 7 5m 0 00943: 7.5m, 5m
(0 00338) (0 00328) (0 00282) (0 0029)
P 0 060454.462m, 7.5m 000215;428m, 7 5m 000123;4 62m, 6m
(0 00106) (0 00030) (0 00014)
P 0 00116;4 62m, 6 67m 000113;:462m, 545m 000105, 4m, 7 Sm
(0 60025) (0 00014) (0 00016)
O 0 00497; 7 5m, 7 Sm 0 00497, 8§ 57m, 8 57m 0 00497, 8 57m, 10m
(0 00187) (Q 00189) (0 00189)
?, 000497, 8 57m, 12m 0 00497, 857m, 15m 0 00497, 8 57m, 20m
(0 00189) (0 00189) (0.00189)
0O 0.00497; 8 57m, 30m 0 00497, 8 57m, Sy 0 00497: 10m, 10m 0 00497: 10m, 12m
(0 00189) (0 00189) (0 00187) (0 00189)
E{dZ(w)) dZ(w;) dZ*(ws)} = months and modes with a time scale of 4-6 months.
.- There also seems to be some interaction between modes
0 for w, +w, # w;, having time scales of 6 and 1 month. We also find that

+

‘Lb(w[,wz)z da)l da)z for ﬂ)l +CO2 = Wy,

where p(w) and b(w,, w,) refer to the power spectrum
and bispectrum and E£{ } is the expectation.

Tables 1 and 2 provide the values of the real and
imaginary parts of the bispectrum values of X, Y and Z
for the uncoupled case (o= B =0). The largest 10 bi-
spectrum values (not in absolute magnitude) along with
the corresponding periods (dimensional) are given. The
standard deviation of our estimates for the above bispec-
tral values are also provided within brackets just below
the bispectral values. [t 1s found that the bispectra for P
and Q for the uncoupled case are very small (of the or-
der of 107®) and therefore not presented here. It is obvi-
ous that with =0 the components of low-frequency
oscillation (P and Q) should exhibit no nonlinearity and,
consequently, should have zero bispectrum. As seen in
Tables 1 and 2 the standard deviations of our estimates
are very much smaller compared to the bispectral val-
ues. The real part of the bispectrum for X has nonlinear
interaction between the mode with a time scale of 7.5

CURRENT SCIENCE, VOL.. 68, NO 12, 25 JUNE 1995

the imaginary part of the bispectral values for X is much
smalier in magnitude compared to the real part. The
imaginary part of the bispectral values for X has inter-
action between the mode having a time scale of 7.5
months with that having a time scale of 5-6 months. In
addition to the above, we find that the mode with a time
scale of 4 weeks interacts with that having a time scale
of 2 weeks. The bispectrum values for ¥, especially the
real part, seem smaller compared to those of X. How-
ever, we find that for the real part of the bispectrum for
Y the mode with a time scale of 7.5 months has strong
interaction with modes having a time scale of around 2
weeks. The imaginary part of the bispectrum for Y, un-
like that of X, is comparable in magnitude to the real
part of the spectrum and has interaction between modes
having time scales of 2 months and 2 wee¢ks. The bispec-
trum values for Z are comparable to those of Y. For the
real part of the bispectrum for Z the mode with a time
scale of 2 weeks seems to interact with modes having
time scales of 34 weeks. The imaginary part of the bi-
spectrum values for Z has interaction between modes
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Table 4. The ten largest imaginary parts of the bispectral value along with their periods (dim ) for a=§=0 1
The standard deviations of our estimates are given in brackets

X 0 00064, 7 Sm, Sm 000063, 75m,667Tm 000059, 7 5m, 5.45m 0 00055, 7 5Sm, 6m
(0 0003 1) (0 00013) (0 00025) (0 00018)
X 00004, 491w, 491w 0 00037, 4 81w, 491w 0 00035, 4 19w, 4 19w
(0 00005) (0 00005) (0 00004)
Ly 0 00035, 4 81w, 4 Biw 0 00034, 4 19w, 4 33w 0 00034, 4 33w, 4 13w
(0 DOD03) (0 00004) (0.00004)
Y 0 0038. 2 09w, 2 (9w 0 0036, 2 09w, 2 08w 0 0036, Sm, 2 09w
(0 00093) (0 00106) (0 00122)
¥ 0 0035, 2 08w, 2 08w 0 003, 2w, Sm 0 0031,2 22w, Sm 0 0031:24m, 2 09w
(0 0015) (0 001089) (0 001087) (0 001305)
Y 0 0031, 5 45m, 2 09m 0 0031; 2 24w, 2 4w 0 003, 2.02w, Sm
(0 00129) (0 00124) (0 00141)
Z 0 0039. 2 36w, 491w 0.0039, 2.34w, 6 05w 0 0039, 2.36w, 4 §1w
(0 0007) (0 00061) (0 00072)
Z 0 0038, 2 34w, 4 9w 0 0037, 2 36w, 6 05w 0 0037, 2 34w, 4 81w
(0 00066) (0 00062) (0 00068)
Z 0 0037, 4 8w, 2 3w 0.0036, 2 36w, 5 Sw 0 0036, 2 34w, 5 5w 0 0036, 2 3w, 6 05w
(0 00057) (0 00069) (0.00067) (0 00056)
P 0 00903; 7 Sm, 7 Sm 0 00903; 8 57m, 8 57m 0 00903, 8 57m, 10m
(0 02044) (0 02067) (0 02067)
P 0 00903; 8 57m, 12m 0 00903, 8 57m, 15m 0 00903, 8 S7m, 20m
(0 02067) (0 02067) (0 02067)
P 0 00903; 8 57m, 30m 0 00903; 8 57m, Sy 0 00903, 10m, 10m 0 00903, 10m, 12m
(0 02067) (0 02067) (0.02067) (0 02067)
e, 0 0001; 6 67m, 6m 0 00006, 6m, 6m 0 00002, 6 67m, 5.45m 0 00001, 5 45m, 6m
(0 00006) (0 00004) (0 00004) (0 00004)
e, 0 00001; Sm, 6m 0.000009; 4.62m, 7 Sm 0 000008, 3 33m, 7.5m
(0.000007) (0 000a05) (0 000005)
0 0.000008, 5 45m, 5 45m 0 000008, 7.5m, 4m 0 000006, 2.3w, 7 Sm
(0 000009) (0 00001) (0 000004)

with a time scale of 2 weeks and modes having a time
scale of 3—5 weeks.

For the coupled case (= B=0.1), with G and F re-
maining the same, the bispectral coefficients were de-
termined (Tables 3 and 4). One would expect that the
introduction of coupling would result in the appearance
of nonlinear interaction between various modes for P
and Q. It is found that the real part of the bispectrum for
P has interaction between the mode having a time scale
of 7.5 months and modes having a time scale of 4-6
months. In addition to the above, we find that the mode
with a time scale of 4 months interacts with the mode
having a time scale of 5-6 months. The imaginary part
of the bispectrum for P has values very much smaller
than the standard deviation estimates and, consequently,
is unreliable. The bispectrum estimates of @ for the
coupled case have magnitudes very much smaller com-
pared to P. The real part of the bispectrum for O has
interaction between the mode with a time scale 8 months
and several modes of time scale between 10-60 months.
The imaginary part of the bispectrum for QO has interac-
tion between the mode with a time scale 6 months and
modes with a time scale 5-6 months. The bispectrum for
X for the coupled case is similar in magnitude to that for
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the uncoupled case, except that for the real part of X the
modes having a time scale of 6 months and 5 weeks are
seen to interact. Also for the imaginary part of X for the
coupled case the mode with a time scale of 4 weeks is
found to interact with itself. This is at variance with the
uncoupled case, where the mode with a time scale of 4
weeks interacted with that having a time scale of 2
weeks. For the imaginary part of the bispectrum for ¥
for the coupled case, an additional nonlinear Interaction
between the mode having a time scale 5 months with
that having a time scale of 2 weeks manifests itselt. For
the real part of the bispectrum for Z for the coupled
case, an additional interaction between the mode having
a time scale of 2 weeks with that having a time scale of
6 months manifests itself.

A better way of representing the bispectral values and
the estimates of the standard deviation was thought of as
follows. The real and imaginary parts of the bispectral
values will be depicted by horizontal and vertical ar-
rows, with the length of the arrow indicating the magni-
tude of the bispectra. The corresponding standard
deviation estimates of the above bispectral values will
be depicted by error bars which will be vertical for the
real part and horizontal for the imaginary part. The

CURRENT SCIENCE, VOL. 68, NO 12, 25 JUNE 1963
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Figure 1. The real and imagmary parts of the bispectral values
along with the standard deviation estimates for X for the uncoupled
case (x=3=0)and G=0 12§
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Figure 2. The real and imagimnary parts of the bispectral values
along with the standard deviation estimates for Y for the uncoupled
case (a=LfF=0)and G =0 125

magnitude of the estimates of the standard deviation will
be indicated by the length of the bar. The position of the
bar coincides with the respective frequency (the corre-
sponding value of the dimensional period is also pro-
vided within brackets) and is always found to be in the
mid-point of the arrow. Figures 1--3 depict the bispectral
values and the estimates of the standard deviation for
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Figure 3. The real and imaginary parts of the bispectral values
along with the standard deviation estimates for Z for the uncoupled
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Figure 4. The real and 1maginary parts ol the buspeetral valucs

along with the standard deviation estimates tor A tor the coupled
case (= B=01)and G=0 125

the uncoupled case (= B=0) for .Y, ¥ and Z, while
Figures 4-8 depict the same for the coupled case
(a=F=0.1)forX, Y, Z Pand Q.

We find that the inclusion of the coupling strengths
has led to the appearance of additional modes of nonlin-
ear interaction in ¥, Z, P and Q having time scales of the
order of 4--8 months, The bispectrum for X' is more or
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Figure 6. The real and mmaginary parts of the bispectral values
along with the standard deviation estimates for Z for the coupled

case(a=f8=01)and G =0 125.

less unaffected by coupling. This seems reasonable as
the coupling of the higher-frequency oscillation to the
low-frequency oscillation is assumed to take place
through the nonzonal components (Y, Z). It is pertinent
to recall here that the unstable coupled mode found by
Hirst' was profoundly modified by the convergence
feedback mechanism'® and that the period of the Hirst
mode changed from 26 months to ~7-8 months for a
wavelength of 10,000 km (k= 0.15) and for the strength
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case {x=B=0 D and G=0( 125

.

—> 0-00497 =2

= |
'g 0-016 } = =
G {104 m)
c .
v
E 0012
U (1389m e
S
-
- 0008 —5*
E (174y)
= —3>
| 2
LE:‘ 0004 |-

(347y) = S

3015 Q-017 0-019 0Q21 Q023
(11-11m) (98m) (g 77m)  (794m) (7:25m)

Frequency { non dimensional unt)

kigure 8. The real and imaginary parts of the bispectral valuces
along with the standard deviation estimates for ) for the coupled
case (x=f=01)and G=0 123

of convergent feedback ¢;=0.95. Also the periods of
the gravest eastward and westward propagating addi-
tional modes arising due to the convective feedback
mechanism were'® of the order of 3-4 months for
g,=0.95 and £=0.15. This lends further credence to
the fact that the above conceptual model does exhibit
certain important features of the variability in the trop-
ics. The similarity between the results of this study and
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those of an earlier studym suggests that the conceptual
model can indeed serve as a simple coupled ocean—
atmosphere model with general ocean thermodynamics.
Krishnamurthy et al.® have earlier demonstrated that
the aperiodicity in the interannual variability in the
tropics is due to the interaction between the low-
frequency mode and the nonlinear higher-frequency
modes. In general, aperiodicity arises due to nonlinear
interaction between more than one modes of the system.
One way of studying the nonlinear interaction between
different modes is through the determination of bispec-
trum. The bispectrum of the conceptual model for the
coupled case (x= f=0.1) gave rise to additional modes
with time scales very similar to those found in the ear-
lier study of Selvarajan and Goswami', who employed a
simple coupled ocean—atmosphere system with general
ocean theromodynamics, in which the atmosphere heat-
ing is determined by sea surface temperature anomalies
as well as the convergence feedback mechanism. This

study further establishes the fact that the conceptual
model does exhibit important characteristics of variabil-
ity of the tropics.
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