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1. INTRODUCTION

IT is the object of this paper to investigate into the general forms of the distri-
bution laws which possess the mean conserving property and arrive at new

frequency curves useful for graduation purposes and in tests of significance
connected with means in random samples.

The mean conserving property may be defined as follows. Let a variate
x be characterised by the probability differential

df=¢(x, A, p,....)dx (11
A, ,.... being constants which may be called the parameters in the distri-
bution law of x. Let x;, X,,.... be independent variates from distribution
laws of the type (1-1) defined by the sets of parameters given as rows of the
matrix
Ao

AT 7S (1-2)

The type (1+1) is said to possess the mean conserving property denoted by

a B, v,....
I R

where o, B, y,.... and &, 7, {,.... are the sets of parameters which have to
be kept fixed and can be varied in the distribution laws of x;, Xa,.. .. if their
mean follows the distribution law of the same type as in (1-1) but with the
set of parameters

M (1-53)

(A, fyeee)s (1-4)
where A, g, .... are functions of the number of x’s and the elements of the
matrix (1-2).

A similar definition holds for the sum couserving property defined by

a, ﬁ: y;"“
, (1-5)
L
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Both (1-3) and (1-5) can be made identical by the introduction of a new
constant as a multiplier of x, and the property (1-3) or (1-5) will be referred
to as M.

2. PROPERTIES OF DISTRIBUTION LAWS SATISFYING M

From the definition of M we derive the relations

e @A, ... )=c( A Lies..) 2-1)
r=1
Z ke Qs g Y=k, (4 5, ...) (2:2)
r=1

where ¢ (¢) is the characteristic function corresponding to the disiribution
law of x and %, the sth semi-invariant of x.

These simple properties enable us to discover readily whether any
distribution law satisfies M when a study of its moments and semi-invariants
are made. Let us consider the Bessel function populations defined by

e }Hlm(w
Toe ® 121" ¢ 1 o

where the upper function is taken when |c¢| >1 and the lower when
| ¢] < 1. The moment generating function, in either case, is given by

b, o)y’ +i={1—c®/(1—c+ th)y”+1 (24

23)

Since
ﬁ {f(f, b, c)}vzri-’lf_-_-_-, {f(t’ b’ c)}mn.;. 122 (2_4)

where
M == m1+ mz"l‘ tet +mn (2'5)

it follows that the sum of # variates from populations of the type (2'3)
defined by

b ¢ iy

b C iy )
(2:6)

b c m,, |

follows the same type defined by
b c¢c nm+H-9 27
For the Bessel function population defined by

To= %2 € © 1, (q+/%) dx (2-8)
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the sth semi-invariant is given by
m-+ I) g* s
k=(s~—1)!{( L 2 2-10)
Hence the sth semi-invariant of nz =x +x, 4+ ...... + x,, where x;
follows the law (2-8) with the parameters a, m;, ¢; is given by
= n(n+1) ng* s _
=(-D! {7 ) (2-10)
where mn =m +m+ .... +m,
and nq2=q12+422 + .. ‘l"q;zz

which shows that (2-8) satisfies M2, ,, the set of parameters
o m a4

(2:11)

R (C
giving the set
@ nm+1) -1 +ng) (2-12)
for the distribution of the sum. This result has been obtained by Bose
(1937) when m’s and ¢’s are the same for all the variables.
If k. (r), r =1, 2,....n are the semi-invariants of the variates x;, x,. ...
X, the distribution laws of which satisfy M, then the semi-invariants of the
variate Z = Xy +X; + .... 4 X, satisfy (2:2). Hence we get the result
that the distribution law of the sum or the mean of any number of independent
variates, whose distribution laws satisfy M, also satisfies M. From this it
follows that the distribution law
—a;x ni~1 2 ml A 77
df=ce "Tx X ot (2-13)

= A+ Aot oA,

Am*—;’ [ﬁ {l—(a;— o) ﬂ}*)‘i]azo
derived by the author (1942) as the distribution of the sum of » different
gamma variates following the laws

ce® xM-1dx | (2-14)
r=12,....,n
satisfies M.
. It is well known that the distribution law

ad
Py R @ @19
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satisfies M*,. Let the variates x;, X,,...., X, have the probability densities
f(xr: &, by. .. ) (216}
r=1,2,....n

with the corresponding cumulant functions
S, a,b,....) (2:17)

If it is known that the distribution of Z =xy +x, + .... +x is (2:15)

with the cumulant function —A log (1 — if/e) then by hypothesis we have
2 S8 a, b,....)=—2Alog (1—iBa) (2-18)
r=1 B

or 5 F a,by,..)=—) (2:19)

where F(8) =S (B)/log (1 — iBja). Differentiating (2-19) with respect to
B wegget
FLRE Z2F @B)a,b,....)=0 (2-20)
If this holds for all sets of a,, 5,, .... then we get by seliing them equal
values for all #, that

nE (8,4, b, .. )=0 (2-21)
or S8, ab,....)=—clog (1—ipja) (2-22)

where ¢ must necessarily be negative if the right-hand side is to represent a
cumulant function. Hence f, (x,, a,, b,,....) is of the gamma type. So
we get the result that if the sum of n independent variates drawn from n different
populations of the same type (the mathematical form remaining the same and
the parameters may be varying) follows the gnmma type distribution law,
then the above original populations also belong to the gamma type. As a result |
of this we get the necessary and sufficient condition for the sum of » into
pendent observations from a population to follow the gamma type is that the
population itself is of the gamma type. Also it easily follows that if the
sum of two variates of which one follows the gamma type, is distributed in the
gamma type, then the other variate also follows the gamma type.

3. DIFFERENTIAL EQUATION SATISFIED BY THE
CHARACTERISTIC FUNCTION

When all the n variates are drawn from the same population, we have,

if ¢ (£) represents the characteristic function of the distribution in the popula-
tion satisfying M,

{C (t’ }\” M"' ° ‘)}ﬂ:::-c(l: )\: [1/:- Ce .). (3'1) *
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Taking logarithms and representing log c (f) by ¢ (f) we get

ng (N, 1. =90 A .. ). (3-2)
Starting from ¢ (¢, X', u’,....) we can form the differential equation satisfied
by  under some analytical conditions by eliminating the constants A’, u’,. ..
The order of the differential equation is, in general, equal to the number of
constants eliminated.  Since (¢, A, ,....) also should satisfy this equation,
we require that ¢ and ny should both satisfy the differential equation for .
If the differential equation satisfied by ¢ is

D@, ¢....)=0 (3-3)
then D(mg, mf',....)=0 (3-4

which shows that D must be homogeneous iu ¥, ¢/, ¢”,.... the homogeneity
of D (x, y,....) being defined as

D(ax,ay,....)=f(@D(x,y,....) (3:5)

The differential equation (3-4) may be denoted by Dy=0. Hence we get
the results that the semi-invariant gemerating function corresponding to a
distribution law satisfying M satisfies a homogeneous differential equation
homogeneity being defined as in (3-5).

From the above differential equation Dy =0, we can derive the differ-
ential equation satisfied by ¢ (f) by making the substitutions

b=1logc, J'=c'[c etc. (3-6)

If the differential equation Dy =0 arising out of the probability differ-
ential ¢ (x) dx is homogeneous then the differential equation arising out of
the probability differential y (a) ¢** ¢ (x) dx is also homogeneous which shows
that the property M is conserved by the multiplication of the distributive
law by an exponential factor.

We shall now consider some distribution laws obtained by inversion
from Dg=0. The simplest case is when the order of Dy = 0 is one, in which
case the differential equation becomes

-}ijz £ () (an arbitray function) (3-7)
which gives the solution
g= A e where ¢ ()= [ f(f) dt (3-8)

and ¢ (f)=e#. If e$®) admits an expansion in series we get

it (it)®
MMag+ay a5 e
c(t)=e(° by +)
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which shows the Agy, Ad,.... are the semi-variants of the distribution. In
particular if @, ds,. ... are the semi-invariants for any distribution law then
nay, nds,. ... are the semi-invariants for the sum of » independent observa.
tions from the above distribution. This gives the result that the distribution
law of the sum or mean of a number of observations from any distribution law
with finite semi-invariants satisfies M. The functional form of the distribution
law may change with » but may be capable of being represented by a general
type of function. Thus we get a huge class of distribution laws satisfying M,

4. MEASURES OF DEPARTURE FROM M

Given the probability density ¢,(x, A, p,....) of a variate x, we can,
in general, replace the constants A, g,.... by an equivalent number of semi-
mvariaats of suitable orders so that ¢, (x, 4, &,....) may be written as
¢ (x, ki, ks,....) where k;, ko, . ... are the first, second, etc., semi-invariants.
Let the cumulant generating function be k (¢, k3, k;,....). Then the cumu-
lant generating function of the mean of n observations is nk (¢, ky, ks,....).
Let R(¢4, 1, k, ks, ...) be defined by

nk(%, ky, ky ....)=k(t, ky, kofn,. .. )

+R(t n k.. 0) (4+1)

When the distribution law satisfies M, R vanishes. If not, it can be written,
when it admits expansion, as

R{nk,...)= T %p (4-2)

where s depends on the number of constants involved in the distribution law
of x. Taking the exponentials in (4-1) we get

TC N k(t, ky, kyfn,e - o |
e" (n ! )'=e O b i) 1+ 2 gp' tp). (4-3)
p=s P

On taking the integral transform we get the probability density S (z) of the
mean as

S ()= b kin )+ 5 28 4o 44
p=s pldze

The expression consists of two portions. The second part vanishes
when M holds and measures the departure from M when M does not hold.
The considerations of replacing S(z) by ¢ (z, ky, ku/n,....) depend upon
the magnitude of this measure. It is proposed to study the effect of the
departure from M when » increases and also to consider the effect o
replacing & (z, ky, k»/n) by the normal approximation.
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5. SERIES IN ORTHOGONAL POLYNOMIALS

Let M (e) be the m.g.f. of a variate whose distribution law satisfies M
and f(a) any arbitrary function. If

Gi=M; @) £ % (/@ (1)

G=Ma@) F 2 if ey (52
are the m.g.f’s of x; and x, following the distribution laws -

qs(x: A1:."”1""') dx (5'3)

d(x, Ag, fig,....) dx (5-4)
then the m.g.f. of z=x;+ x,is |

G=GG=MM, 2 I “”m«v ! O (55)

l=0 I=r+ s
— M3 2’ ‘l"!‘ fz.

1=0

The functional form of G will be same as that of G, and G, if the same holds

for ¢; and a, and b, i.e., a, satisfies the recurrence relation
R ) I |

(5:6)

where b, and ¢; are of the same form as a, differing only in the parameters
involved in them. If (5-6) holds then by successive applications we can show
that

G=G; G,....G, | (57
has the same functional form as G;. By a suitable selection of M (a) and
f(a) we can get several distribution laws satisfying M.

Let M (a)= (1~ o)? and ()= a/(1—a)
Since (1—a)? o’j(1—a)
S GT G nae 49
i.e., the m.g.f. corresponding to

plzglj_) e AL p) ¢ (x) (5-8)
where ¢ (x)= ¢~ x*-Y/I(p) and L, (%, p)= (%),- ¥ ¢ (x) we see that
(1=~ a)? @+ f ()4 ---)is the m.g.f. of

y (X)=¢ (x) ? afrf(?r)L (x, p) (5:9)
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where a, satisfies (5-6). This is a series in Lagurre’s polynomials satisfying
M.

Let M (a)= %", f(a)=a. We get that

ex's” 72':’ . % a” (5-10)
is the m.g.f. of
‘ L2
P (X)= const. e 202 (a0+ % H, + & ox 2 H,+- ) (5-11)
x2 X2
&
where H,= e c;ip e 27,

which is a series in Hermite polynomials satisfying M if a, satisfies (5-6).
By suitable selections of M (a) and f(a) we can obtain the development of
probability functions satisfying M in a series of Bessel functions (Neumann’s
expansion) involving J, (x), Hypergeometric and other suitable functions.
These are omitted here as they are not of direct interest in graduation or
tests of significance.

6. SOME SPECIAL SERIES

A series of the form
ce‘“xxng—?xr (6’1)

is of special interest for the gamma type distribution occurs as a generating
function. We shall investigate into the nature of a, so that (6-1) satisfies M.
If x and y follow the type (6-1) with the parameters

(a A ml pi - .)
a A Mo p2 “ e e (6.2)
then the distribution of z= x- y is given by

C?“&~ ff;z2N§xmwmedm@ (6-3)

where the integral is over the domain £ defined by x >0, y > 0 and
x + y < z. This becomes apart from const. e** 4z,
LS a, b,
dz rt '(my+Ar+1)s! I' (m,+ As+ 1)
ZP A (7 +5) + 2
T mF AT T 3)

a'b,’ Z7PL+ s+ A (7 +S) 4 1

ST P m E AL )+ (6-4)

=359
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where
a,=a,/I (m; + A +1)
b'= b, (my + s +1)
The distribution of Z now becomes
" ® A/ M M1
cevd X I=0 l' F(ml'l‘mz‘l‘}\l'{‘ 1)

—c=e%dr 2 ?{ ™
l=¢ *

where m =m, +m, +1 and
A[T(ml“{"mg"}‘ Al+ 1) AJ -*—l' 22

t+e=1 re
which shows that (6+1) satisfies M if @', satisfies (5+6). The method of proof
can be extended to the sum of n variates. Some particular forms of ', give
rise to important distribution laws.

arb’
S'

(@ o,= ¢ then (6+1) satisfies M:,Aq
b a,=T (er r) satisfies M‘; b
(¢) @,=T(p+r)q satisfies M:” )
@ d,=2 I (p+n) ¢ I'(pat1y) ¢ satisfies Mm’, plqlp :"

The solutions for (a), (b), (¢) and (d), in the special case A =1, become

- dx ;lz R
(a) ce X Irn (qvx)
) ce* x" 1, (g%)
(¢) cev x" F, (p, m+1,gx)
(d) The distribution (2-13) of Section 2.
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