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§0. InTRODUCTION,

(1) Singer (1938) proved the theorem that given an integer m>2 of the form p* (p being
a prime) we can find (m-1) integers
do, dq,.. .0y, {0.10)

such that among the m(m—1) differences d;—d; (i, § =0, 1, 2...m; ¢ % j) reduced modulo
m%4+m+1, the integers 1, 2,...m2+4+m occur exactly once. Bose (1942) gave the following
theorem which he called ‘the affine analogue of Singer’s theorem’. Given an integer m>2
of the form p* (p being a prime) we can find m integers

dy, de, ... dy, (0.11)

such that among the m(m—1) differences d;—d; (7, j =1, 2...m; i # j) reduced modulo
m2—1, all the positive integers less than m2—1 and not divisible by ¢ = m-+1 occur exactly
once,

(2) In this paper, I have derived a chain of theorems of the form, given an integer v, it is
possible to find ‘s’ sets of ‘%’ integers each—

dyy, doy, - . . diy
dys, dog, . . . drg

............

dls, dQS: - dks

such that among the sk(k—1) differences diy—dj (3, j =1,2... k; iZjand r=1,2...59)
reduced modulo v, all integers less than v and not divisible by 6 occur A; times and those
divisible by 8, Ag times. The value of v is either (m**1—1)/(m—1) or (m*—1) where m = p"
(p being prime) and 8, either (m!+1—1)/(m?—~1) or (m!—1)/(m—+1).

(3) These theorems are derived from a compact representation of d (<¢) dimensional flats
in a ‘t’ dimensional finite space. If the points in a Projective or an Euclidean finite space of
‘¢’ dimensions are denoted by 1, 2. .. v, then the compact representation consists in finding s
(< b, the total number of d-dimensional flats in a t-space) d-dimensional flats, with points on it
represented by integers, which generate the totality of the ‘b’ flats by the successive addition of

(0.20)
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integers 1, 2. .., and reduction to modulo ». The addition of the integers is carried on till
the points of the flat are repeated in our process. The ‘s’ flats which generate the totality
are called the initial flats.

(4) The theorems of Singer and Bose come out from the compact representation of the
lines in ¢-dimensional Projective geometry PG(¢, m) and the Euclidean geometry EG(Z, m).

(5) Incidentally, we arrive at cyclical solutions to combinatorial problems such as the
Kirkman’s school girl problem and Incomplete balanced designs derivable from finite geometries.

(6) It is, also, well known that the (mf—1) degrees of freedom involved in the contrasts
of m* objects can be split into (m*—1)/(m—1) independent sets of (m—1) degrees of freedom
each; each set representing the comparisons arising out of m groups of mi-1 objects in each
group. It has been shown that the existence of a difference set, possessing the properties
mentioned in the present paper, is a sufficient condition for the splitting of the degrees of
freedom.

(7) Various other theorems which are of interest in the theory of numbers and in the
solution of combinatorial problems have been discussed at length and a variety of other problems,
which have been partly solved, are reserved for a subsequent communication.

(8) Lastly, I wish to offer my thanks to Mr. R. C. Bose, Lecturer in the Department
of Statistics in the Calcutta University, for his helpful guidance and criticism during the
preparation of this paper.

§1. FiNITE GEOMETRIES.

(A) Projective Space.

(1) Veblen and Bussey have defined a finite projective geometry in the following way.
It consists of a set of elements called points, for suggestiveness, which are subject to the following
five conditions or postulates:—

(1) The set contains a finite number of points. It contains one or more subsets called
lines, each of which contains at least three points.

(it) If 4 and B are two distinct points, there is one and only one line that contains both
A and B. ,

(iii) If 4, B and C are non-collinear points and if a line “m’ contains a point D of the line
AB and a point £ of the line BC but does not contain 4 or B or C, then the line ‘m’ contains a
point F of the line 4C.

(ivy) If‘%’ is an integer less than ¢, not all the points considered are in the same k-space.

(vy) If (ivy) is satisfied, there exists in the set of points considered no ({4 1)-space.

(2) The geometry, so defined, is said to be a geometry of the ¢-dimensional space. A
point is called O-space or flat and a line 1-space or flat. An m-space is inductively defined as
follows. A 2-space which is called a plane consists of points which are collinear with a point
not lying on a line and any point of the line. A 3-flat can be defined starting from a plane.
In general, if Py, Py, ... P,  are points not all in the same (m—1)-space, then the set of
all points each of which is collinear with P, and some point of the (m—1)-space formed by
Py, Py, ... P, is the m-space formed by Py, Py, ... Pphy1.

(B) Analytical Representation of the Projective Geometry.

(3) With the help of the Galois field GF(p"), we can construct a finite projective geometry
of ‘¢’ dimensions in the following manner. Any ordered set of (¢41) elements

(0 21, - - - ) (1.30)
where the z’s belong to GF(p") and are not simultaneously zero, will be called a point. Two
sets (%, &y, . - - %) and (Yg, ¥1 - - - ¥) Tepresent the same point when and only when there exists

an element o070 of GF(p") such that y; = ox; (1 =0, 1, 2,...¢). We may call x4, 2y, ...2,
the co-ordinates of the point (1.30). All the points which satisfy a set of (t—d) independent
linear homogeneous equations

GoTo+anT1+ . .. ey =0 (1.31)

i=1,2,...,t—d.

may be said to form a ‘d’ dimensional subspace or a flat. The set of equations (1.31) may be
said to represent this flat. The geometry, thus defined, is known to satisfy the postulates of
Veblen and Bussey and is represented by PG(¢, p*).
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(4) We shall now take up another analytical representation which is fruitful for further
work. In this case, a point of PG(¢, m = p") is represented by (v) where v is a non-zero
element of GF(m!t1). Two elements v and bv, where b is an element of GF(m), represent the
same point which may be written as (v) or (bv). A d-flat is defined by the set of points

(agvo+awi+ ... awg) (1.40)
where a’s run independently over the elements of GF(m) and are not simultaneously zero and
{v¢)s (¥1), ... (va) do not lie on a (d—1)-flat. Thus (agvy-+a,v;) represents a line passing
through the points (vy) and (v;) and (agro-+avi+azvs), a plane through three non-collinear
points (), (vq) and (vg). It is easy to verify that the geometry defined above satisfy the
postulates of a finite projective geometry.

(5) The following considerations show the correspondence between the two types of repre-
sentations given in paras (3) and (4) above. If x is a primitive element of GF(m!t+1), it satisfies
an irreducible equation of the (¢4-1)th degree.

ottl—(aut4-apqxt=14 ... Fag) =0 (1.50)
in GF(m). The left-hand side expression is known as the minimum function. Since all the
elements of GF(mtt1) are residue classes mod (zt+1—aat— . .. aq), it follows that any element

of GF(m!*1) can be represented either as a power of the primitive element x or a polynomial of
degree less than (t+1). If

b = bt by qaxt—14 ... by (1.51)
then the correspondence (z*) as a point represented by an element of GF(m!+1) and (bg, by, . . .b;)
as a point represented by an ordered set of the elements of GF(m) is unique and connects up the
two types of representations mentioned above.

(C) The Euclidean Space.

(6) The Euclidean geometry of ‘¢’ dimensions, denoted by EG({, m), is derivable from
PG(t, m) by cutting out one ({—1)-flat and all the points lying on it. The points of EG(t, m)
can be represented by ordered sets

(b1, b, . .. by) (1.60)

where the b’s are elements of GF(m). Two sets (b, bg, . . . b;) and (¢q, ¢g, . . . ¢;) represent the
same point when and only when b, =¢; (¢ =1, 2,...%). All points which satisfy a set of
(t—d) consistent and independent linear equations
Gio+aib1+ . .. +agh, =0 (1.61)
i=1,2,...t—d
may be said to form a d-flat.

(7) As in the case of the projective geometry, a similar representation is available in the
case of EG(t, m). A point is represented by (v) where v is an element of GF(m!), each element
representing a unique point. A d-flat is defined by the totality of the points

(agvo+av1+ . .. +aqva) (1.70)
where the a’s run through the elements of GF(m) subject to the restriction Za = 1.
(8) If z is a primitive element of GF(mt!) then the elements can be represented by the
powers of x or their residue classes with respect to a minimum function of the t-th degree. If
¢ = btx"1+bt_1zt'2+ “ee +b1x0 (1.80)
then the correspondence
(@) —> (b1, by, . - - be) (1.81)
brings out the identity of the representations of EG(¢, m) mentioned in paras. (6) and (7) above.

(9) It is easily derivable, from above, that the number of ‘d’ flats in PG{t, m) and EG(t, m)

are ¢(t, d, m) and ¢(¢, d, m)—p(t—1, d, m) respectively where
(711} ... (2®-¥t1-])

¢(x: Y, z) = (zy+1_1) 1) (1.90)

§2. TrE ComMPACT REPRESENTATION OF THE d-FLATS.

(1) In this section it is proposed to enumerate the d-flats in PG(f, m) and EG(f, m) and
consider the possibilities of representing them compactly.
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(A) General Considerations.
(2) The d-flat in PG(t, m), through the points (ab), («b1), ... () is given by

(Zaab) (2.20)
where a’s are the elements of GF(m), not all simultaneously zero. Let us consider the totality
of the flats

(Za,abitt) (2.21)

for0 =0,1,2,...v—1, where v = (m**1—=1)/(m—1). The flat corresponding to § = §; may be
represented by (8;). We have the following results:

(i) The flat (0;) is d-dimensional for all ‘1°, for, if not, there exist elements ¢g, ¢y, . . . €z-y Of
GF(m) such that

2t = gopbotliy | oy jaba-1t0s (2.22)

or 2 = coxb0+. . ey qabe-t
which shows that (2.20) is not d-dimensional contrary to our supposition.

(i1) If 8 is the least value for which (8) is identical with (0) or the initial flat, then 6 may
be called the cycle of the initial flat. In this case (0), (8), (28), . . . (v) are all identical. Hence,
it follows that 0, the cycle of the initial flat is a divisor of v defined above.

(iii) If (z%) is a point on an initial flat with cycle 8, then (2%*%%), where  is any integer,

is also a point on the initial flat, for (x""”‘e) is a point on (k) which is identical with (0).
Hence we get the result that the points on an initial flat of cycle 6 are given by (recording only
powers of x’s) L

Co, 60+0, e Co+7'—1 0

¢y, 10, ... cq+r—10% (2.23)

Cpy Cpt0, .. .c,,+r_-:1 ]

where ¢;—c; 5= 0 mod 6 and v = 76.

(iv) The number of points in (2.23) is evidently a multiple of » which gives the result that a
necessary condition for a cycle 8<<v for a d-flat is that ¢(¢, 0, m), the nwmber of points in a
t-space and $(d, 0, m), the number of points in a d-space are not relatively prime.

(v) If < is the cycle of an initial flat such as (2.23), then we can choose the flat with
the points obtained by subtracting any c; from all the powers of z’s representing the points in
{2.23), as an initial flat from which 8 different flats can be generated.

(B) Lines in PG(t, m).

(3) There are v = (mitl—1)/(m—1) points, b = ¢(t, 1, m) lines with & = m-+1 points on
each line. Through a point and a pair of points there pass ¢(¢—1, 0, m) lines and one line
respectively. :

(4) Since the points on an initial flat of cycle 8 are of the form (2.23) with ¢y= 0, we can
take its equation as

(@o20+a;2°) (2.40)
If (2¢) is a point on it, then («°7%) is also a point and the line can be represented by
(@g2”*Ctasaf*e) (2.41)

which shows that ¢ must be a multiple of 6, the cycle of the initial flat, in which case all the
points are of the form, recording only powers of z,
0,6,20,...(r-1)0 {2.42)

where r = (m+1). So, we get the necessary condition for @ partial cycle 8 is that 8 = v/(m=+1) is
integral. This is also sufficient, for the line (ay +a,2%) where 8 = v/(m-1) has the cycle 6.

(5) Hence we get the following theorems:

(i) If 8 = (mt+1—1)/(m2—1) is not integral, then every line has the cycle v and the totality of
the lines can be generated from v = (mt—1)/(m2~1) initial lines.
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Since the necessary and sufficient condition for a partial cycle to exist is not satisfied,
every line has the cycle ». Since the total number of lines is (mf+1— 1) (mf— 1)/(m2—1)(m—1)
the number of initial lines which generate the totality is (mf—1)/(m2~—1) which is necessarily
integral if € is not integral. Any pair of points occur in one and only one line.

(ii) If 6 = (m*+1=1)/(m2~1) is integral, the totality of the lines are generated from n =
m(mt=1—1)/(m2—1) initial lines of cycle v and the line (ag+a,2? ) of eycle 6.

As shown above only lines generated from (ag+a,2%) have the cycle 6 and others v. There-
fore, the other lines form into 5 = (b—0)/v = m(mt~1—1)/(m2—1) groups which is necessarily
integral if (mf+1—1){(m2—1) is integral. The pair of points (2%) and (xcf) occur once in the
lines generated from (ay4-a,2%) when and only when ¢; ;—¢; = 0 (mod #). Hence it follows
that the pair (2%) and (2%) occur in one and only one of the lines generated from # initial lines
of cycle » when and only when ¢;—¢; 5 0 (mod 8).

(C) Planes in PG(t, m).

(6) There are v = (m!+1—1)/(m—1) points and b= ¢(, 2, m) planes with & = (m8—1)/
(m—1) points on each plane. Through every point there pass r = ¢(t—1, 1, m) planes and
through a pair of points, A = ¢(t—2, 0, m) planes.

(7) Let us consider a plane with cycle §<<v. If the point (229) lies on the line joining (x0)
and (xo) then the points (%) for all ¢ lie on it; hence the integer s = v/0 must divide (m+1).
But the necessary condition demands that (m3—1)/(m—1) is divisible by s which is not possible
since (m+1) and (m8—1)/(m—1) do not have a common factor. Therefore (29), (x?) and (220)
are not collinear, and so constitute a plane. If (2¢) is any point on this, then (20+¢), (29%°) and
(#%0*°) are also points on this which shows that the planes (aga®+a,2%+a,2%) and
(agzote4-aya?t°asa?0te) areidentical. This leads to the result that ¢ is a multiple of 8, hence
all points are of the form (2®) where 8 = v/k. Hence we get the necessary condition for the
existence of a partial cycle 8 is that § = (mi+t1—1)/(m8—1) is integral. This is also sufficient,
for the plane (ag2® +ay 2 +ao2??) has the cycle 6.

(8) Hence we get the following theorems:

(i) If 0 = (m*+1—1)/(mB—1) is not integral, then all the planes have the cycle v and the totality
of the planes can be generated from v = (m!—1)(m!~1—1)/(m3—1)(m2—1) nitial planes

The total number of planes is ¢(f, 2, m) which form into bjv = (mf—1)(mt-1—1)/
(mB—1)(m2—1) groups which is necessarily integral if 0 is not integral. Any given pair of
points occur in A = (m*-1—1)/(m—1) planes in the totality of the generated planes.

(ii) If 6 = (m*+1—=1)/(m3—1) is an integer, then the totality of the planes can be generated
Jrom q = (m—1)[(m*—1)(mt-1—1)/(m2—1)(m—1)—1]}/(m3—1) enitial planes of cycle v and the
plane (ag+a12? +ag2%0) of cycle 6.

The proof is similar to that given in theorem (ii) of para. (5).

(9) As a corollary to this theorem we get since 7 is necessarily integral

(mt=1)(mt-1—1) ( m3—l) )
AT A LAt T f = .
A —T)(me—1) = 1{mod — )& {(t+1) = 0 (mod 3)

(10) The pair of points (x%) and (2%) occur once in the planes generated from
(2o +a,28 +az?) if and ouly if ¢;—¢; = 0 (mod ). Hence the pair (2%), (%) oceurs in X or
A—1 times in the planes generated from 7 initial planes of theorem (ii) according as ¢;—c¢; 5&
or = 0 (mod ).

D) 3-flats in PG(t, m).

(11) There are v = (m*+1—1)/(m—1) points, b = (¢, 3, m), 3-flats, with (m4—1)/(m—1)

points on each. Through a point and a pair of points there pass r = ¢(t—1, 2, m) and
= ¢(t—2, 1, m), 3-flats respectively.

(12) Let us consider the 3-flats with cycle §<v. If (xze) is collinear with (z°) and (xo),
then (#®) for all 4 lies on the line formed by (20) and («?). Also, if () is a point on it, because
of the relation

gt e aaft e = a2 2.12,0)
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obtained by multiplying aga®+a;z? = 2¢ by a¢, it follows that (#%) and hence (z) for all ¢
are points on the line. If (2*) is any point on the initial 3-flat with cycle 8, then (2¢15) for all
j are points on it, for multiplying

ag204a,20 = aic (2.12,1)
by ab

we get a0t g 2l thy = ab+ic (2.12,2)
Hence we get that the 3-flats (agz04-a,x®+ase®) and (aga®+c4ay20+c4azat+e) are identical
which leads to the result that ¢ is a multiple § and 6 = v/(m+1) is an integer. Thus we get
that a 3-space with cycle 8 consists of the following (m2+1) lines defined by the points on
them as (recording only powers of z)

0, 6, ...mb

¢, a+6, ...ci+ml (2.12,3)

Cp2,y cm?+0, e Cpa +m0
From the representation of lines in PG(t, m) we find that the lines of the form (2.12,3) are 6 in
number generated from the initial line (recording only powers of x)

0,6,...m0 (2.12,4)

All the 3-flats of cycle 8 are built up by taking any two lines from the 8 lines generated from
(2.12,4).

(13) Let us consider the initial flats of cycle 8,<<v where §; is such that the points (x?),
(291), (2261) are not collinear. Evidently (2*1) cannot lie on the plane formed by (a9), (2f1)
and (2201), for in this case (m3—1)/(m—1) and (m4—1)/(m—1) have a common factor which is
not possible. Hence the 3-flat with cycle 6, is determined by the four points («9), (af1), (2261)
and (2*1) and only points of the form (z%) for any ¢ lie on it. Hence it follows that
0, = v(m—1)/(m4—1) = (m!t1—1)/(me—1) is integral and also 6/6; = (m2+1) which is an
integer. These 3-flats are also built out of the lines (2.12,3).

(14) Hence we get the following theorems:

(i) If 8 = (mt+1—1)/(m2—1) is not integral, the totality of the 3-spaces can be generated from
n = ¢(t, 3, m)/d(t, 0, m) initial 3-spaces of cycle v.

Any pair of points occur in A of the total 3-spaces.

(i) If 0 = (mi+1—1)/(m2—1) is integral and 8 = (mi+i—1)/(m4—1) is not integral, the
totality of the 3-spaces can be generated from y = (mi=1—1)/(mt—1) initial 3-spaces of cycle
0 and v = (b—0y)/v initial 3-spaces of cycle v.

The point pair (2%) and («”) appear (A—1) times and once in the totality of 3-spaces of
cycles v and @ respectively when and only when ¢;~—c¢; % 0 (mod 8) and A—(mf~1—1)/(mE—1)
and (mt-1—1)/(m2—1) times when ¢;—¢; = 0 (mod 8).

(iil) If 8y = (m!*+1—~1)/(m*—1) us integral in which case = (m!*+*1—1)/(m2—1) is necessarily
integral, the totality of the 3-spaces can be generated from the same mumber of initial 3-spaces of
cycle v as in theorem (ii), and y = m2(mt-8—1)/(ms—1) initial 3-spaces of cycle 6 and the initial
3-spaces (aoxo +a1x91 +a2x201 +a3x391) of cycle 6.

The point pair (2%), (2%) occur in A—1, 1, 0, 3-spaces or A—1, 0, 1, 3-spaces of cycles v,
0 and 6, respectively according as ¢;—c; % 0 (mod ;) or is = 0 (mod 6;) and 0 (mod ).
They occur in A—(m!-1—1)/(m2—1), (mt~1—1)/(m2—1)—1 and 1, 3-spaces of cycles v, § and 6,
respectively when ¢;—c¢; = 0 (mod 6).

(E) d-spaces in PG(t, m).

{15) We can now generalise the theorems mentioned to the case of d-flats in PG(t, m).
There are v = (mt+1—1)/(m—1) points, and b = ¢(t, d, m), d-flats with k = (mé+1—1)/(m—1)
points on each d-flat. Through a point and a pair of points there pass r = ¢(t—1, d—1, m)
and A = ¢(t—2, d—2, m) d-flats respectively.

{16) We have the following theorems:

6
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(i) If (mtt1—-1)/(m—1) and (m+t1—1)/(m—1) do not have a common factor of the form
(ms+r—1)/(m—1), then all the d-spaces have the cycle v and can be generated from o = ¢(¢, d, m)/
&(¢, 0, m) initial d-flats.

As a consequence of this we get that ({—1)-spaces in a f-space are of cycle v for ¢(t, 0, m)
and ¢(t—1, 0, m) do not have a common factor of the form ¢(s, 0, m).

(1) If r1, re, , ... rp are integers such that

@ O<ri<re<...... Tyt

() (ma+1—1))(m"" =1) = s, integral for all ;
(¢) (@+1)/(r:+1) =t ”

(@) (i +D/(r41) =1, »

(@) m+1=1)f(m =1) =0,

then there are
Yi = (n;i—n;41)/0; where n; = g4.0./5.c..
initial spaces of cycle 6; (t = 1, 2, ... p) and
7 = (b—my)fv
initial spaces of cycle v from which the totality of the d-spaces can be generated.
The proof can be built up on lines suggested in particular cases. The pair of points (x%)

and (2%) occur in (A—2;) and A,, d-spaces of cycles v and less than v respectively when C;—Cj =
0 (mod 6,) and (A —A;) and Az , d-spaces of cycle » and less than » when (¢;—¢;) £ 0 (mod 6,).
The values of A; and A, are respectively

Blctl—‘l/sl—lcl‘l-l and 910:1-2/s1—20t1—2~

(F) d-spaces in EG(t, m).

(17) The m! points in EG(t, m) are represented by (0), (z9), . . . (x”‘t‘2) where x is a primitive
element of GF(m*). If b is the total number of d-flats in EG(f,m), then there are
b—¢(t—1, d—1, m) d-flats passing through (0). Any flat not passing through the point (0) has
the cycle v = (mt—1), for, if not, it follows that (m!—1) and m¢ have a common factor,
which is impossible.

(18) Let us consider a d-flat passing through (0),

(ag0+a12"2 + . . . aga’®) (2.18,0)
where a,, as, .. .a; are elements of GF(m) and the restriction (ag+a;+ ... +4a; = 1) need
not be imposed for the coefficient of qg is 0. Since

0,20, 20 ... am-20 (2.18,1)

where § = (m*—1)/(m—1) are the elements of GF(m), it follows that if (2°) is a point on (2.18,0)
then (2°*%) for any i lies on it. From this we, at once, get the lines through (0) as

0), (), («*9)... (2.18,2)
1=0,1,...(6-1)
and any d-space is built out of d suitably chosen lines from (2.18,2). All these d-flats, passing
through (0), have their cycle as 6 or some integer less than 8.

(19) It can be easily shown that a pair of points («*) and (2%) can occur together only
in flats through (0) when ¢;—c; = 0 (mod #). Hence any such point pair occur together
A=¢(t—2, d—2, m) and O times in the d-flats passing through the (0) and not passing
through (0) respectively. Also the triplet (0), (2%), (%) where ¢;—¢; 5 0 (mod @) lie on
A = $(t—3, d—3, m) d-flats. Hence we get, that the pair of points (%) and (%) occur
together in Ay and A—Xy, d-flats passing through the origin and not passing through the origin
respectively if ¢;—c; = 0 (mod 6).

6B
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(20) Not all d-flats through (0) have the cycle 8. If 6, <8 is a cycle then 8 = r,0,, in
which case the d-flats of cycle 8, are built out of the r;-dimensional spaces defined by

0, (&), (&%) ...

it6 i+8,+0
(x 1)’ (x 1 ) ‘.. (2‘20’0)

(47170 01), (277271 01%0)
t=0,1,....(6,—1).
From this it follows that (m4—1) is divisible by (m' —1) and the number of d-flats that can

be built out of (2.20,0) is ¢,%,/s,%, where §; = (mé— l)/(m —1) and t;= dfr;. Out of these
we have to search for flats of cycle ;<< 6, and so on.
{21) Hence we get the following theorems:

(i) Al the d-flats by = (t, d, m)—24(t—1, d—1, m) in number not passing through (0) have
v = (mf—1) as their cycle and hence can be generated from n = byfv initial d-flats. The point
pair (&), («%7) occur in $(t—2, d—2, m)—¢(t—3, d—3, m) or 0 of these flats according as c;—c; %0

b
or = 0{ mod = !
m—1
(ii) Any d-flat through (0) is built out of the 6 lines

0, (&), (&%) ..., (2.21,0)
1=0, 1, ... (§=1)
and if (m?—1) and (mt—1) do not have any common factor of the form (m"—1) other than
(m—1), then all the d-flats through (0) have the cycle 6 and hence can be generated from y =
$(t—1, d—1, m)/6 initial d-flats. The pair of points (2%) and (2°7) occur in $(t—2, m—2, m)
or ¢(t—3, d—3, m) of these flats according as c;—¢; = 0 or =£ 0 (mod 6).

(iii) In geneml if b = popripg’e . . . (where po = 1 and p’s are primes such that p;<<piy1)
isthe HCO.F. of d and ¢, then the dﬂats through the (0) will have cycles of the form 8;; = (mt—1)/

(m” 1) where r;s = 2 ... Py =0,1,...;58=0,1,...1%). The number of initial
7 P1"1p »° g
JSlats from which all flats of cycle GJS can be genemted is given by
(js =741, s+1)/0js (2.2L,1)

where ny; s the number of d-flats that can be generated from 0;s-flats of rjs-dimensions having
only (0) in common which comes out as

Rjs = O_jscd/rjs/qjscd/rjg (2.21,2)
where  gjs = (md—1)j{m—1).

The number of d-flats of cycle ;; through a given point pair can be easily ascertained in
particular cases.

§3. GENERALISATION OF THE DIFFERENCE THEOREMS OF BOSE.

(1) In this section, certain theorems known as difference theorems of Bose (1939) have
been generalised to obtain a further simplification in the presentation of the geometry and to
derive the theorems of the next article.

(A) The First Theorem of Differences.

(2) Let m be a modul or an Abelian group satisfyving the additive postulates of a field
containing the v elements

z(0), 20, ... g-D (3.20)

To these we add an element o which remains invariant for any addition of the elements of m

to it. Thus
0+ = 2@ for all ¢ 3.21)
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The totality of the (v-1) elements of m and c© may be denoted by M. Let B;, By, ... B,

represent sets of ky, kg, . . . k; distinct elements of M respectively. By the successive addition
of the elements of m to the set B; containing k; elements, m sets of k; elements are formed.
By repeating this process on By, Bp,...B) we get mh sets in which there are m sets of

ky, kg, .. . ks eloments. The sets By, By, . . . By from which the totality of the sets is generated
are called the initial sets. We get the following results:

(i) If o0 occurs 7, times in all the initial sets, then it occurs mr,, times in the totality
og the generated sets and vice versa, for co remains invariant for the addition of the elements
of m.

(ii) Any element of m occurs (ky+kg+ ... ky—r,) times in the totality of the sets, for
any element of m in any initial set generates all the elements of m by successive addition of
the elements of m.

(iii) If oo and z® occur together in A, of the totality of mh sets then the total number
of elements of m that occur in the initial sets in which o ocours is A, for if 0o and « any
element of m occur in any initial set then the set obtained by the addition of § = 2 —x())
contains co and z%) .

(iv) If 2 and &9 (¢ 7 j) occur A; times in all the sets, then it is possible to find A; ordered
pairs (z¢), 4 in the initial sets such that for each pair

at?) —yli") = g — ) (3.22)

the above relation holds and conversely, for if a pair ) and ¥ occur in a set obtained from
the addition of 8 to an initial set then the pair of elements ) and «“") from which ) and z)
are obtained are such that -

' 240 = z0) and 2046 = 20) (8.23)

and hence the result. Conversely, if a pair of elements 7 and 2/ are found in any initial
set satisfying the condition (3.22), then % and 2) appear in the set obtained by the addition
of 8 given by any equation in (3.23).
(3) Hence we get the following theorem:
If in the totality of the sels gemerated from the initial sets By, By, ... By containing
ky, ko, . . . ky, distinct elements of M,
(i) oo and 2% occur in Ay ; sets,
(i1) ) and W (¢ 3£ §) occur in Ay sets,
(i) o0 occurs mr,, times;
then in the totality of the sets
(@) Apo = A1 =22 = ce Ao m—1 = Ag .
(b) Every element of m is repeated Dk—r,, times;
and in the initial sets the following hold good :

(o) o0 occurs 7y, times.

(B) The number of elements of m that occur in the tnitial sets in which 0o occurs is Ay, .

(y) From an initial set B; with k; elements, we can form k;(k;—1) ordered pairs of elements
(x, y) whick supply k;(k;—1) values of differences (x—y). Under the conditions of
this theorem the Zk(k;—1) differences arising from all the initial sets contain the
elements (x¥) —x'M), A;j times for all © and j such that 7 % j.

Conversely, if (&), (B) and (y) hold with the initial sets then (i), (ii), (iii) and (a) and (b) are true.
(B) The Second Theorem of Differences.

{4) Let us consider the modul of residue classes (mod m) where m is an integer, so that the
elements may be represented by 0,1, 2. . ., (m—1). If 8 is the least value for which an initial
set is reproduced, then the initial set is said to have a cycle §. Since the addition of m is
equivalent to addition of 0 in which casehe set remains the same, it follows that m/60 = p
is an integer. The initial set with k elements is then composed of the elements

€ ei+6, con &t (p—]')e (3'40)
1=1,2, ... n
such that e;—e; 52 0 (mod 8). Hence k = np where = is integral.
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As a necessary condition for an initial set with % elements other than co to have a cycle
less than m is that the H.C.F. of m and k is not unity. The following results hold for such
sets:

(i) In the 8 sets generated all pairs of elements of m with differences as multiples of 6
occur n times each,

(ii) Given the set of elements (3.40) we can by a suitable adjustment write it as

g 9:+0, ... gi+(0—1)0 (3.41)
1=1,2, ... »n
such that g;<<8 for all 7 and (g,—g,) = 0 (mod 8). The set can be compactly represented in
this case by
(917 gz, - .. gn)o (3.42)

If a pair of elements (z, y), such that x—y 5 0 (mod 8), occur in the totality of the sets generated
from (3.41), then there exists a pair of elements g,+ 9,0 and g;+p20 in an initial set together
with an element g,<< @ such that

grtp10+9: =@, gt pob+g: =y (3.43)
from which we get

r—y = ¢,—gs (mod ) (3.44)
(ui) Hence we get the result that if a pair of elements (x, y, x—y 5= 0 mod #) appear in

A, of the generated sets it is possible to find a pair of ¢’s in (3.42) such that the condition
(3.44) holds.

(5) Hence we get the following theorem:
If in the totality of the sets generated from the initial sets By, By ... By with ky, ke ... ks
elements and having a cycle 8,
(i) oo occurs Or,, times,
(ii) oo and ¢ occur in Ay, sets,
(iii) ¢ and j such that i—j = O (mod 8) occur in A sets,
then
1) A0 =201 =2 = . . A n-1) = Ay L.
(IT) k; or k;—1 in the case in which 00 occurs in the set B; is divisible by p = m/0 and the
quotient may be denoted by q;,

and in the totality of the sets

(@) every element of m s repeuted Xyq; times,

(b) a pair of elements i and j such that t—j = 0 (mod 8) appear in 2g; sets,
and in the initral sets

(o) 00 occurs ry, times,

(B) the initial blocks can be compactly represented by reducing the elements to modulo 8

and omitting the repeated elements and among the differences arising from the reduced
sets A;; differences are congruent to (1—j) (mod 8},

(y) Ao = 2'q; where X' denotes summation over the initial sets in which o0 occurs.
Conversely if () and (B) hold in the initial sets, then (i), (ii), (iil) and (X), (II) and (a) and (b) are
true.

(6) By combining the theorems (A) and (B) and also introducing sets with different cycles
we can build up a comprehensive theorem. Only the A’s which give the number of times a

pair of elements occur in the totality are to be built up by the addition of A’s from the various
groups.

§4. THEOREMS OF THE NUMBER THEORY.

(1) With the help of theorems of §3 we can translate the theorems of §2 giving the compact
representation of the finite geometries into theorems of the form mentioned in §0. We have
already seen that the points on any flat can, as well, be represented by powers of z, the primitive
element of GF(m!*+1) or GF(m!), reduced modulo » and the flat (¢} obtained by multiplication
of the equation to the initial flat by a° can be represented by the powers of «’s obtained by
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adding ¢ to the corresponding powers in the initial flat and reduction to modulo v. The point (0)
in the Euclidean geometry will then correspond to co mentioned in §3.

(A) General Theorems.

(2) Corresponding to the theorem of the form, that in the totality of the flats generated

from 7 initial flats of cycle », the number of points in the geometry, the points (z%) and (z%)
occur in A; or A flats according as ¢;—c¢; £ 0 or = 0 (mod ) we get the following theorem.
Given an integer m = p” (p being a prime) it is possible to find 7 sets of & integers each

di1, dyg, ... dur
ds1, dag, ... do

(4.20)

d"?l, dﬂ2; ree d’lk

such that the differences dy—dis (r, s =1,2,...k, r5£s; i =1,2,...7) reduced modulo »
{which we may call the differences arising from the difference set 4.20) contain all integers
less than v and not divisible by 8, A, times and those divisible by 8, A; times. The 7 sets (4.20)
are called initial sets of cycle » which, in this theorem, is of the form (mf+!—1)/(m—1) or
(m*—1) and 6 is of the form (m!+1—1)/(m2—1) or (m!—1)/(m—1) and % is of the form (mé+1—1)/
(m—1) or m?. The method of obtaining the difference set (4.20) is to replace the points on
the 7 initial flats of any finite geometry by the powers of «’s, reduced modulo ». It is easily
seen that the set (4.20) can be replaced by any set obtained by the addition of an integer b
and reduction to mod v without destroying its property given above. We may say that two
sets are identical if one can be derived from the other by the addition of an integer and reduction
to (mod ). If (agr®+a2®1+aax®24 . . ..) is the equation of a flat with a given cycle, then
(a0 +aga®raga’e4 . .. )pq, where p is the prime of the above theorems, represents a flat
of the same dimensions and with same cycle for

y q q e
(@prfo4arati4. .. )P = qga®oP faa@t’ 4. ...

This leads us to the result that the difference set (4.20) is identical with the set obtained by
the transformation

d,p"+b = d',; (mod v).
(3) Corresponding to the theorem of the form that in the totality of the d-flats containing
k elements each generated from y initial flats of eycle 8, the pair of points (%) and (%) occur
in yu; or us flats according as ¢;—¢; = 0 or = 0 (mod 8) we get the following theorem:
Given an integer m = p" (p being a prime) it is possible to find y sets of u; integers
911, J12 -« -+ G
921, 922 -« - G (4.30)
9y1> Jy2 - - Gy

such that the differences arising from them (mod 6) contain every integer less than 8, u,
times.

(B) Some Special Theorems and Examples.

(4) Considering the lines in PG(t, m) we get the following theorems when m is an integer
of the form p” (p being a prime).

(i) If 0 = (m'*1—=1)/(m2—1) is not integral, it is possible lo find y = (m*—1)/(m2—1) sets
dojy dyjy .. dyj (4.40)
i=12, ...y
such that the differences arising (mod v) contain the integers less than v once and once only.

Example (i). Consider PG(4, 2) with 31 points and 155 lines. We choose the line
(a9+a32). In the choice of the next line we need only see that the powers of the base points
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do not have a difference congruent (mod 31) to any difference arising out of the powers of the
points in the first line. Similarly a third line is chosen, etc. as the initial lines. In this case

(@o+ayx), (ag+a,2?)

(ap+a12%), (ag+a127)

(ap+a,28)
are suitably chosen lines with the points
[0, (&), (@'8)] [(20), (%), (x9)]
[(z9), (%), (@10)] [(a?), (27), (x?2)]
[(9), («8), (x20)]

from which we immediately write down the difference set as

0,1,18)  (0,2,5)

(0, 4, 10) (0, 7, 22)

(0, 8, 20)
with the property that the differences arising from them (mod 31) contain all integers less than
31, 7 times each. The 155 lines of the geometry can also be compactly represented by these
5 initial lines from which the totality can be generated.
(i) If 0 = (m*+1—1)/(m2—1) is integral, it is possible to find 7 = m(mt=1—1)/(m2—1) sets
doj, dlf’ PRI dm‘
Jj=1,2, ...y

such that the differences arising from them [mod (m*+1—1)/(m—1)] contain all integers less than v
and not divisible by 6 once and those divisible by 8, zero times.

The lines of the geometry PG(f, m) can be generated from the above difference set with
cycle v and the set (0, 8, 26, . . . m8) with cycle 6.
Ezample (ii). Consider PG(3,2) with 15 points and 35 lines. The geometry can be
represented by the initial lines _
(@o+a178) (ap+ayat?)
of cycle 15 and the line (¢g+a,2°) of cycle 5. By taking powers of ’s we get the difference
sets
: 0,6,8), . (0,11, 14)
of cycle 15 and (0, 5, 10) of cycle 5.
(5) Consider the lines in EG({, m), we get the following theorem for a given integer m = p
(p being a prime).
It is possible to find 7 = (mt—1—1)/(m—1) sels of integers
diy, dig, ... diyy
1=1,2, ... 9

such that the differences arising from them (mod v = (mt—1)) contain all integers less than v and
not divisible by § = v/(m—1) once and those divisible by @ zero times.
The geometry is represented by vy lines developed from the above difference set and the
8 lines generated from L
©,0,0, ... m—26

with cycle #. The choice of lines is as before.
Example. Consider EG(3, 3) with 117 lines and 27 points choosing the initial lines
(mp+a7) i=1,2,3,7
of cycle 26, we get the difference set
' 0, 1, 22); (0, 2, 8); (0, 3, 14); (0,7,17)

where the differences arising from them (mod 26) contain all integers except 13 once. The
lines of the geometry are generated from the four sets above of cycle 26 and the set (o, 0, 13)

of cycle 13,
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(6) We give here two general theorems for m = p" (p being prime):
(i) Considering d-flats in PG(t, m) we get
(v) If v = (m+1—1)/(m—1) and k = (m?*+'—1)/(m—1) do not have a common factor of
the form (ms+1—1)/(m—1), then it is possible to find y = $(t, d, m)/p(t, 0, m) sets
of integers
di1> diz""dik; i=1, 2,...y
such that the differences arising from them (mod v) contain all integers less than v,
A =¢(t—2, d—2, m) times.
(b) If ry is the integer for which (n ' =1)/(m—1) divides both (mi+1—1)[(m—1) and
(mA+1—-1)/(m~1), it is possible to find
n= [¢(t! d, m) _Olctl/slctl]/v
sels of integers such that the differences arising from them (mod v) contain all
integers less than v and not divisible by 6y, A—Ay times and those divisible by
81, A=A, times where

6y = (mH1=1))(m'1* ! =1); 51 = (mP*1=1)/(m—1) ; & = [@+1)/(r:+1)
A = 9:%,-1[s; =101, -1
Ap = 0,01, ~2[s, ~20t; -2
which are the constants discussed in §2, para. (16).
(ii) Considering the d-flats in EG(t,m) we get that it is possible to find
y= [¢(t: d, m)_2¢(t_l) d—1, m)]/(mt—l)
sets of m? integers such that the differences arising from them mod v = (m—1) contain all integers less
than v and not divisible by § = (mt—1)/(m—1), p(t—2, d—2, m)—¢(t—3, d—3, m) tvmes and rest
zero times.
’ (C) Splitting into Orthogonal Groups.
(7) Considering the (t—1)-flats in EG(t, m) we get the set of k = m* integers
di, dg,...d; (4.70)
such that the differences arising from them mod » = (m!—1) contain all integers less than v
and not divisible by 6, m!~2 times each and those divisible by 6, zero times. A method of
constructing such difference sets was discussed in (Raoc: 1944a).
If we represent the sets obtained by the addition of an integer ¢ to (4.70) and reduction to
mod v, by (c), we get the result that the elements common to (c;) and (cz) is mt-2 or 0 according

as c;—cg % 0 or = 0 (mod #). Forif zis an element common to (¢;) and (cg) then there exist
integers ¥ and y, in (4.70) such that

yita=x=ytcp 4.71)
or
Y1—=Y2 = C2—C (4.72)

and conversely, there exists a common element to (c;) and (cg) if there exist a pair of numbers
y1 and y, such that (4.72) is satisfied. Hence the result stated above.
(8) We consider the 8 groups of sets

(@), ¢+90),...([1+m—20), (r) (4.80)
1=0,1,2,...(6-1)

whex_'g__(_r,-_) is the set of integers less than v other than those contained in the sets (), (t+8), ...
(t+m—20). They possess the following properties:—

(a) No two sets in a group can have an integer in common by the above result.

(b) The groups (i476) and (j+s8) have m/~2 integers in common if ¢ 7 j.

(¢} (1+s0) and (r;) (¢ 7 j) have m!~2 integers in common.

(d) (r;) and (r5), (¢ 7 j) also have m!~2 integers in common.
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The @ groups have, then, the property that any set of a group is built out of mf-2 integers
chosen from each set of any other group. Such groups may be called orthogonal groups.
Thus we get the result that (mf—1)/(m—1) orthogonal groups consisting of m sets of m’~1 objects
each can be formed with m® objects when m is prime or a prime power. This result is
very important in splitting of degrees of freedom in the design of experiments in statistics and
also in reduction of quadratic forms. A fuller treatment of these topics is reserved for a
subsequent communication. :

§6. FurTtHER PROBLEMS.

(1) By the use of the theorems developed in this paper some cyclic solutions have been
obtained for combinatorial problems involved in the classical example of Kirkman’s school
girl problem and in the construction of incomplete block designs (Rao: 1944b).

(2) It has been shown that the existence of a difference set need not, always, imply the
existence of a finite geometry.

{3) The problem as to the existence of these difference sets when m is not a prime or a
prime power is under consideration.

(4) New methods for the quick derivation of the difference sets have been investigated.

(6) Some of the results already arrived at will form the topic of another communication.
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ON FOSSIL FISH-TEETH FROM THE NICOBAR ISLANDS.!
By K. KrisuNaN NAIR, M.Sc., Gallery Assistant, Zoological Survey of India.
(Communicated by Rai Bahadur S. L Hora, D.Sc., FRS.E., F.N.I)
(Received January 10, 1945.)

The fossil fish-teeth described below were sent by the Geological Survey of India to
Dr. 8. L. Hora for identification. After a preliminary study, he handed over the material to
me for a detailed report. I am very grateful to him for affording me an opportunity to study
these interesting fossils.

The history of these specimens is very meagre. They were collected along with specimens
of celts and rocks on the Trincat Island, Nicobars, and presented to the Geological Survey
of India in March 1941 by Mr. R. H. Scott, K.L.H., Assistant Commissioner, Nicobars, the
Andamans. No further information regarding the localities, ete. from which the material
was collected is available.

Class Elasmobranchii.
Genus Carcharodon M. and H.

This is an imperfect tooth of a shark. The base towards the sides is broken off and
the enamel coating near the tip of the crown on its outer surface is also chipped off in certain

1 Published with permission of the Director, Zoological Survey of India. This paper had been accepted
in 1942 for publication in the Rec. Geo. Surv. Ind., but due to the cessation of publication of the journal, it
could not be published. My grateful thanks are due to the Director, Geological Survey of India, for
%ermitlting me to publish this article in the Proc. National Inst. Sci. India.—XK. K. Nair, Supdt. of Fisheries,

engal, :
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areas. The tooth had presumably been used as an implement of some kind and as a result the
lateral serrations which are of importance for specific identification have disappeared while the
outer surface is polished to a considerable degree. However, enough traces of serration are
left in some places (PL. 1V, fig. 3) for the identification of the tooth.

The crown of the tooth is fairly large and triangular. Its outer surface is highly convex
while the inner is more or less flat, with the apex of the crown gently bending inwards. The
base of the tooth is concave. Both the outer and inner surfaces of the crown are ornamented
with vertical striae which are more in number on the outer convex surface than on the inner
flat surface. The lateral edges and the tip are thin and sharp, but this may be due to the
grinding which the tooth had been subjected to while in use as an implement. The lateral edges
are definitely serrated, though in the specimen, they are not easily made out. The greatest
thickness of the tooth, 18 mm., is in the centre of the crown towards the base. The whole
tooth is grey coloured. v

This tooth is apparently of a shark of the genus Carcharodon Miiller and Henle, species of
which, according to Zittel possess large teeth and are abundantly represented in the Tertiary
and later formations of nearly all parts of the world, and also on the beds of existing oceans.
They are mostly Tertiary but one species is reported from the Upper Cretaceous and one recent
species is also known.

With the kind permission of Mr. V. P. Sondhi, Assistant Director, Geological Survey of
India, I was able to study and compare some of the type specimens of Carcharodon fossil teeth
in the collections of the Geological Survey of India with the above specimen. This tooth
exhibits striking resemblance to some teeth of Carcharodon megalodon Agassiz. The lateral
edges are bent since the tooth itself is slightly arched inwards, as in the case of the type-specimen,
No. 7780 of the Geological Survey of India, which was identified and described as a lateral
tooth of C. megalodon Ag. by Noetling. Presumably the unequal lateral sides might have
influenced the author to assign to it a lateral position. Noetling was not sure of the horizon
from which his material came, but Stuart (1910) in a later article says that the specimen was
collected by Noetling from the Pegu shales at Padaukpin. The age of the Pegu shales is believed
to be Middle Tertiary. The sides of the fossil tooth described above are symmetrical, and its
general shape is exactly like that of an imperfect tooth described and identified by Martin as of
Carcharodon. megalodon Ag. from the Tertiary of Europe. In the absence of the marginal
serrations referred to above it is not possible to definitely assign the tooth to any species of
Carcharodon.

Genus Oxyrhina Agassiz (Pl IV, figs. 4-5.)

The crown and the base of this tooth are fully exposed. The inner surface of the crown
is convex while the outer surface is flattened. The convex surface, just above the base, is
slightly constricted in the middle region. The tip of the crown is slightly hooked laterally
and as a result the sharp lateral edges of the tooth are unequal. The convex surface bears a
number of vertical striae more or less confined to the middle region. The enamel of the crown
descends lower at the sides than at the centre so that the boundary line is in the shape of an
obtuse angle. Lateral denticles are absent in this specimen. The whole crown is highly
polished, of an ivory white colour resembling somewhat the claw of a tiger.

This tooth does not possess any crenulations or longitudinal ridges on the crown near the
base, as in some of the type-specimens of Ozyrhing triangularis Egerton or O. (Meristodon) sp.,
preserved in the collections of the Geological Survey of India, But its general shape, absence
of lateral denticles and serrations along the lateral edges would justify its reference to the
genus Oxyrhina Agassiz, species of which are distributed from the Cretaceous to the recent times.

Class Teleostei.
Genus Diodon Linn (Pl. 1V, figs. 6, 7 and 8).

The three available pieces, a, b, and ¢ are the inner dental plates of a species of the genus
Diodon Linn. These plates are situated immediately behind the modified jaws, both the upper
and the lower. The pieces (a) and (b) appear to belong to the same plate (Pl. IV, figs. 7 and
8), while piece (¢) (PL IV, fig. 6) belongs to a different species.

The dental plates are formed by more or less oblique piles of lamellae with crenulated
edges closely pressed together. ‘The lamellae are unequal in size; the biggest lamellae lie near
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the middle and the smallest are at the apex. These lamellae are divided into symmetrical
halves by a vertical line. On the exposed face, there is a sort of rough parallelogram, with its
longest axis transversely placed, slightly raised from the rest of the face. The parallelogram
in its turn shows a gradual concavity in the centre. There are about twenty-seven closely
packed lamellae in this plate (Pl. IV, figs. 7 and 8).

This dental plate differs from that of Diodon scillae Agassiz (Woodward, pp. 572-573) in
not possessing a constricted waist, while it differs from D. foleyi from Ramri Island, off the
Arakan Coast (Liydekker, 1880, pp. 59, 60), in not having a pronounced concavity on the exposed
face. In D. ventus (Leidy, pp. 255-256) the number of lamellae is very small, about ten. The
apex of the dental plate of D. sigma (Martin, pp. 726-727; Rothpletz and Simonelli, Pl. xxxvi,
figs. 1, 1a) is rather truncate and not slightly tapering as in the present specimen; further there
are only about eighteen lamellae in it. The dental plate of D. sinhaleyus (Deraniyagala,
pp. 365-366) also does not agree fully with the tooth in question, for the apex is more or less
ovate and there is a much smaller number of lamellae in it. Out of the two common recent
species, only one, Diodon histriz Linn., possesses an inner dental plate. This plate, while it is
similar in shape to the fossil plate in question, has a smaller number of lamellae. Hence this
plate has to be left as belonging to species of the genus Diodon which according to Zittel occurs
in the Eocene, Oligocene and Miccene.

The specimen ¢ (Pl. 1V, fig. 6) is one-half of the inner dental plate of a species of Diodon.
It differs from the two halves described above in having a sort of constricted walst and resembles
closely the inner dental plate of Diodon scillae Ag., as figured by Woodward in his ¢ Catalogue of
Fossil Fishes in the British Museum’. Diodon scillae, according to Woodward, has been
reported from the Miocene of Italy, Sicily and Malta.
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ExpravatioNn oF Prate 1V,

Fie. 1.—Outer surface of an imperfect tooth of Carcharodon Miiller and Henle.
Fic. 2.—Inner surface of the same.

Fie. 3.—S8ide view of the same.

Fic. 4.—Inner surface of a tooth of Oxyrhing Agassiz.

F1c. 5.—OQuter surface of the same.

Fi16. 6.—Front view of one-half of the inner dental plate of Diodon Linn.

Fig. 7.—Back view of a dental plate of Diodon Linn.

Fi1e. 8.—Front view of the same.




