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On the Statistical Properties of the Conditional Equilibrium
Distribution under Steady Flux of Mutations*
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The statistical properties of a conditional equilibrium distribution of
mutant frequency resulting from the balance between the continued pro-
duction of new mutants over many generations and their loss from the
population because of random drift are discussed. The revised estimates
of the average number of heterozygous sites in mammals are found to be
lower than those given earlier in which the underlying stochastic process

is not conditioned.

Introduction

Evidence from such diverse organisms as
man, mouse, fruit fly and horseshoe crab has
accumulated to show that there exists very
high variability at the molecular level (Selan-
der et al. 1970). Various mathematical models
have been developed to give a framework in
which molecular polymorphisms could be
discussed. One such model is ‘‘the model of
infinite sites” (Kimura 1969). In this model,
it is assumed that the total number of nu-
cleotide sites available for mutation is so
large and that the mutation rate per site is so
low that whenever a mutant appears, it repre-
sents a mutation at a new site. Using this
model, Kimura (1969) obtained a formula for
H(p), the expected total number of hetero-

zygous sites per individual maintained in a
finite population because of steady flux of
mutations with frequency of the mutant at
the moment of its occurrence at each site
as p. The method of obtaining this formula is
based on considering all the sample paths of
the underlying stochastic process resulting in
either loss of the mutant from the population
or fixation in it within a finite length of time.
Although we do not know whether the mu-
tant, at its initial occurrence, with frequency
p, is going to be eventually lost or fixed, we
do know that the probabilities of these two
eventualities are 1—u(p) and u(p) respec-
tively, where u(p) stands for the probability
of fixation and equals p for neutral genes.
Using these probabilities, one can invoke a
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conditioned process in which the loss of the
allele is made certain if there is no produc-
tion of new mutants. The recurrence of new
mutants is then balanced by their loss only
and not by both fixation as well as loss. Such
a situation would occur if the population
size is very large and the selection forces are
weak. u(p) would then be small. However,
if the event of fixation does occur, the condi-
tional expectation would be much larger
than if the gene is lost. In such a situation,
unconditional expectations of Kimura (1969)
would be misleading because they may give
too heavy a weight to sample paths that
rarely occur. It is, therefore, more appropri-
ate to consider only such sample paths that
lead to the loss of the mutant form from the
population disregarding those in which they
are fixed. The purpose of this paper is there-
fore to study the statistical properties of the
conditional equilibrium distribution under
steady flux of mutation. In particular, a for-
mula for the average number of heterozygous
nucleotide sites per individual maintained in
a finite population because of steady flux of
mutations conditional to their random ex-
tinction will be derived, and revised estima-
tes of the average number of heterozygous
sites in mammals will be presented. The
theory developed is also applicable to a
cistron consisting of at least several hundred
nucleotide sites.

The Theory

We assume that, on the average, in each
generation mutant forms appear in a popula-
tion of constant size N in vm nucleotide sites
so that mutation rate per gameteis v=vm/2N.
We assume also ““the model of infinite sites”,
viz., the total number of sites per individual
is so large and mutation rate per site is so
small that whenever a mutant appears, it
represents a mutation at a previously homo-
allelic site. Let feo(p, x; ) be the conditional
probability density that the frequency of the
mutant in the population is p at the start

(t = 0), given that it would be x at time ¢
as well as that it would be zero at the end
(+=o0). This means that the process is viewed
retrospectively, in the reserve time sequence
so that x is regarded as fixed and p is taken
as a random variable varying between 0 and
1. Then foo(p, x; t) satisfies the following
conditional backward diffusion equation
introduced by Narain (1974) :

—0fco (p, x; 1)[01 = L:fro (p, x; 1), (D

*
where L, is an operator given by

Lo = (1) Ves @%/2p®) + oMy @lep), ..(2)

and

oM:p::MSp"VSp G(p)/{l-u(p)], (3)

»
G(P)=exp[~2{ (Msy/Vsy) dy]. e ()
where Ms, and Vs, denote the mean and
variance of the change in the mutant frequen-
Cy p per generation assumed same for all
the sites. In other words, the mean and vari-
ance of the amount of change in mutant
frequency p during a short interval from 1 to
t + 8t are Msp 8t and Vi, 8t respectively,
both being independent of time parameter ¢,
so that the conditioned process under study
is time-homogenous. The boundary condi-
tions for this process are

feo(p, x;0) = & (x--p), ...(5)
where 8 (. ) is Dirac delta function,
Seo(p, x; 90)==0, (0<x<1). .:.(6)

Further, u(p) is the eventual probability of
fixation of the mutant given by

u(p)f-:f G(x) dx/£1 G(x) dx. D

We consider only those sample paths of
the mutant appearing in the finite population
in which it is lost from the population
within a finite time. A balance between the
continued production of new mutants over



many generations and their loss from the
population will then be established. We can
therefore envisage a conditional stable distri-
bution of the mutant frequencies in different
sites, considering only those sites in which
mutants are not lost. Since vm is the number
of sites in which new mutations appear in the
populationin each generation, vm feo( p, x; 1)dx
represents the contribution made by mutants
which appeared ¢ generations earlier with
initial frequency p to the present frequency
class in which the mutant frequencies are in
the range from x to x + dx. Thus, consider-
ing all the contributions made by mutations
in the past, the expected number of sites in
which the mutants are in frequency range
x to x + dx in the present generation condi-
tional to their loss from the population, is
éeo (p, x) dx where

deo (p,x):vm:fﬁo(p,x; 1) dt, (0<x<1)...(8)

is the conditional stable distribution under
steady flux of mutations. The statistical pro-
perties of distribution can be studied by
deriving the expectation of an arbitrary func-
tion g(x), differentiable up to the second
order at p, with respect to this distribution.
We denote such an expectation (functional)

2
by Ieo (p), that iS,

Teo (p) = ig(x) bea (p, ¥) dx

— vm f [Jlg(x)fco (p, X3 1) dx] dr...9)

Regarding the process in the change of gene
frequency as a collection of sample paths
{w} and denoting by x(w, r) the position of
a particular path w at time r, the above ex-
pectation can also be expressed alternatively,
in accordance with the theory developed in
Maruyama and Kimura (1971, 1975), as

g T(W)
Ieo (p)=E [6[ g(x(w, 1) dt/x(w, r(w))zo]

...{10)
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where < {w) is the time when path w exits
from the interval (0, 1) with x(w, ©(w))=0
and E[ ... ] stands for the expectation with
respect to the sample paths that start from p
at time 0, i.e. x{(w, 0)==p and lead to eventual
extinction of the allele.

Multiplying each term of (1) by vmg(x)
and then integrating each of the resulting
term first with respect to x in the open
interval (0, 1) and then with respect to ¢ over
(0, oo) gives

-]

g (8/81)[\:;71 gg(x)fm (p, x; 1) dx:l dt

* g
=Ly Ico {p)

NES))
The L.H.S. of this equation gives
1 o0
| ven _E g(x) feo (p, x; t) dX 0[
1
= —vam [ g(x) 8(x—p) dx ..{12)
0

in view of (5) and (6). It reduces to
— vm g(p) because of

1

J;g(x) 3(x—y) dx=g(v). ..(13)

g
We thus see that I.. (p) satisfies the ordi-
nary differential equation

g * g
(1/2) Vsp (d% Ico (p)/dp®)+oMsp (d Ico (p)/dP)
+vm g(P)=0 ...(14)
Now mutations at =0 do not contribute
to segregating sites so that feo (0, x; £)=0 for
0<x<]1, giving one of the boundary condi-
tions as

In (0)=0 .(15)
However, because a mutant appearing in the
population is destined to be lost in the con-
ditional process under study, mutants at p
tending to 1 will contribute to the segrega-
ting sites so that Lign feo (p, x5 1) for 0<x<C1

p—

will tend to be finite. This would give the
other boundary condition as
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g
LXBI'I Ieo (p):K, (16)
P>

a finite quantity whose value can only be
obtained by taking the limit in the final

g
expression for Lo (p). The solution of eq. (14)
which satisfies the boundary conditions (15)
and (16) is given by

I:o (P)=vum fg(y) I(y) u(y) 1—u(y)] dy

+vYm [u(p)/(l —u(p)] !Ifg(y) I(y)l:] ~—u()'):]2 dy

.17
Lim Io ()=K=va | g0)10) )
[1--u(y)] dy ..(18)
where
1<y):[2 {6t dx] /(st) G(y)
=2/ Vsy () .(19)

in which ' (y)=du(y)/dy.

Although of no immediate interest, we
can similarly deal with the situation in which
only those sample paths of the process which
lead to the fixation of the mutants are con-
sidered. This gives a stable distribution
¢e1 (p, X) as

be (9 %) = ven | for (p, x; 1) dt, (0<x<1)
0 00

where fo; (p, x; 1) satisfies the following
backward diffusion equation conditional to
fixation given by Narain (1974) :

*
—ofa (p,x; 1)/ 0t =Ly for (p, %3 1) ...(21)
*
where the operator L, is given by

Li=1(1/ 2Vsy (6] 8% + Msn (3] )]
...(22)
and

Misp = Msp + Vs» G(p) | ulp) . (23)

The expectation of an arbitrary function g(x),
differentiable up to the second order at p,
with respect to ¢¢ (p, x) and denoted by

g
Iy (p) then satisfies the ordinary differential
equation

(1/2) Vy (d® Iy (p) | dp®) + 1Mss

g
(d Iy (p)/ dp) + vm g(p) =0 ..(24)
subject to
g
Lirg I, (p) = K, a finite quantity ...(25)
P>
g
Iy (l) = ~--(26)

The appropriate solution is found to be

Loy (p) =vin [(1—u<p»/u(p)] I 25 I()
[O)]E dy + v | 8) 1) u() [1-u(y)] dy
P ...27

Lim Iy (p) = K = vm J2(3) I(3) u(3)
p—0 0
(1-u(»)] dy

Statistical Properties of the Conditional
Stable Distribution

To study the statistical properties of the
distribution, we have to specify the forms of
the functions of Ms. and ¥s- which depend
on the genetic situation. We consider here
the case of no dominance and assume that
random fluctuation in mutant frequency is
due to random sampling of gametes. Then

...(28)

S
MsT=—2~ x(1 —x) .(29)

Ve =x (1 — x) | 2N. ...(30)

where N. is the variance effective population
size which may differ from actual size N if
the distribution of the number of offspring
does not follow Poisson distribution, and
(1 +s), (1 + %s5) and 1 are the respective fit-
ness of the three genotypes AA, Aa and aa.
With these forms of Mss and Vsz, we have



G(x) = exp (— 25x) ...(3D
u(x) = (1 —exp (— 25x)) /(1 — exp( — 25))

(32
I(x) == 2Ne (1 — exp ( — 2S)) (exp (25x)) /

Sx (1 —-x) ...{(33)

S = N.S ...(34)

The specification of the form of g(p)
depends on the statistical property of the
distribution in which we are interested. For
instance, if we put g(x) = 2x in (9), we get
Mo, (p) the mean of the number of mutants
per individual but if we put g(x)=2x
(1 —x), we get H,(p), the mean of the
number of heterozygous sites per individual.
The statistical properties are functions of the
initial frequency p. Here we consider only
three statistical properties viz. when g(x) =1,
g(x) = 2x(1 — x) and g(x) = s(1 — x) in rela-
tion (9). These give respectively the total
number of segregating sites in the popula-
tion, the mean number of heterozygous sites
per individual and the substitutional load in
a finite population. These properties can
however be obtained directly by putting
gp)=1, glp)=2p(1—p) and g(p)=s(1—p)
in (17).

(i) Total number of segregating sites
in the population

Taking g(p) = 1in (17) and using (29) to
(34), we get

1
Ico (p)=[2Ne vm [S(1—exp —(2S))] (1 —exp
(—2Sp) ) exp 2Sp) /(1 —exp (- 2§

a-p)) f[{l — exp(— 25(1 — )}t

exp (— 259) [ y(1 — y)ldy + f[l — exp

(—257). (1 —exp (— 251 —»)))/
¥1—y)]dyl ...(35)

If the mutant is represented only once at
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the moment of its occurrence, p == 1/ (2N),
and we have, approximately,

Lo (1/2N) = (2 vm (Ne | N) /(1 — exp( — 25)
(1 —(S/N)—exp(—28))1[(1 — exp
(—28))—(10 —(S/N)—exp(-25))
— 2exp (— 2S) loge (2N)

2S
+ [ (exp( — ») /y) dy + exp ( — 45) ?s
S/N s/N

/exp (y) /) dy + exp(— 28)
(25_8/N)

OI ((exp () — 1)/ p) dy — exp (—25)

(25_8/N)

(I —exp(— ) /») dyl ...(36)

The integrals on the right-hand side of (36)
can be evaluated by using

j/swxp (=) /) dv = E (SIN)— E: (25)
N

...(37
F(exp(s) /) dy = E: (28) — E: (S| N)
SIN ...(3
(25_S/N

i ((exp(y) — 1) /) dy = E;

(2S— S/N) —log: 2S— S/N) — v
...(39)

(2S_S/ Ny
| (—exp(—w)/y) dy=E: (25—S/N)

+ loge 2S— S/N) +vy ...(40)

In these relations, v is Euler’s constant and
equals 0.57721..., E; (.) and E: (.) are ex-
ponential integrals defined by

E(0)=] (exp(—»)}y) dy=—Ee(—x), x>0

...(41)

for which fairly extensive tabulations are
available in Abramowitz and Stegun (1964).
Thus, if the mutant is advantageous, such
that 2S=N.S>»1 but S/N=(N./N) s<1, we
get approximately
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1
Ico (1/2N)=2vm (Ne/N) {1—loge (S/N)—7]
...(42)
However, if both 2§ and (S/N) are much
smaller than unity, we get, approximately,

Teo (1/2N) = (vmls) [2(1 —S)/N
—(v-+loge 25)/NS] ...(43)

When the mutant is neutral, s=0 and (33)
reduces, in the limit, to

Ic’o (p)=—4Nevu (p/(1—p)) loge p  ...(44)

For p=1/2N, this becomes, approximately
for large N,

I:o (1/2N)22 Vin (Ne/N) lOge (2N) (45)

(i1) Expected number of heterozygous sites
per individual

We now take g(p)=2p(1—p) in (17) for

obtaining the mean number of heterozygous

nucleotide sites per individual conditional to

loss of mutants. Denoting it by Hy{p) and

using (29) to (34), we get

Ho(p)=(4Nevm/SY{(1 +exp (—28))/
(1—exp (—25)}—(1—p)(exp (—2Sp)
+exp (—285)/(exp (—28p) —exp(—25))]

...(46)

The limiting value of Hy(p) when p tends to
1, is found to be

Lir? Ho(p)==4Nevm [S(1-+exp(—25))
p-—)
—(1—exp(—28))1/8%*(1 —exp(—25)) ...(47)

For neutral mutants (s==0), we get the cor-
responding results as

Ho(p):(4/3) Nevin p(2—p)
LIITI\ Ho(p):(4/3) Nevn.
D>

...(48)
...(49)

In a population consisting of N individu-
als, if the mutant form in each site is repre-
sented only once at the moment of its
occurrence, p==1/(2N) and the mean number
of heterozygous sites per individual, condi-
tional to loss, becomes

Ho(1/2N)=(4/3) vis(N/N) ...(50)

if the mutant is neutral. However, if the
mutant is advantageous, such that 2531 but
(S/N)<1, we have

H0(1/2N)z2v;n (NE/NS) (51)

(iil) Substitutional load

For this property, we take g(p)=s(1—p) in

{17). Denoting it by Lo(p), we get

Lo(py=[2vm/(1 —exp(—2SN1{{(1 —exp
(—2SpNexp(2Sp)/(1 —exp(—2S(1—p)))}

Il [(1—exp(—28(1—yN)? exp (—25v)/y]
| 4

dy+£p{(l —exp(—25y)).
(1 —exp(—2S5(1—-)))/y} dy).

If the mutant form appears once in the
population at the time of its occurrence,
p=1/2N, and L, (1/2N) becomes
Lo(1/2N)=[2vm(S/N)[(1—exp(—28))(1 —exp
(—28)—S/N)} [(1—exp(—2S)(1—exp
(—28)--S/N)—2 exp(—25) loge(2N)

...(52)

as
—;L,g (exp(—y)/y) dy-+exp(—4S)
S/N

28
| (exp(y)[y) dyl .-.(53)
S/N

When the mutant is advantageous so that
28 is much greater than unity but (S/N) is
much smaller than unity, we get
Lo(l/zN):JZVm (S/N) [1 —Y—loge(S/N)]
...(54)
On the other hand, if both 25 and (S§/N) are
much smaller than unity, we get
Lo(1/2N)=~vm [2(1— S)/N—(y+1loge 2S)/NS]
...(55)

Discussion

The behaviour of the genetic composition of
Mendelian populations over time is deter-
mined by the principles of stochastic process.



The mathematical theory of population
genetics treats such processes as Markov
processes with gene frequency as a random
variable subject to the influence of mutation,
migration, selection and random sampling
of gametes in reproduction. In the context
of understanding the mechanics of evolution,
this theory could not be very helpful because
of the difficulty in relating the gene frequen-
cy with the phenotypic level on which the
evolutionary data were collected. Fortuna-
tely, the recent study of molecular evolution
has opened a field in which this theory could
be introduced with advantage (Kimura
1971). Most of the studies on mathematical
theory of population genetics, in the context
of evolution, deal with diffusion models in
which gene frequency is treated as a conti-
nuous random variable, with time also as
continuous. This stands to reason in evolu-
tionary studies because of the ‘slow change’,
of the order of about 0.1 Darwin units (a
Darwin unit amounts to a change of e=2.17
per million years) and because of the popu-
lation size, though finite, being considerably
large. Diffusion models lean heavily on the
forward and backward diffusion equations
introduced by Kolmogorov (1931) and used
very widely in physics. In this paper, it has
been shown how conditioning a diffusion
model and making use of conditioned diffu-
sion equations introduced by Narain (1974)
could affect the results, particularly the pro-
perties of the equilibrium distribution under
steady flux of mutations.

In mammals, the total number of nucleo-
tide sites for the haploid chromosome set
(T) is estimated to be about 4x10°% These
are sufficient to code for 2 > 10°® polypeptides,
each consisting of 500 amino acids. If the
number of sites for cistron (C) is taken to be
about 1,000, the total number of cistrons
would be as large as 2 x 10%. Let us assume
that, in each generation, one advantageous
mutant gene appears within the population
(vm=1) consisting of N=2x 10% individuals
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and having effective population size N.=10%
half as large so that (N./N)==0.5. This means
the mutation rate per gamete v==vm/2N
==(.25 X 107®%, whereas the mutation rate per
site, denoted by p=v/T, is as small as
0.0625 % 10714, The mutationrate per cistron,
U=Cy, is then 0.0625 %107, For s=0.01,
we get from (42), I'co (1/2N)=5.72. This
estimate is about one-fifth of 28.95, the value
we obtain by using the approach of Kimura
(1969) and therefore even much smaller than
2x 105, the total number of cistrons. This
justifies the assumption that the total num-
ber of sites available for mutation is very
much larger than the number of temporarily
segregating sites. For neutral mutations,
however, we have to take a considerably
higher rate of about 2 per gamete per gene-
ration. This means #=0.5x10"? and
U=0.5x10"% Now, vn=2Nv=8 X 105 and,
from (45), we get I'co (1/2N)=~8N. log. 2N
—=1.4>107%. This would be a very negligible
fraction (0.003) of the total number of
segregating sites, and the model could be
appropriate if the individual nucleotide site
is taken as the unit of mutation.

In regard to the second property (viz,
average number of heterozygous nucleotide
sites per individual), we get from (50),
Ho(1/2N)=5.3 N. if we assume that mole-
cular mutations are neutral and occur at the
rate of 2 per gamete per generation so that
vm=2Nv==4N. This means, in a population
of effective size as 10%, the average number
of heterozygous nucleotide sites per indivi-
dual conditional to the ultimate loss of the
mutants from the population is about
5.3 x 10% This estimate would be about two-
thirds of that obtained by the approach of
Kimura (1969). The proportion of hetero-
zygous sites can be obtained by dividing the
average number of heterozygous sites by the
total number of sites; i.e., Hy (1/2N)/T=(4/3)
(Ne/N) (vin/T)=(8/3) New. The probability
for a particular site being heterozygous for
a selectively neutral mutant, given that the
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mutant is destined to be lost, is (8/3) Nep
=1.33x10"* instead of 4Nep-—=2x10"* on
the basis of the unconditional approach of
Kimura (1969). The probability that a cis-
tron with 10% sites would be heterozygous
at one or more sites would then be 1-—{1
~—(8/3) Nepl €=1—exp [—(8/3) N Cul=1
—exp (—0.133)=0.1245 as against the value
of 0.1813, which we would get if we follow
Kimura (1969)in which sample paths leading
to fixation and loss are both taken into ac-
count. In either case therefore the conditional
approach leads to estimates that are lower
than those obtained by the unconditional
approach.

For substitutional load, Evens (1972) dis-
cussed the conditional case when the favour-
ed allele is eventually fixed. It was pointed
out that load obtained by the conditional
argument is smaller than that obtained by
the unconditional approach used by Kimura
and Maruyama (1969). However, as s incre-
ases considerably, the two loads become
closer. In this paper also, we find the condi-
tional approach giving values smaller than
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