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Abstract. A generalized Gorkov formalism of superconductivity in a layered system with
non-primitive latlice structure is given. This is used to justify theoretically a model of high T,
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1. Introduction

In order to develop a generalized BCS pairing theory for the new high T, layered
superconducting compounds, whose crystal structures are complicated orthorhombic
and tetragonal non-primitive lattices with several atoms in the unit cell (Yvon and
Francois 1989) we need to first set up a compiete set of band functions. From these a
layer representation is developed. These are non-orthogonal between different layers
and overcomplete, but are very useful in the formal conceptualization of the layer
model of superconductivity proposed recently by one of us (Jha 1987, 1988, 1989). The
many-body theory using such states can then be used to develop the Gorkov formalism
of superconductivity. In the interest of brevity, we shall discuss in this paper only the
equation for the critical temperature in such a theory in the second section. This general
scheme is then shown to reduce to the linearized gap equation developed by Jha (1987)
under certain conditions, which seem to be appropriate for the new high T, systems.
Details of this formulation will be published separately (Rajagopal and Jha 1991). In the
third section we use this to show how one can estimate T, as a function of the number of
inequivalent superconducting layers in the system. In the final section, a brief summary
of the scope of this work is given.

2. The critical temperatures in the layered high T, systems

In terms of the layer band functions, ¢, «(r| j), which are the eigenfunctions of a reduced
hamiltonian for only one layer j per unit cell so that b; is the band index appropriate
to the layer j and k is a 3-D wave vector arising from the full 3-D lattice periodicity
of the jth layer, and the associated layer band energy, ¢, , even the one particle
hamiltonian is of the form
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Here Ct, € are the usual creation, annihilation operators for the carriers, s is the total
number of layers in the unit cell (j = 1,+--s). Equation (1) contains interlayer “hopping”
or “tunneling” terms for the charge carriers to g0 from one layer to another. In fact, we
have
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where T/j is the periodic potential arising from all other layers other than the jth layer.
The second equation in (2) relates the layer band energies and matrix elements to the
full 3-D band energies E,, and the overlaps of the layer-to-layer wavefunctions as well
as layer-to-crystal band functions. For brevity we introduce the notation « = j,b;. The
gap equations in the linearized form needed for discussing the critical temperature T, is
then defined by the following equations:
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The chemical potential u is determined by the condition of the given total number of
change carriers in the system
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Here Q = abe is the volume of the unit cell, IBZ under the k-integrations indicate the
first Brillouin zone integration. We have displayed these equations in their full glory to
indicate the places where the various contributions arise. A variety of models can now
be obtained based on a variety of approximations tailored to suit the system.
Incidentally this theory reduces to the 3-D band scheme if we drop the layer indices and
keep just the band indices and note that the overlaps become Kronecker deltas and ¢,
are identified as band energies, Ej,.

The gap parameters are in general of the form A,(fo) indicating that there can be
interlayer pairing possible and they obey the equations after some algebra
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Here ¢, = &, — p, &, now includes mean field contributions from V;,, and:

3
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1

a BZ(2TC)3 (exp(ﬁcftzk) + 1)

From (3) to (5) we see that there are interlayer contributions to single-particle energies
as well as to the pairing of charge carriers. It could be argued that the overlaps of
interplanar wavefunctions are negligible in the oxide superconductors because of the
layer separations and weak interlayer interactions. This argument carried to pairing
across planes makes possible to drop the interplanar superconducting parameter
Ay (o) (B # «) from further consideration. Furthermore we may for simplicity take only
one band for each layer so that no complication of interband sums even within the same
layer occurs. With these approximations, we may then write (7) in terms of layer index j
and wave vector k:
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This s the equation that Jha (1987) derived in his original work. In the next section, we
employ this to estimate T, as a function of number of layers in the system.
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3. T, as a function of number of layers—an estimation

The critical temperature 7, with Cooper pairing restricted to carry within the
same conduction layers is determined by the nontrivial solution of the gap equation
(9. If in (9) we employ k-independent interaction parameters by averaging
(jkj = k| Vi)' — k7k") over the angles between k and k' on the Fermi surface ie.
use I_gj,, then we o1ily need to examine 7, given by that solution of the determinental
equation

det|I(T)d; ; + 4; 7| =0, (10)
where we have further approximated
* 1-13hQ
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Here, N;(0) is the density of states of the jth layer at the Fermi energy and #Q is a
common cut-off energy for V This determinental equation takes simple forms when
applied to Tl,- or Tl,- or Bz7 systems and then 7, can be estimated as a function of
the number of layers. It is found (Rajagopal and Jha 1990) after further considerations
that the largest 7, attainable for asymptotically large number of layers is 143K in a
model describing T1,- and Tl,-systems and 136K in the Bi,-system.

In the next section we give a brief summary and scope of this development.
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4. Conclusions and scope of the work

We have given here a generalized Gorkov formulation of superconductivity in a
layered system with non-primitive lattice structure in view. In the past a theory for
primitive lattice structure with single layer per unit cell has been examined by Klemm
and Scharnberg (1981) with a view to study the anisotropy of critical magnetic fields.
Ginzburg-Landau phenomenological approach for superconductivity in layered
system has been considered by Bulaevskii et al (1989) and Birman and Lu (1989). By
appropriate analysis of equations (3) to (5) we have given a microscopic derivation of the
Ginzburg-Landau theory. We have also worked out a general two-layer model in
detail, to examine the various aspects of interlayer coupling, k-dependence in the single
particle energies, interaction energies etc so as to understand the implications of the
approximations made here.
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