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1. Introduction

In a recent paper [15], the author gave new formulations of the concepts of
asymptotic efficiency and consistency, which seem to throw some light on the
principle of maximum likelihood (m.l.) in estimation. An attempt was also
made in that paper to link up the concept of asymptotic efficiency with the
limiting information per observation contained in a statistic, as the sample size
tends to infinity, information on an unknown parameter 0 being defined in the
sense of Fisher [5], [6].
The object of the present paper is to pursue the investigation of the earlier

paper and establish some further propositions which might be of use in under-
standing the m.l. method of estimation.

The first proposition is concerned with the conditions under which iT, the
information per observation in a statistic Tn tends to i, the information in a
single observation, as the sample size n -* -. It may be noted that iT cannot
exceed i for any n. A sufficient condition for convergence of iT to i is

(1.1) | n-1/2 (1 log L) -a - O3nl2(T,, - 6) 0

in probability, where L denotes the likelihood of 0 given the sample and a, A are
constants possibly depending on 0. This proposition was first proved by Doob
[3], but his proof appears to be somewhat complicated. Under the same condi-
tions assumed by Doob, the problem has been formulated in a more general
way and a simple proof has been provided. It is observed that asymptotic
efficiency of an estimator 7Tn may be defined as the property (1.1), or a less
restrictive condition such as the asymptotic correlation between n-112(d log LIdo)
and nll2(Tn - 0) being unity, which imply that iT -* i. This new definition of
asymptotic efficiency is applicable to a wider class of statistics, while for the
application of the usual definition in terms of the asymptotic variance of the
estimator some regularity conditions on the estimator have to be imposed.

It is known that under some regularity conditions the m.l. estimate or an esti-
mate obtained as a particular (consistent) root of the equation (d log Lido) - 0,
has the property (1.1). But the m.l. estimate is only one member of a large
class of estimates satisfying this property. The minimum chi-square, modified
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minimum chi-square (Neyman [11]), minimum discrepancy (Haldane [8]), and
a few other methods are known to provide estimates efficient in this sense, so
that judged by the criterion of asymptotic efficiency alone the m.l. estimate has
nothing special to distinguish it from the others.
As emphasized in the writings of Fisher [5], [6] and in my recent paper (Rao

[15]) the efficiency of a statistic has to be judged by the degree to which the
estimate provides an approximation to d log L/do. The property (1.1) states
that under a suitable norming factor (T. - 0) is close to n-12(d log L/dO) in
large samples. We may now investigate the rate at which the convergence in
(1.1) takes place. For this we consider n12 times the random variable in (1.1)
(1.2)

n F/2IC-__2_dl _ a _- #n'/2(Tn_-____d_l _ nl1/2c - n#(T. - 0),

which may not tend to zero and may have a limiting distribution. The variance
of this limiting distribution is considered as a measure of convergence. Since our
object is to determine the extent to which d log LIdO can be approximated by a
function of T. we may as well consider the random variable

(1.3) d log L nn1/2a - nf(Tn - 0) - Xn(Tn-0)2,dO

which provides a second degree polynomial approximation in (Tn- 0) to
d log LIdO and define E2, the minimum asymptotic variance of (1.3) when mini-
mized with respect to X, as a measure of second order efficiency of an estimator.
The smaller the value of E2, the greater is the second order efficiency.
The advantage of such a definition is that when the minimum asymptotic

variance of (1.3) is the limit of the average conditional variance of d log Lldo
given T. (a proposition which is not proved in the present paper), the measure
E2 we consider is the limit of (ni - niT) as n -- oo. This is a very satisfactory
situation as we can then study the behavior of the difference between the actual
amounts of information contained in the statistic and in the sample.
When the stated convergence of the average conditional variance takes place

the random variable (1.3) is equivalent, in large samples, to

(1.4) d logL d log4dO - dO

where q is the density of the estimate Tn. Of course, the best fit to d log LIdO is
d log o/d0 in the sense of minimum variance. The variance of (1.4) is exactly
(ni -niT) and its limiting value is of interest. The random variable (1.3) is
considered in preference to (1.4) as the asymptotic properties of the former are
easy to determine.
The second proposition established here is that under some regularity condi-

tions, in the special case of multinomial populations, the m.l. estimate has the
maximum second order efficiency. The actual expressions for second order ef-
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ficiency have also been computed for a number of alternative methods of esti-
mation applicable to multinomial populations. The extension of this investigation
to populations with continuous distributions needs a more elaborate analysis
involving the consideration of functionals of the empirical distribution function
and their differentiability, some related ideas of which are contained in a paper by
Kallianpur and Rao [9]. The result that the m.l. estimate has the maximum
second order efficiency was stated by Fisher [6]. The present paper only supplies
a rigorous demonstration of this result under some assumptions. Further,
Neyman [12] observed that there exist a large class of estimation procedures
leading to best asymptotically normal (BAN) estimates, of which the m.l.
estimate is only one member "but the question remains open concerning how
good these estimates are when the number of observations is only moderate."
The concept of second order efficiency provides an answer to this problem as it
enables comparison of different BAN estimates.

2. Definitions, notations, and assumptions

Let p(x, 6) denote the probability density of observation x, depending on the
parameter 0, and P. = p(x1, 0) ... p(x., 0) the density for n independent ob-
servations xi, - * *, x,,. Let T. be a Lebesgue measurable function of the observa-
tions and 4(Tn, 6) = 0,, its probability density.
ASSUMPTION 1. There is a domain D, such that for each value of 0, Pn > 0 on

D except for a set of points of Lebesgue measure zero and Pn = 0 on the complement
of D except for a set of points of Lebesgue measure zero.

It is easy to see that if this property (D) is true for P,,, it is also satisfied for
ISn (Doob [4]).
ASSUMPTION 2. The derivative dPn/dO exists and i, defined by the following

equation, is finite,

(2.1) ni = E ( dPn)2 = nE l dp)2
It may be noted that as a consequence of assumption 2 we have the following.

If Z. = n-112(d log P,,/dO), then E(Z,,) = 0, V(Z,,) = i, and the asymptotic dis-
tribution of Z. is normal with mean zero and variance i.
ASSUMPTION 3. For E,, any Lebesgue measurable set in Euclidean space Rn

d dP-dv,,(2.2) ..j P,, dv = ...j d

(2.3) d f n dTn = f j dTn,
I E~~~,

where dv = dxi ... dxn and the derivative (d0,,1/d0) is also assumed to exist.
The information contained in Tn is, by definition, V(d log k,,/d0) = niT. We
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are concerned with the limiting value of iT. If we define Yn = n-112(d log 4o/dO),
then E(Yn) = 0 and V(Yn) = iT-
ASSUMPTION 4. The joint asymptotic distribution of Z, and Un = n112(Tn- 6)

exists and has finite second order moments.

3. The limiting value of iT

We briefly recall the essential notations

(3.1) Zn = n-1/2dlog_-12E d log p(xi, 6)dO 1 dO

(3.2) U. = n1/2(T. - 6),

(3.3) Yn = n-1/2 d log On(Tn, 6),
(3.3) Yfl n112 ~~dO

where Tn is a Lebesgue measurable function of xi, * , xI'.
LEMMA 1. Under the assumptions 1 to 4 of section 2 we have

(i) E(ZnJTn) = Y.,
(ii) E(Y")2 = iT -

(iii) E(ZnYn) = iT.
To prove (i) we use the definitions of coinditional expectation and probability

density,

(3.4) f ZnPndv = f E(Zn!TI)OndTn,
A' A

(3.5) f Pn dv = fqn dTTn,
A' A

where A is any Lebesgue measurable set on the real axis and A' is the correspond-
ing set in En. By assumption 3,

(3.6) n1/2f ZnPn dv = P, dv =d n dTn
A' A' A

f -d4n dT' = n112 f Ynon dTn.
A A

Comparing the last terms in (3.4) and (3.6) we have

(3.7) E(ZnlTn) = Y.,
excluding the set of values of Tn for which the density On = 0. To prove (ii) we
consider the inequality

(3.8) E nJ2T.) 2 [E(Z,,IT<51)
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with probability 1, which follows from the convexity of the function Z2. Taking
further expectation with respect to the density of Tn we have

(3.9) E(Z2) 2 E[E(Z^JT.)]2 = E(Y2) = iT.
Therefore i 2 iT The result (iii) is a consequence of (i). These results are not

new and they are contained in papers by Fisher [6] and Doob [4].
LEMMA 2. If U.' = nl02(Tn-) when Inl/2(Tn- 0) 1 c and zero otherwise,

where c is a continuity point of the asymptotic distribution of Un, we have
(i) E(Z,Un) = EUn[E(Zn|T)] = E(U,Y,) = -yn-
(ii) As n - oo, lim -Yn = -ye for fixed c, where -yc is the corrected product

moment of the asymptotic distribution of U, and Zn. It may be noted that ycE-4 Y as
c -* oo, where y is the corresponding product moment of the asymptotic distribution
of Un and Zn.

(iii) If vn = V(Un'), thenvn - vc asn-oo, and vc -vas c -4oo, where vc and
v are second central moments of the asymptotic distributions of U.' and Un respec-
tively. All these results follow from the finiteness of all moments of Unc and the
boundedness of E(Z2).
THEOREM 1. lim infn ,, iT _ p2i, where p is the asymptotic correlation of U.

and Zn-
From [i], by applying Schwarz's inequality,

(3.10) V(Un)V(Yn) > [E(UcYn)] =yn
or

(3.11) i
Vn

Hence

(3.12) liminf iT >--
n-- o Vc

Since c is arbitrary we have, by letting c - ,

(3.13) liminfiTT - - V P

THEOREM 2. If T,, is such that

(3.14) 1n1/2(T. - 0) - a - Znl 0
in probability, then as n -4 oa, lim ir = i.

Condition (3.14) implies that the asymptotic correlation between Z. and
n1l2(T,, - 0) is unity. From theorem 1, putting p = 1, we have
(3.15) lim inf ir _ i.

n--+

But from (ii), iT < i and therefore
(3.16) lim sup iT _ i.

nH
Hence lim iT exists and is equal to i.
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COROLLARY. If nl/2(T, - 0) has correlation unity with Zn, then Yn =
n-1/2(d log on/dO) has asymptotic normal distribution with mean zero and variance
i, which is the same as the asymptotic distribution of Z.. The statistic U.=
n1/2(T. - 0) has also an asymptotic normal distribution.
By theorem 2, limit iT = i when the asymptotic correlation between Un and

Znis unity. Hence V(Yn - Z.) -+0 which implies that Yn- lO-0 in prob-
ability. This shows that Yn has the same asymptotic distribution as Z.. Since
U. has asymptotic correlation unity with Z., the asymptotic distribution of Un,
is also normal.

It is known (Doob [3], [4], Cramer [2], Rao [13], [14]) that the maximum
likelihood (m.l.) estimate or more generally the consistent root of the m.l.
equation, n*, satisfies the condition

(3.17) inl/2(0* - 0) - n-1/2 dlog L 0

in probability under some regularity conditions on the probability density. For
such an estimate the limiting information per observation attains the maximal
value i.

4. Asymptotic efficiency

The motivation for a new formulation of the concept of efficiency is fully
explained in an earlier paper (Rao [15]). It is observed that Zn as a function of
the observations and the parameter plays an important role in statistical infer-
ence. For instance, it is known that the best test of the hypothesis Ho:0 = Oo
(an assigned value), which has maximum local power in the direction 0 > Go for
any n is of the form, "Reject Ho if Zn(0o) > X" (see Rao [15]). Or in other
words, Zn(Oo) affords the best discrimination between values of the parameter 0o
and an alternative close to 0ofor any given n. Wald [16], [17] has shown that Z
can be used as a "pivotal quantity" in the sense of Fisher [7] to obtain a con-
fidence interval for 0 which is asymptotically the best.

If we replace the sample by a statistic Tn, then for purposes of statistical
inference based on T. the pivotal quantity is d log 4/d0 = n12Yn. The pivotal
quantity based on the whole sample is d log Pn/d0 = nl/2Zn and there is no loss
of information if Yn = Zn for all 0 and all samples, a situation which arises when
Tn is a sufficient statistic. If no such (Lebesgue measurable) function Tn exists,
we may find one, for which Y. and Zn are as close as possible in some sense, so
that inferences based on Yn and Zn may not be widely discrepant.
As a first step we may demand that

(4.1) lYn -Zn| 0
in probability so that in sufficiently large samples the equivalence of Yn and Zn
is assured. We may then state asymptotic efficiency in one of the following ways,
not all of which are equivalent.
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DEFINITION. A statistic T. is said to be asymptotically efficient if
(i) I Y. - Z.1 -- 0 in probability, or
(fi) iT-iasn *oo,or
(iii) the asymptotic correlation between nl"2(T. - 0) and Z. is unity, or
(iv) IZ. - a - #n12(Tn - 0)1 O-0 in probability, where a and ,3 are constants

possibly depending on 0.
Condition (iv) is perhaps the most stringent; (iii) follows (iv); (ii) follows from

(iii) by theorem 2; (i) follows from (ii) by Chebecheff's lemma. In the earlier
paper of the author (Rao [15]), only conditions (iii) and (iv) were mentioned.
Although condition (i) provides a logical definition of asymptotic efficiency, it

is difficult to use it in practice and its verification depends on the computation
of the distribution of the estimate. Condition (iv) is, perhaps, the easiest to
verify. Further, (iv) implies (i) and therefore we shall use (iv) for further in-
vestigations.
The new definition of efficiency implies minimum asymptotic variance for the

statistic T. only under some regularity conditions (Neyman [12], Barankin and
Gurland [1], Kallianpur and Rao [9]). But when these conditions are not
satisfied the definition of efficiency as minimum asymptotic variance is not ap-
plicable as there is no nonzero lower bound to the minimum asymptotic variance
of a consistent estimate, as shown by Hodges (Le Cam [10]). Given a consistent
estimate, Hodges gives a method by which another consistent estimate can be
constructed with an asymptotic variance not greater than that of the former and
in fact less for some values of the parameter. With the new definition of asymp-
totic efficiency no such anomaly arises.

Further, the choice of a statistic on the criterion of a smaller asymptotic
variance can be misleading. For instance, using the method of Hodges and
Le Cam (Le Cam [10], p. 287) one can construct the following example. Let Y
and xm be the mean and median in samples of size n from a normal population
with an unknown mean 0 and variance unity. Define the statistic
(4.2) n if ll _-

axm if ljy < n-14.
It is easy to see that the asymptotic variance of nl"2(T,, - 0) = 1 if 0 '! 0 and
a27r/2 if 0 = 0; the latter can be made to approach zero by choosing a arbitrarily
small. The statistic T. has thus smaller asymptotic variance for at least one
value of 0 and is as good as the alternative estimate Y for the other values of 0.
Should we then prefer Tn to Y? It is clear that we are using essentially the
median when 0 has the value zero and the mean otherwise, and consequently
the use of Tn for statistical inference entails some loss of information. This
example can be generalized by the method of Le Cam [10] to obtain a statistic
which is equivalent to the median for a denumerable closed subset S of values
of 0 and to the mean elsewhere, but with a smaller asymptotic variance on S.
Clearly that would be making the situation worse. Under the new definition Tn
as defined in (4.2) is clearly inefficient.
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5. Second order efficiency

5.1 The concept. There may be several methods of estimation all leading to
asymptotically efficient estimates in the sense

(5.1.1) | n-1/2dlogL _a- n"/2(Tn -0)|0

in probability. For instance, under some regularity conditions, m.l., minimum
chi-square, and related methods provide estimates satisfying condition (5.1.1),
so that no distinction among these methods is possible on the basis of asymptotic
efficiency alone. For this purpose we may examine the rate of convergence in
(5.1.1) for each method of estimation. One measure of the rate of convergence
is the asymptotic variance of the random variable

(5.1.2) n'/2 [n-1/2 d log _ a n12 3(Tn- 0)]

d log L- an'/12- n(Tn-0),dO

which is v'¶ times the random variable in (5.1.1). Instead of (5.1.2) we may
consider the random variable

(5.1.3) d log L _ an1/2 - 3n(Tn- 0) - Xn(Tn - 0)2,dO

which is the difference between d log LIdO and a second degree polynomial ap-
proximation based on the estimate Tn. The constant X may be chosen so as to
minimize the asymptotic variance of (5.1.3) and this minimum value, denoted
by E2 (smaller values being preferable), may be used to indicate the second
order efficiency of the estimate. It may be noted that the best fit to d log LIdO
in terms of the estimate Tn is d log n/dO, in the sense of least variance of the
difference, and indeed the ideal measure of second order efficiency would be

(5.1.4) lim V (dlogL dlog lim (ni - niT),n_0(dO dO ) n-

which is the limiting difference in the actual amounts of information contained
in the sample and in the statistic, while the first order efficiency is concerned
only with the limit of (i - iT). The second degree polynomial in T. is con-
sidered instead of d log c/n/do as it is more convenient to handle. Further, if the
average conditional variance of (5.1.2) given T. tends to the corresponding value
for the joint asymptotic distribution of (5.1.2) and nr&2(Tn - 0), a result which
is not proved in the present paper but is likely to be true under regularity condi-
tions assumed, then the minimum asymptotic variance of (5.1.3) would be same
as the limit of (ni - niT), that is,
(5.1.5) lim (ni - niT) = E2.

nW
We may say that in large samples the amount of information lost in replacing
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the sample by the statistic T. is equivalent to that, of (E2/i) independent ob-
servations, as stated by Fisher [6]. In the next twvo sections the second order
efficiencies are computed for a number of estimation procedures and their magni-
tudes are compared.

5.2 Maximum attainable second order efficiency. In this section we restrict our
investigation to multinomial populations with a finite number k of cells. The true
proportions are represented by iri(O), * *, -rk(0), where 0 is an unknown param-
eter, and the observed proportions by pi, Pk, pk. We exhibit an estimate as a
suitably chosen root of an equation

(5.2.1) f(0, P) = f(0, P1, Pk), = 0,
as in the case of a number of known methods of estimation. The following as-
sumptions are made.
ASSUMPTION 5. 7ri(0), i = 1, * , k admit derivatives up to the second order,

which are continuous in the neighbourhood of the true value of 0.
AssUMPTION 6. The estimating equation is consistent, that is,

(5.2.2) f[0, lr(0)] = f[0, wl(0), * r* , k(0)] 0,
and f(0, Pi, , pk) has continuous derivatives up to the second order in 0 as well
as in Pi, * , Pk considered as variables. This implies that a Fisher consistent esti-
mate (Kallianpur and Rao [9]) can be obtained by solving equation (5.2.1).

Let us denote by f ', fr, and f,8 the derivatives

(5.2.3) 9' d-r and aP

at the value 0 and Pr = 7rr(0). The first and second derivatives of 7rr(0) with
respect to 0 are denoted by 7r'r and ir'r'. The same notations f ', fr, and fr. are used
for values of the derivatives at the true value 00 of 0 in some of the expansions
such as (5.2.5) and so on.
LEMMA 3. Under assumptions 5 and 6 there exists a root 0* of the equation

f(0, p) = 0 such that 0* -+0o, the true value, with probability 1, and for asymptotic
efficiency (first order) to hold uniformly for all 0, it is necessary and sufficient that

(5.2.4) L' = -r=1, * , k.
f 1 ir,.

Expanding f(0, p) at 00, 7rl(0o), *, Wk(0O), we find

(5.2.5) f(0, p) = f(Oo, ir) + (0 - o) (f' + E) + E (fr + E,) (pr - 7r)
Since p, - 7r, with probability 1, f' + f does not change sign and (f, + e,) is
bounded when Pr is close to 7r, and 0 to Oo, it follows that f(0, p) changes sign
as 0 passes through 0o and hence there exists 0* such that f(0*, p) = 0 with prob-
ability 1. It also follows that we can choose a root such that 0* 0o with prob-
ability 1.

For such a root we find, from equation (5.2.5),
(5.2.6) In12(0* - Oo)f' + n1/2 fM(P,. - 7r) 0
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with probability 1. If 0* satisfies the criterion of asymptotic efficiency, then

(5.2.7) n-1/2 d log L a - flnl12(0* - 0) 01 dO

in probability, or

(5.2.8) nl2 (r + f) (p 0
in probability, the necessary and sufficient condition for wvhic'i is

(5.2.9) a = O and r+ ro r 1, k.

Since f(0, 7r) _ 0, we find on differentiation and substitution of the true value
of 0,

(5.2.10) f= -Efr7r'
which in conjunction with (5.2.9) gives the value of ( as

,,

(5.2.11) 3 = E r = i (information).Trr
Hence the result of lemma 3.
The next step is to compute the difference

(5.2.12) dlogd _ ni(9* - 0) - nX(O* - 0)2
at the true value 0o. For this we consider the expansion
(5.2.13) f(0*, P) = 0 = (0* - Oo)f' + Efr(Pr - 7rr)

+ 2 E E fra(Pr - 7rr) (Pe - 7r.) + (0* - 00) E f'r(Pr - 7rr) + c,(0* - Oo)2 + e,

where e is such that ne -O 0 in probability and cl is a constant (C2, C3, C4, used
later, are also constants). Substituting the value of (0* - Oo)f' from equation
(5.2.13) and using (5.2.9), expression (5.2.12) reduces to

(5.2.14) ni [2 E fr.(Pr - 7rr)(P. - 7r.) + (0* - 00) 7f (pr Irr)

+ c2(0* -00)2 +

The asymptotic distribution of (5.2.14) is not altered if we neglect e' which -* 0
in probability and if

(5.2.15) n-1/2 d log L n1/2 E 7rr (pr -r) = Zn
dO 7r,.

is substituted for iVG (0* - 0). Hence the expression we have to consider is

(5.2.16) f' [2EL fra-(Pr - r)(p. -(P ) + Z. n E f r(p, - Trr) + C3Z.].
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If relation (5.2.4) is true for all 0 we have on differentiating with respect to 0,

(5.2.17) ftd Irr) 7rLd0d ) fr.713.
Substituting for f'-in (5.2.16), we obtain

(5.2.18) 2 bra(pr - Tr)(p. - 7r.) + Z. E2 var(pr - 7r) + C4Zn

where
l d (irf\

(5.2.19) ar = id (r

and g is chosen such that Cov [Zn, E V/ ar(p, -7rr)] = 0, and

brr = 1 1 7rr ffr - r Efr]
(5.2.20) bra f 7rK, , rr. r1

br. = [ffs - * E_ fraTs - f.r7rr

If we denote the first term of (5.2.18) by Q, it can be shown by actual computa-
tion that the second term in (5.2.18) has zero asymptotic covariance with Q as
well as with Z2. To do this, we need the fourth order raw moments of the vari-
ables Xr = nl2(pr- irr) up to the constant term, that is, neglecting terms
which - 0 as n ---> oo. The fourth order moments are expressible in terms of the
second order moments, that is the variances (v) and covariances (c) of the
variables Xi, which are well known.

E(X ) = 3[V(X1)]2, E(X3X2) = 3V(X1) Cov (X1, X2),
E(X X1) = V(X1)V(X2) + 2[Cov (X1, X2)]2,

(5.2.21) E(X?X2X3) = V(X1) COV (X2, X3) + 2 CoV (X1, X2) CoV (X1, X3),
E(X1X2X3XI) = Cov (X1, X2) Cov (X3, X4)

+ CoV (Xl, X3) Cov (X2, X4) + CoV (X1, X4) CoV (X2, X3).

Consequently the asymptotic variance of (5.2.18) is

(5.2.22) V(Q) + V(c4Z ) + 2 CoV (Q, C4Z ) + V[Zn E n"2ar(Pr - Trr)],
where all second order moments refer to the asymptotic distributions. The mini-
mum value of (5.2.18) with respect to C4 is
(5.2.23) E2 V(Q) _[Cov (Q, Zn)]2 + V[Zn E n1/2a(pr-

The last term in (5.2.23) is independent of the equation of estimation, while the
result of the first two terms is not less than zero. Therefore, the lower bound
to E2 (corresponding to maximum second order efficiency) is

(5.2.24) V[Zn E_ n12ar(p, - Tr)]
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when

(5.2.25) - [CoV (Q, Zn)]2 =V(Z~)7
A sufficient condition for equation (5.2.25) to hold is that Q = 0, which is true
when the estimating equation is linear in the frequencies and consequently all
the second order derivatives f,rs are zero. So we have
THEOREM 3. Under assumptions (5) and (6) on the multinomnial probabilities

r (0), - * *, 7rk(G) and the estimating equation f(O, p) = 0, the m.l. estimate has the
mzaximum possible second order efficiency.

There may exist other methods of estimation for which the property stated
in theorem 3 is true. The necessary and sufficient condition for this is that
Q = cZn where c is a constant. But this does not hold for a number of estimating
equations which have been suggested as alternatives to the m.l. equation, al-
though they satisfy the condition of first order efficiency. We shall consider some
of these methods.

5.3. The computation of E2 for various methods of estimation.
(i) Maximum likelihood. The estimating equation for the m.l. method is

/

(5.3.1) Epr= O.

Expression (5.2.18), in this case, reduces to

(5.3.2) -Zn,W + Zn
where iW. = , nh12(d2 log ir,/do2)(pr- 7rr). The minimum variance of (5.3.2) is

(5.3.3) V(ZnWn) V[Coy (Z2nZW")]2
Using the expressions for the moments given in (5.2.21), the value of (5.3.3),
which is E2 for m.l., is found to be

(5.3.4) E2(m.l.) = /-102 -221 + 3040i -uL1 + /L _
i j~~~~~~~~2

where

(5.3.5) /1 8 = Er, (7) r(7 )

Expression (5.3.4) is the same as that obtained by Fisher ([6], p. 719), using a dif-
ferent approach, but the corresponding expression for the minimum chi-square
given below in equation (5.3.9) does not agree with that of Fisher as given in
the original paper (Fisher [6], p. 721) or in a revised form in the collected papers.

(ii) Minimum chi-square. The estimating equation is
P2r

(5.3.6) E r 2=

and the corresponding expression (5.2.18) is
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(5.3.7) - ZnWn + XZn,
where

(5.3.8) Q. = -n 2(n fl2(n ) -_ )

The value of F,2 is

(5.3.9) E2(X2) = + E2 (m.l.),
where

(5.3.10) 1 r _ /U40 + 30

is not less than zero and is zero only in very special cases.
(iii) Minimum modified chi-square (mod. x2). The modified chi-square defined

by Neyman [1.1] is

(5.3.11) E (Pr - 7r )2

which, on differentiation, yields the estimating equation

(5.3.12) Pr
The expression (5.2.18) in this case is
(5.3.13) 2Qn-nZnV + XZ2
and, therefore,
(5.3.14) E,2(mod. x2) = 4A + E2 (m.l.)
so that the second order efficiency of the minimum modified chi-square is less
than that of minimum chi-square.

(iv) Haldane's minimum discrepancy (Dk) mnethod. Consider the estimating
equation

(5.3.15) E p 0,

which is essentially the same as that proposed by Haldane [8], except that
Haldane used in the denominator a suitable function of pr which does not vanish
when pr = 0. This modification does not alter the asymptotic results we are
concerned with. Equation (5.3.15) reduces to the m.l. equation when k = -1
and to the minimum modified chi-square equation when k = 1. Expression
(5.2.18), for an arbitrary k, is

(5.3.16) -(k + l)Qn- ZnW-XZ2.
The second order efficiency is

(5.3.17) E2(Dk) = (k + 1)2A + E2 (m.l.).
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It appears that the second order efficiency is maximum when k =-1, which
corresponds to the m.l. method. The larger the numerical value of (k + 1), the
greater is the loss in efficiency.

(v) Minimum Hellinger distance (HD). The Hellinger distance between the
hypothetical probabilities and the observed proportions is

(5.3.18) (P171)112 + * + (Pkrk)l2
The estimating equation is

(5.3.19) 7r1/2 0

which is a special case of (5.3.15) with k = (-1/2). Hence

(5.3.20) E2 (H.D.) = 1 E2 (m.l.).

(vi) Minimizing Kullback-Liebler (KL) separator E ir, log (7rr/pr).
The estimating equation is

(5.3.21) E 7r log- = 0
p

and expression (5.2.18) is

(5.3.22) -Qn - ZnWn + nZn.
The value of E2 is

(5.3.23) E2 [,T log = A + E2 (m.l.) = E2(X2).

Table I provides a comparison of the different methods in terms of E2, the
index of second order efficiency, and the limiting loss of information in terms of
the number of observations in large samples. The quantities E2 (m.l.) and A are
defined in (5.3.4) and (5.3.10) respectively.

TABLE I

Smaller values of E2 indicate higher second order efficiency.

Limiting Loss in
E2, the Index of Number of Observations,

Method of Estimation Second Order Efficiency over the m.l.

maximum likelihood E2 (m.l.) 0
minimum x2 A + E2 (m.l.) A/i
minimum modified x2 4 A + E2 (m.l.) 4 A/i
minimum discrepancy Dk (k + 1)2 A + E2 (m.l.) (k + 1)2 A/i
minimum Hellinger distance 1/4 A + E2 (m.l.) A/4i
minimum KL separator A + E2 (m.l.) a/i
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