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§0. INTRODUCTION.

In an earlier paper by the author (1945) a chain of theorems have been derived of the
form, given an integer v, it is possible to find s sets of k integers each—

d11 d21’. DY dkl
d12 d22 o .. dkg
R (0.10)

dlg d‘ZS .. dks

such that among the sk(k—1) differences d;,—d;, (1,7 =1,2, ... k ;i £ j;r =1,2,...9)
reduced modulo ¢ contain all integers less than v and not divisible by 6, A; times and those
divisible by 8, A, times. The value of v is either (m!+t1—1)/(m—1) or (m*—1) where m = p"
(p being a prime) and @ either (mf+t1—1)/(m2—1) or (m'—1)/(m—1).

(2) These theorems have been derived with the help of a compact representation of finite
geometries and two theorems which are termed as theorems of differences. Incidentally various
results which are helpful in the actual derivation of the sets (0.10) which are known as the
difference sets and the solution of combinatorial problems have been obtained.

(8) The object of the present paper is twofold. The first is to derive systematic and quicker
methods of the derivation of difference sets and study the connection between finite geometries
and the existence of such difference sets. The second is to study some general class of
combinatorial problems and obtain solutions with the help of finite geometrical configurations
and the number theory results derived from them.

(4) The main results of the paper are,

(a) the existence of difference sets does not imply that a suitable finite geometry
(PG(t, m) or EG(t, m)) exists,

(b) the actual derivation of the difference sets ultimately depends on the properties and
solutions of certain recurrence relations,

(c) the existence of difference sets supplies a compact representation of the solutions
to Incomplete balanced designs, and

(d) the finite geometrical configurations are helpful in constructing Latin Cubes and
Hyper Cubes of a certain class useful in finding out confounded designs in the case
of symmetrical and asymmetrical factorial experiments.
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§1. FrerLps AND GALOIS ARITHMETIOS.

If a field contains m elements then it is represented by GF(m). A set of polynomials
f(x) defined by f(z) = ag+a1x+a-x2-4 . . . where ay, ay, . . . are elements of GF(p) (the
field formed by the residue classes mod p, a prime integer) are represented by GF,[x]. The
addition and multiplication are defined as in usual algebra with the only rule that the coefficients
are reduced to (mod p) at the final stage.

(2) A polynomial 8(x) in GF [x] is said to be irreducible when it is not possible to express
it as the product of two polynomials belonging to GF,[x]. Let us consider the residue classes
mod 6(z), an irreducible polynomial of the n-th degree in GF [x]. There are evidently p*
‘residue classes which are capable of the standard representation

bo+bix+ . . . b, (1.20)

where bg, by,. . . run over the elements of GF(p). These residue classes can be easily shown
to form a field with p" elements and is represented by GF(p*). A non-zero element of GF(p")
satisfies the equation #?"-1 =1 which may be considered as a generalisation of Fermat’s
theorem. If r is the least integer for which an element « satisfies the equation a’=1 then r is
said to be the order of a. An element with the order p*—1 is said to be a primitive element.
By a suitable choice of 6(z) which is called the minimum function it is possible to get the residue
class x as a primitive element in which case all the elements are represented by

0, 20, &1, . .. a*"—2 (1.21)

which is called the power cycle of z, each of which is congruent to a polynomial of degree less
than n. The process of multiplication is carried on with the elements (1.21) and the addition
with the polynomial forms. Thus if o = ag+az+ . . . @, 2" ! and z° = by+byx+

. b,_q2""1 then xx’=a'ts and a4 = (qq +b0)+(a1 +b)z4+ . . . (@y-1Fby-q)2rLl
These calculations are popularly termed as the Galois Arithmetics.

(3) The methods for constructing the minimum functions have been extensively studied
by Bose, Chowla and Rao (1945) in the case of GF(p2) and similar studies are progressing for
other cages. If

(zx) = ag+ax+ . . . aa" o (1.30)
where a4, a;, . . . are elements of GF(p), is a minimum function for GF(p") then it has been
shown that .

¥ = (—)"a, (mod 0 (x)) (1.31)
where w = (p"—1)/(p—1), so that knowing the power cycle up to -1 all the others can be
constructed by multiplication with gy and its powers. Thus if 2° = by+byx+ . . . +b,_12""1,
then (—1)"ao+®" = a7yby+a’pbix+ . +a’pb,.12*~1.  In the following table of power cycles

the congruent polynomials are recorded only for powers of #’s up to w, the rest being easily
derivable with the help of the constant in the minimum function as discussed above.

TABLE 1.

Power cycle for GF(p»).

n i Power cycle
b function. yele.

22, | 224-2+1 20 =1, z=uw 22 =2+1.

23 2342241 =1 z=2 22=22 23 =2a2+1, ot =2242+1, 26 =2 +1, 28 = 224 2.

32 24242 20 =1,z =a,a% =2x+1,28 = 20+2, 2% = 2.

24 zt4-2341 =1 zrz=2 22=2u2 o3 =203 ot=2023+]1, 20 =23tt1, 2% = a3+a2t241,
27 = 224241, 28 = 2342242, 2% = 2241, 210 = 34w, 21} = 3241, 212 =
x+1, 213 =a2 42, 214 = 23422,

52 2242243 2041, 2 =m 2% = 32+2, 03 =+ 1, 2t = 4042, 28 = dxr+3, 28 = 3. .

33 23422+ 1 20 =1, =2, 22 =22 23=0+2, 2t=0242z ob=2024242, 28 = a2tatl,
z? = w2+2z+2 28 = 22242, 20 = 241, 410 = 2242, 211 = 224242, 218 = 224 2,
213 = 2,

iB
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Power cycle for GF(pn).

| Minimum
n 5
P function. Power cycle.
26 26422 41 WO =1, x=x,22 =22, 2% =23, 0t =24, 20 =22 L], 28 = 28 L, a7 = xtL2a2 28 = 284

221,29 = ot a3 4o, 210 =xt-1, 211 =a2 421 1,212 =28+ 2242, 18 =2t L8 L22,
214 = gt o824 1, 218 = atfadfa o], 216 = ot fadtatl, 217 = atfwt1,
218 = x4+ 1, 219 = 2242, 220 = 23+ 22 221 = 24148, 222 = 4L o211, 228 = 234
2241, 22 = pt4ad L2 + 2, 220 = b+ a3 L1, 226 = pf La2 Lol 1, 227 = 28 Lo
) 1, 228 = ot a4, 229 = 28+ 1, 280 = x4,

3% ottt ad =1, z=2a, 22 =22, 23 =3, ot = 203+ 2024 41, 28 = 2222, 28 = 23 2z,
20042, 27 = 23+ 2242, a8 = 223+ a24-1, 2% = 20342242, 210 = 223 a2 L1 2, 211 = 223
+ 2224242, 212 = 222 4+ x4 2, 213 = 203422 2, 214 = 22312241, 218 = 23 f x4 2,
216 = 203+ 1, 217 = 2342242, 218 = 22241, 219 = 223 L, 220 = a3 4 202+ 2242,
221 =3 a2 1, 222 = 2222241, 223 = 223222 L, 22% = 2x2+2x-F2, 225 = 223
4222 4 20, 226 = 2042, 227 = 2221 2x, 228 = 2034222, 229 = 221 2x1- 2, 230 = x3 L
2024 2x, 31 = 3422421, 32 = 20+ 1, 233 = 2024w, 234 = 23122, 236 = 231
224 2x+2, 286 = 2034+ x+2, 237 = 4342024042, 238 = 341, 239 = 2434224
2¢41, 240 = 2,

§2. FINITE GEOMETRIES AND DIFFERENCE SETS.

The points of PG(t, m) (finite Projective Geometry of ¢ dimensions with (m+1) points on

a line) are represented by the non-zero marks or elements of GF(m!*1), two elements z> and
28 (where x is a primitive element in GF(m!+1)) representing the same point if 2% = aaf, where
a is an element of GF(m). The (d4-1) distinct points represented by the elements x%o, %1,
. . 4 with no linear relation among them with coefficients as the elements of GF(m) constitute

a d-flat whose equation is represented by apa*o4a,x*14 . . . a2 4 where a’s are elements
of GF(m). All the points lying on this flat are obtained by allowing a’s to run through the
elements of GF(m), not all being simultaneously zero. We denote these (m#+t1—1)/(m—1)
elements representing the points on the above d-flat as

E[Zaix™, A0, c GF(m), X C GF(mi+1)] (2.10)

and the powers of 2’s in the above reduced mod (m!*1—1)/(m—1)as D[E, (2;1()) mod (m!+1—1)/
(m—1)] in general or in particular as

D[Zaw®, 470, c GF(m), X c GF(m+1), mod (m'+1—1)/(m—1)] (2.11)

or when the context is clear (2.10) and (2.11) may be replaced by E[Za;x*] and LJZazx*
mod (m!t1—1)/(m—1)]

(2) In the previous paper it has been shown that by suitably choosing some d-flats which
are termed as initial flats and carrying on the operation D in (2.11) we get difference sets of a
certain description. Starting with the difference set so constructed, we can arrive at all the
d-flats in the geometry by a process of cyclical development. The question arises as to whether
the existence of a difference set of the same description as above ensures the existence of the
geometry PG(t, m). It is easy to demonstrate that in the case of difference sets derived by
considering lines in PG(2, m) this converse property holds. But this need not be true of the
difference sets of the theorem mentioned in the introduction.

(3) By considering lines in PG(3, 2) we arrive at the difference sets

0,1,4),(0,2,8) (2.30)

of cycle 15 with the property that the differences arising from them (mod 15) contain all integers
less than 15 and not divisible by 5 once each. To these we may add the set (0, 5, 10) of cycle 5
which on cyclical development generate the 35 lines in PG(t, m). Let us consider the sets

(2,5,6),(0,2,8) (2.31)

which possess the same properties as (2.30). By adding to this the set (0, 5, 10) of cycle 5
we can generate the following 35 lines.
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2,5 6 14, 2, 3 9,11, 2)
3, 6, 7 0, 3, 4 10,12, 3
4, 7, 8 1, 4, 5 11,13, 4
5, 8, 9 0, 2, 8 12,14, 5
6, 9,10 1, 3, 9 13, 0, 6
7,10, 11 2, 4,10 14, 1, 7| (2.32)
8,11, 12 3, 5,11 0, 5,10
9,12, 13 4, 6,12 1, 6,11
10, 13, 14 5, 7,13 2, 7,12
11,14, 0 6, 8, 14 3, 8,13
12, 0, 1 7, 9, 0 4, 9,14

13, 1, 2 810, 1  ——0

The lines (0, 5, 10), (0, 2, 8) and (2, 5, 6) intersect two by two. According to postulates of
Veblen and Bussey, it is necessary that if a fourth line cuts two of the above lines it must in-
tersect the third also. But from the list (2.32) we find that the line through the points 10 of
the first line and 8 of the second line passes through the point 1 and does not cut the third
line given above. This shows that the geometry cannot be built out of the difference sets by
the generating process discussed above.

(4) The points of a finite Euclidean geometry of ¢ dimensions with m points on a line
E@G(t, m) can be represented by the marks or elements of GF(m?). A d-flat is represented by the

points corresponding to the set of elements agz® +a,2*1+ . . . az”™¢ where a’s run through
the elements of GF(m) subject to the restriction Xa = 1. As before the elements corresponding
to the points on the above d-flat and the powers of 2’s reduced (mod mt—1) and the point
corresponding to the element zero replaced by <o, are represented by

E{Zagx®, Za = 1, c GF(m), X c GF(m!)] (2.40)

and D[Zaga%, Za = 1, C GF(m), X € GF(m!), mod (m!—1)] (2.41)
in general and by E[Za;x%i] and D[Zazx*i, mod (mf—1)] in particular. As shown in the’
previous paper, by taking a suitable number of initial flats and carrying on the operation D
of (2.41), we get difference sets of certain description. The difference sets with the above

properties need not ensure the existence of EG(t, m).
(5) By considering the planes in £G(3, 2) we get the difference set

0,1,2,4), (o, 5,6, 3) (2.50)

both of cycle 7 with the property that the differences arising from the former (mod 7) contain
all integers less than 7 twice each and in the latter once. We now replace the set (2.50) by

i (0,1,2,4), (0; 1, 2, 4) (2.51)
which satisfy the same properties as (2.50) and generate the following planes
0,1,2,4 0,1,2,4)
1,2,3,5 0,2,3,5
2,3,4,6 0, 3,4,6 |
3,4,5,0 0, 4, 5,0 i (2.52)
4,5,6,1 0, 5, 6, 1
5,6,0,2 wﬁﬂj{
6,0,1,3 0,0,1,3)

These do not constitute the 14 planes in EG(3, 2) for the planes (0, 1, 2, 4)and (o0, 1, 2, 4)
intersect in 3 points whereas in EG(3, 2) any two planes can intersect in only two points.

(6) It is, however, possible that certain additional requirements beyond the properties
of difference sets are needed to establish the existence of a finite geometry. It is hoped to
consider these things in detail in a subsequent communication.

§3. ActuaL CONSTRUCTION OF DIFFERENCE SETS.

In the previous ar! icle it has been shown that & difference set can be constructed by a certain
operation D from the powers of a primitive element representing points on a d-flat whose
equation is given as a linear combination of elements in GF(mi+l) or GF(m!) according as
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the geometry is projective or Euclidean. An alternative method of representation of points
in PG(t, m) is by ordered sets of elements (by, by, . . . b)) belonging to GF(m) and not all simul-
taneously zero, two sets (by, by, . . . by) and (cq, ¢y, . . . ¢) representing the same point
when and only when there exists a non-zero element of GF(m) such that b, = oc; (i = 0, 1,
2, . . . t). Inthe case of EG(t, m) points are represented by ordered sets of elements (04, bg,
. . . by) belonging to GF(m).

The correspondence between the representation of points as elements of GF(m") and
ordered sets of elements in GF(m) is brought out by the representation of the elements in GF(m”)
as powers of a primitive element or a polynomial of degree less than 7 in GF,,[«]. The polynomial

apy +ax+ .. . +a, 271 congruent to a certain element 2P represented as a power of a
primitive element supplies the unique correspondence
xﬁ—>(a0, a1, o . o Qpey) (3.10)

so that given one the other can be found out.

(2) In this representation a d-dimensional flat in PG(t, m) is represented by (t—d) homo-
geneous independent set of linear homogeneous equations in (¢+1) ordered sets of elements
from which all the points on the flat can be deduced as solutions. In the case of EG(t, m), a
d-flat is represented by (f—d) consistent and independent set of linear equations in the ®
ordered set of elements in GF(m) and all the points on the flat can be deduced as solutions to
these equations. In order to construct a difference set starting from a d-flat in PG(t, m) or
EG(t, m) we may take its equation as given above and take the powers of #’s corresponding to
the solutions of these equations.

(3) In any particular case the simpler of the two representations may be used as a general
approach to the problem but much quicker methods are often suggested by the procedure in-
volved in any one of these methods,

(4) It has been shown that by considering a (t—1)-flat in PG(t, m) we can find a set of distinct

integers do, dy, . .. d: (3.40)

where k£ = (m'—1)/(m—1), such that d; < v = (mt+1—1)/(m—1) for all ¢ and the differences
arising from them mod v contain all integers less than v each A = (mt=1—1)/(m—1) times.

We muy choose the (t—1)-flat co+ciz+ . . . ¢;_;2t=1 in which case we get the result that
the d’s of (3.40) are distinct solutions of

@ = gy Foyx 4 . . . zt=! (3.41)
for all sets of ¢’s in GF(m) not simultaneously zero. As an illustration we may take ¢t = 3, m = 3;
the d’s are solutions of T+ = ¢ 012+ Con? (3.42)

where ¢’s are in GF(3) and are not simultaneously zero. With the help of the power cycle table
for GF(3¢) we get the solutions as

0,1,2, 5,12, 18, 22, 24, 26, 27, 29, 32, 33 (3.43)

which constitutes a difference set for k = 13, A = 4 and v = 40.
(5) Taking the representation of a point as an ordered set (bo, b1, . . . b)) we may take
the (t—1)-flat defined by b, = 0, in which case the d’s of (3.40) are distinct solutions of the corre-
spondences 2 s (b, by, . . . b, =0, ..b) (3.50)

for b's in GF(m) not simultaneously zero. In this case we need only go through the table of
power cycle for GF(m!*!) and take the powers of those elements which are congruent to
polynomials with the coefficient of the r-th power zero. Since the power cycle is recorded up
to 2%, all distinet solutions of (3.50) can be got from these alone. As an illustration we may
choose ¢ = 3, m = 3 and by = 0, i.e. the constant term is zero. Going through the power cycle
for 3¢ we find the solution as
1, 2,3, 6,13, 19, 23, 25, 27, 28, 30, 33, 34 (3.51)

This difference set can be derived from (3.43) by the addition of 1 to each of its elements.

(6) We can go a step further and represent the results with reference to certain congruence
properties of the minimum funection. If

Hl—qat— . .. —qq (3.60)

is a minimum function then all the powers of & can be represented by a polynomial of order
less than or equal to ¢ in GF,[x]. If .

a* = Ey b+ . . ¢l 2t (3.61)
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then the £’s satisfy the recurrence relations

fo=oby bupy =& Hady (=12 .1 (3.62)
7 E;+1 = atf;+@t—1§;_1+ R 'I'aofgtx_t (3.63)
with the initial conditions £, = 0 (2 = 0,1, . . . (i—1) and v). From this by using the result
of the previous para., we get that the d’s of (3.40) are distinct solutions of
&iiw=0 (3.64)
foranyr = 0,1, 2, . .t where the ¢ satisfy the recurrence relations -
£, = atita, it + ... +aot_, (3.65)

deduced from above. It is interesting to see as to how the difference set depends upon the
periodicities of functions satisfying linear difference equations.
(7) It has been shown that by considering a (f—1)-flat not passing through the point re-
presented by the null element in GF(m?) we can find a set of k = m‘~! integers
dy, do, . . . dg (3.70)
such that d,<v = (m!—1) for all ¢ and the differences arising from this (mod ») contain all
integers less than v and not divisible by 6 = (m'—1)/(m—1), A = m!~2 times each and those
divisible by 6, zero times. We may choose the initial flat ag+ax+ . . +a,12-1 in which
case we get the result that the d’s of (3.70) are the solutions of
a?t? = gofajx+ . .. Fap_q2ttl (3.71)
where x is o primitive element of GF(m!) and the a’s assume all possible values in GF(m) subject
to the restriction Za = 1. For illustration we may take ¢t = 3, m = 3 in which case the d’s
are given by

Dlag+aix+as22; Za =1 C GF3); X ¢ GF(27); mod 26] (3.72)

With the help of the power cycle table for GF(33) we get the d’s as
0,1, 28,11, 18, 20, 22, 23 (3.73)
(8) Taking the representation as an ordered set (b, b5 . . . b;) we may take the ({—1)-flat
b, = a# 0. Hence we get the result that the d’s of (3.70) are the solutions of the correspondences
24t s (by, by . . b=, . .. by) (3.80)

where o is a non-zero element of GF(m) and others are free in GF(m). As an illustration we may
take t = 3, m = 3 and take the (t—1)-flat, b, = 2 in which case we have to find the solutions
of the correspondences .

z4+i26 5 (B4, 2, bg) (3.81)
where the b’s assume the values 0, 1 and 2. Going through the power cycle for GF(33%) we find
that '

xt, 27, 14, 216, g18, 10 22 23 24 (3.82)
are congruent to polynomials of the form &, 4-2x 46322 and hence
4,7, 14, 16, 18, 19, 22, 23, 24 (3.83)

gives the required difference set which is obtainable from (3.73) by the addition of 22 to each
of its elements.
(9) The difference set obtained from the solutions of
z4+i26 5 (by, 0, bg) (3.90)
18 0,2,8,12,13,15, 21, 25 (3.91)
To this we add 00, corresponding to the point (0, 0, 0) through which the flat b, = 0 passes.
The distinet set of integers in (3.91) reduced modulo 13 gives the difference set corresponding
to the values # = 2, m = 3 of the theorem in para. (4) of this article. The set (3.91) with oo
taken as such is of cycle 13, i.e. addition of 13 to all integers does not alter the set.
*(10) As before, we can express these results with reference to solutions of linear difference
equations. If
=@y 2t=1— . .. —ay ) (3.10, 0)
is a minimum function, then the powers of #’s can be represented by polynomials of degree
less than or equal to ((—1). If

xﬁ=g§+§§w+‘. N A (.10, 1)
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then the §’s satisfy the recurrence relations

£8,, = dofp ", £y = €57 ity (3.10, 2)
gy = a,_ b7 FaofpT i . . Faoksl) (3.10,3)
Hence we get the result that the d’s of (3.70) are the solutions of
£ipin = aF0 (3.10, 4)
foranyr =1,2, .. .t where & satisfies the linear difference equation
€, =@y . .. +aofsl) (3.10, 5)

(11) Further aspects of the problem where the a’s themselves are determinable from the
solutions of certain polynomial equations connecting them will ke discussed in a subsequent
communication.

(12) In the general case where the nuniber of sets is more than one the following result
will be helpful. If

agr*0 4ax®*1 4 . ., agx®a (3.12, 0)
is the equation to a d-flat in PQ(¢, m) or EG(t, m) then
d
Z agme, (3.12, 1)
=0

for all integral (r<t<1 or t) represents a d-flat belonging to the geometry. If the

differences arising out of D[Zax™] and D[Zaam™"«;] are not identical then (3.12, 1) cannot be!
obtained from (3.12, 0) by multiplication of the latter with any power of x. The proof is immediate

for otherwise the differences will be equal.

(13) This gives a general method of getting at the initial flats which give the difference
sets. We start with any d-flat of a known cycle and get the difference set it supplies. The
other difference sets are to be obtained by multiplying the integers of the first set by, m, m2,
...... and reduction to appropriate modulus provided the differences arising out of the
new sets are not identical with those from any of the previous sets. If the required number
of sets are not complete by this process we have to choose another initial flat such that the
differences arising out of the difference set it supplies are not identical with those of any set
obtained above and obtain another series by multiplying with m, m2, . . . . If this does not
cover the requisite number some more initial flats have to be chosen such that they cannot
be derived from any of the initial flats already used by multiplication with a power of « and
fill up the remaining difference sets with their help. This principle will be applied in the
following illustrations.

(14) It has been shown in the earlier paper that by considering the lines in PG(t, m) we get
the theorem that if m = p" (p being a prime) and 6 = (m!+t1—1)/(m2—1) is not integral it is
possible to find y = (m*—1)/(m2—1) sets

doj, dajs - -+ dmj (3.14, 1)
(j=1,2,...y) such that the differences arising from them mod v = (m!t1—1)/(m—1)
contain the integers less than » once and once only. As an illustration we may take ¢ = 4,
m = 2. In any case we can take ay+a,x to be an initial line. The D[ay+a; x] can be obtained
from the powers of those elements which are congruent to a first degree polynomial from the
table of power cycle corresponding to 24. This comes out as (0, 1, 18). The other sets ob-
tained by multiplying this by 2, 22, 23, 2¢ and reduced to modulus 31 are (0, 2, 5), (0, 4, 10),
(0, 8,20) and (0,9,16). The differences arising from these 5 sets are all different from one another
and this is the requisite number of sets. ’

(15) All the difference sets constructed in the previous paper follow from the general
principle enunciated here. Thus the difference set

(0, 1, 22), (0, 2, 8), (0, 3, 14), (0, 7, 17) (3.15, 1)
derived in the earlier paper by considering lines in EG(3, 3), has the property that the differences
arising from them mod 26 contain all integers less than 26 and not divisible by 13, once and
those divisible by 13, zero times. This can be constructed from the set (0, 1, 22) and two
others (0, 3, 14) and (0, 7, 17) obtained by multiplying this with 3 and 32 and a fourth set (0, 2, 8)
which remains invariant on multiplication by any power of 3.
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§4. SoruTioNs To COMBINATORIAL PROBLEMS.

With the help of the difference sets derived above cyclical solutions to several combina-
torial problems can be derived. Some of the important combinatorial problems that have
practical applications in the theory of design of experiments in statistics and their solutions
derivable from number theory results and finite geometrical configurations are discussed
below. '

(A) Kirkman’s School Girl Problem.

(2) The problem originally suggested by T. P. Kirkman is as follows. A school mistress
is in the habit of taking her fifteen girls for a daily walk and they are arranged in 5 rows of
3 each so that each girl might have two companions. The problem is to dispose them so that
for seven consecutive days no girl will walk with any of her school fellows in any triplet more
than once. A generalisation of this is as follows. There are v girls to be formed in n rows
of & each to be taken for walk on 7 consecutive days such that any pair of girls are in company
for A days. The necessary conditions for the solution to exist are

vr = bk, Alv—1) = r(k—=1), v=nk (4.20)
b>v4r—1
The last inequality is due to Bose (1942).

(3) In the earlier paper it has been shown that m! objects can be arranged in 7 = (m!—1)/
(m—1) groups such that each group contains all the m! objects in m sets ol m!~1 objects
each such that any pair of objects are repeated in A = (m!~1—1)/(m—1) sets in the totality.
.The method of construction is to take a (t—1)-flat in EG(t, m) not passing through the point
represented by the null element of GF(m?) and get the difference set

dy, dg, . . . dg (4.30)
associated with it. The arrangement into m sets in the first group is given by
dy+10, do+10, . . di+16 (4.31)
1=0,1,2, ... (m—2)
and another set containing the remaining objects, where 8 = (m'—1)/(m—1). The other
groups are obtained from (4.31) by the addition of integers 1, 2, . . . (§—1) to each of the

above sets and reduction to mod (m*—1) and filling the last set by the remaining elements.
This method of generating the arrangement in the first group can be represented by

; [(d1, dg, . . . di) S(6)+R]mod (m*—1) , (4.32)
and the process of generating the rest of the groups by
PC0) [(dy, do, . . . . dy) S(6)+R] mod (m*—1) (4.33)

8(0) denoting a step 6 and PC(f) (partial cycle) denoting the groups obtained by the addition
of 0, 1,2, ... (0—1) and R standing for the set of remaining objects of which one object is
represented by oo which remains invariant when added to any element of the residue classes
mod (mf—1).

This arrangement supplies the solutions to cases where

v=m!, k= m!~1, n=m(= p°, prime power) (4.34)

r= (mt—1)j(m—1), A = (mt=21—1)/(m—1) (4.35)

b = [(m+1—1)/(m—1)]—1 (4.36)

(4) Solutions are always available in the case '

v =mtk =md n=mt-4 (4.40)

r=¢(t—1, d—1, m), A = (t—2, d—2, m) 441)

. b=¢(t, d, m)—¢(t—1,d—1,m) (4.42)

where
_ (m=1)mt=1) . . . (mf-4H1—1)
. d.m) = T A =1y .. (m=1) (4.43)

The method of construction is to take a (t—1)-flat in PG(t, m) and list all (d—1)-flats
lying on it. Through each (d—1)-flat there pass m'~¢, d-flats which do not lie entirely in the
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(t—1)-space with which we start. If we omit the points in this (f—1)-space, the mt-4, d-flats
through a (d—1)-flat constitute an arrangement of m! points of the geometry thus giving one
required group. There are as many arrangements as there are (d—1)-flats in a (f—1)-space.
The values of A and r are derived from the considerations of finite geometrical configurations
and are discussed in the earlier paper. This solution cen be éasily deduced from the considera-
tion of d-flats in PG(Z, m) in particular cases and a general solution depending on the difference
properties can also be deduced.

(56) We can deduce the solution to Kirkman’s original problem by constructing a special
transformation of points in PG(t,2). A point in this geometry can be represented by an ordered
set of (t41) elements belonging to GF(2). If we take the points with the first ierm zero then
there is a correspondence between these points and ¢ elements of GF(2%). If ag+ayx+a.x2+

v Faxt-t—at is a minimum function for GF(2') and 2B and xB*! are two elements
defined by

2B = by+byx4 . . . bqxt-? (4.50)
A = bat b, 2! (4.51)

then by = b,_1a0,
bl = bo+be_aa, (4.52)

b}_l = b_gtb 141

This defines a transformation of the ordered sets of points (bg, b1, . . . b,_;) the order of
transformation being (2¢—1). If we take any point in PG(t, 2) with the first term zero and
apply the transformation (4.52) we get (2—1) other points, stagting with a point for which
the first term is 1 and at least one of the other terms is not zero and applying the transformation
(4.52) on it we generate (2—1) points. The point (1, 0,0 . . . 0) transforms into itself. This
transformation being linear, transforms d-flats into d-flats and the totality of d-flats generated
from a single one is (2t—1).

(6) In the special case of PG(3,2), there are 35 lines with 3 points on a line. The 15 points
in it are represented by 15 non-zero elements

a0, 2, .. a4, (4.60)
of GF(24). 1If y is a primitive element in GF(23) then the correspondence
¥°—(0,0, 1), y*>(0, 1, 0), y2—>(1,0,0) (4.61)

y3>(1,0,1), y4>(1,1,1), y5->(1,1,0)
¥°—>(0,0, 1)

defines a transformation of order 7. If we start with the peint (0, 0, 0, 1) in PG(3, 2) and apply
(4.61) on the last three coordinates we get the points

(0,0,0,1),(0,0,1,0),(0,1,0,0), (0,1,0,1), (0,1, 1, 1), (0,0, 1, 1), (0, 1, 1, 0) (4.62)
which can be identified as
20, a1, a2 a9, 27, 212, 213 (4.63)

Thus the transformation given above transforms the points (recording only the powers)
cyclically.

0512595712130 (4.64)
Similarly starting with the point (1, 0, 0, 1) we get the cycle
4—->10->14—>11->6—>5->8->4 (4.65)

The point 3 goes into itself. Starting with an initial set of lines which contains all the points of

th? geometry and applying (4.64) and (4.65) we get the required arrangement, this method

k‘)ﬁ‘lng applicable in the general case of lines in PG(¢, 2). Starting with the arrangement on the
t day, we derive all the others.
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Ist day (0,5,10), (1,6,11), (2,7,12), (3, 8,13), (4,9,14)
2nd ,, (1,8,14), (2,5,6), (9,12,13), (3,4,0),  (10,7,11)
3rd ,, (2,4,11),  (9,8,5), (7,13,0),  (3,10,1), (14,12, 6)

9,10,6), (7,4, 8), (12,0,1), (3,14,2), (11,13, 5)
5th ,, (7,14,5), (12,10,4), (13,1,2), (3,11,9), (6,0, 8)

(12,11,8), (13,14,10), (0,2,9), 3,67, (51,4

(13,6,4), (0,11,14), (1,9,7), 3,5,12), (8,2, 10)

(B) Incomplete Balanced Designs.

{(7) An arrangement with v objects in b sets of k<<v each is said to be an incomplete balanced
design if each object is used r times and every pair of objects occurs in A sets. When the b sets
form into r groups of n sets each such that each group contains all the » objects, the incomplete
balanced design is said to be resolvable. Some of them have been already considered in the
above paras. We identify the » objects with the points of a finite geometry and the b sets
with all the d-flats init. Then as observed by Bose (1939) we get solutions to incomplete balanced
designs of certain type. Since the finite geometries PG(¢, m) and EG(¢, m) are capable of
compact representation by the use of difference sets, the solutions to these designs can be
compactly represented by the same sets. We give below two tables giving the non-resolvable
and resolvable designs. Some of the designs which are not derivable by these methods have
also been included with due references. The methods of derivation have also been indicated
to make the tables self-explanatory. Only those designs which are useful in practical experi-
mentation have been recorded. Other designs with values higher than those given here can be
obtained in the manner digcussed in the article and some other special devices.

TaBLE 2.

Non-resolvable balanced designs.

. |
Seyrxa.l ' . b r F R Y Solution,
No. I ’
| ! i H
18 ' 10 5 3 | 2 1(Q1,2,3),(1, 3,%)moed 5.
2 7 7 3 1 3 1! 1 /(1,2 4 mod
3 ! 9 18 8 4 3 1(1,2,3,5),(1, 4 5, 8) mod 9.
4] 10 0 15 | 6 4 2 | B.S from (20).
5 10 30 9 3 2 (1, 2, 3), (1, 3, 7), (1, 5,20) mod 9 and PC (1, 4, 7) mod 9.
6 11 11 5 5 2 (1, 3, 4, 5, 9) mod 11
7 13 13 4 4 1 (1, 2, 4, 10) mod 13.
8 13 26 6 3 1 (1, 3, 9) (2, 6, 5) mod 13.
9 15 15 7 7 3 (1, 2, 3, 8, 10, 13, 14) mod 15.
10 19 57 9 3 1 (1, 7, 11), (2, 3, 14), (4, 6, 9) mod 19.
11 19 19 9 9 4 (1, 4,5,6,7,9,11, 16, 17) mod 19.
12 21 21 5 5 1 (1, 4, 5, 10 12) mod 21
13 28 36 9 7 2 B.S from (15).
14 31 31 6 6 1 (1, 2, 4, 11, 15, 27) mod 31.
15 37 37 9 9 . 2 (1, 7, 9, 10, 12, 26, 33, 34, 16) mod 37.
16 41 82 10 5 | 1 (1, 10, 18, 18, 37), (5, 8, 9, 21, 39) mod 41.
17 | 57 57 8 8 1 (1, 4, 6, 14, 15, 21, 33, 37) mod 57.
18 73 73 9 9 1 (1, 2, 4 8, 16, 32, 37, 55, 64) mod 73.
19 91 91 10 10 1 (1,2, 17, 1], 24 2'7 3o 42 54, 56) mod 91.
20 16 16 6 6 | 2 (ay, as, ag, by, ¢y, dl) dlcychc
21 | 25 | 50 8 [ 4 | 1 | (ay as by, es) (@, ag 1 dg) dicyelic.
22 31 31 10 10 | 3 (ay, ag, ay, by, by, by, €1, Co, 4, dg) i
(ay, ag, by, bs, c3, C4, d3, d5, dg, €) mod 7 (for the suffixes
(ag, a5, by, by, cy, C¢, A3, ds, a,f) keeping a, b, . ..
(as, @y, O, bG’ C2, C5s ds, d 61 g) ! ﬁX@d).
and (ay, ag, a3, a4, A5, Gg, Ay, ©, £ 9
(bl’ b2’ b35 b4s bB’ bﬁ’ b79 €, f’ g)
(01’ C2, C35 C4y Cp5 Cgs C75 € f’ g)
23 21 30 10 7 3 B.8 from (22)
4 !

(22) is due to Bhattacharya (1945).
(1) to (21) are derivable from the considerations of this paper but many solutions have been already
given in Fisher and Yates’ tables (1943).
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Use of table (2).

(x, ¥, 2. ...) mod n means that all the blocks can be generated from this by adding
1, 2, . . . and replacing any integer which exceeds » by the integer congruent to mod =.
PC(6) means that the above process should be carried on till only 6 blocks are obtained, the
(0 4+1)-th block being identical with the first.

B.S from (X) means that the design can be obtained by cutting out one block and all the
objects in it from the design corresponding to X.

(20) and (21). These solutions are called dicyclic solutions and are taken from Fisher
and Yates’ tables. The process of development is to fix a, b, ¢, . . . first and change the suffixes
cyclically and then change a, b, ¢, . . . cyclically. Besides these there are a few designs which
may be recorded here for completeness.

Solution for v =25 =b,r =9 =1k, 2 = 3.

(1,2,5,6,11,12,17,20,23) (1,3, 5,7, 10, 12, 18, 21, 24)
1,2,9,10,15,16,17,21,25) (1, 3, 9, 11, 14, 16, 18, 22, 23)
(1,2,13,14,7,8,17,22,24) (1, 3,13, 15, 6, 8, 18, 20, 25)
(3,4,9,10,7,8, 17, 20, 23) (2,4,9,11, 6, 8, 18, 21, 24)
(3,4,13,14, 11, 12, 17, 21, 25) (2, 4, 13, 15, 10, 12, 18, 22, 23)
(3,4, 5,6,15,16, 17,22, 24) (2,4, 5, 7, 14, 16, 18, 20, 25)
(1,4,5,8,10,11,19,22,25)  (5,9,13, 6,10, 14, 17, 18, 19)
(1,4,9,12, 14, 15,19, 20, 24) (5,9, 13,7, 11, 15, 20, 21, 22)
(1,4,13,16,6,7,19,21,23)  (5,9,13, 8, 12, 16, 23, 24, 25)
2,3,9,12, 6,17, 19, 22, 25) (7,11, 15, 8, 12, 16, 17, 18, 19)
@, 3,13, 16, 10, 11, 19, 20, 24) (6, 10, 14, 8, 12, 16, 20, 21, 22)
©,3,5,8,14,15,19,21,23) (6, 10, 14, 7, 11, 15, 23, 24, 25)
(17, 18, 19, 20, 21, 22, 23, 25)

The design for v = 16, b = 24, r = 9, k = 6, and A = 3 is obtained by omitting the integers
17 to 25 from the above. The solution given above is due to Bhattacharya (1944). The
solution for v = 28,b = 63, r = 9, k = 4 and A = 1 does not possess an elegant representation.

TaBLE 3.

Resolvable balanced designs.

Sle\;‘(l)a..l v b r k A n Solution.
1 8 14 7 4 3 2 PC(7)[(1, 2,3, 5)+R]mod 7.
2 9 12 4 3 1 3 PC (4) [(1, 6, 7) S(4)-+R] mod 8.
3 16 20 5 4 1 4 PC (5) [(1, 3, 4, 12) S(5)<4 R] mod 15.
4 25 30 6 5 1 5 PC (6) [(1, 3, 16, 17, 20) S(6)+ F] mod 24.
5 49 56 8 7 1 7 PC (8) [(1, 2, 5, 11, 31, 36, 38) S(8)-+ R} mod 48.
6 64 72 9 8 1 8 | PC(9)[(1, 6, 8, 14, 38, 48, 49, 52) S(9)+ R] mod 63.
7 81 90 10 9 1 9 PC (10) (1, 13, 35, 48. 49, 66, 72, 74, 77) S(10)+ R)
mod 80.
8 15 35 7 3 1 5 | [(1, 6, 11) S(1)).
CT(1.2.3.10.8.13.14)(5.11.15.12.7.6.9).
9 21 70 10 3 1 71 [(1, 4, 10), (2, 5, 11), (3, 6, 12), (7, 14, 18), (8, 15, 16),
(9, 13, 17), (19, 20, 21)].
CT(1.4.7.10.13.16.19)(2.5.8.11.14.17.20)
(3.6.9.12.15.18.21).
[(1, 6, 11) CT1, [(2, 4, 12) CT1, [(8, 5, 10) CT).

. (1) to (8) follow from the consideration of this paper. Use has been made of Desargusian difference sets
given by Bose (1942a).
(9) has been copied from page 280 in Ball’s Mathematical recreations.
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Use of table (3).

The method of generating the complete solution will be indicated with reference to a
particular solution No. (3) of the table.

[(1, 3, 4, 12) 8(5)+R] stands for n = 4 sets of k = 4 each containing all the v = 16 objects.
The method of generation is to take the initial set (1, 3, 4, 12) and get (n—2) = 2 (for this
problem) more sets by the addition of 5 and 10. (In general if 8(6) is found then (n—2) more
sets are generated by the addition 6, 26, . . . . (r—2) 8 and reduction to reminder after dividing
by (v—1) indicated in the table as mod (v—1).) In this case (v—1) = 15. Hence we get the
(n—1) sets including the initial set as (1, 3, 4, 12), (6, 8, 9, 2), (11, 13, 14, 7). To this we add
the remaining set of elements in 15 and a 16th element to be denoted byco (R stands for remaining
elements in (¢ —1) and a v-th element to be denoted by o). Thus we get the 4 sets of the first

group as
[(1, 3, 4, 12) 8(5)+RB] = (1, 3, 4, 12), (6, 8, 9, 2), (11, 13, 14, 7), (5, 10, 15,00)

The other 4=(r—1) groups are obtained by operating PC(5) on this, i.e. by adding 1, 2, 3, 4
to each of the above sets, the element oo remaining unaffected. Thus the 2nd, 3rd, 4th
and 5th sets are

(2,4,5,13) (7,910, 3) (12, 14, 15, 8) (6,11, 1,c0)
(3,5,6,14) (8,10,11,4) (13,15,1,9) (7,12, 2,00)
4,6,7,15) (9,11,12,5) (14, 1,2, 10) (8, 13, 3,00)
(5,7,8,1) (10,12,13,6) (15,2, 3,11) (9, 14, 4,00)

Addition of 5 brings the last set back to the first, set. PC(f) (partial cycle) stands for
generation of other sets by the addition 1, 2, . . . (—1).

(8) and (9) require special mention. - The contents of rectangular brackets always give
a set. The rest of the sets are generated by a cyclical transformation indicated below;
(1.2.3.10.8.13.14) means changing 1t02,2t03,....and 14to 1. For further particulars
reference may be made to para. 6 of this section.

(C) Hypercubes of Strength d.

(8) Let us consider ¢ factors Ay, Ay, . . . A, each of which assumes m different values
called the levels of a factor. The m levels of the i-th factor may be represented by 1;, 2,
. m;. We define an ordered set (xiy,235 . .. %) as a combination of ¢ factors where
x,Y,2 . .ucan assume values from 1 to m. There are m! combinations on the total of which
a subset of m% combinations may be called a (¢, m, k) array. A (¢, m, k) array is said to be of
strength d if all the m? combinations of any d factors out of ¢ occur an equal number (mk-9)
of times, in which case the array may be represented by (¢, m, k, d). Evidentlyt>k>d. The
general problem is the construction of (¢, m, k, d) arrays and discuss the optimum values of ¢ and d
for given values of m, k, d and m, k, ¢ respectively.

(9) The array (¢, m, 2, 2) may be identified with the existence of (!—2) orthogonal latin
squares of side m. This may be taken as an alternative definition of mutually orthogonal
" latin squares which has led to the above generalisation to orthogonal cubes and hypercubes
of a more useful type different from those defined by Kishen (1942). His consideration of
first order cubes leads to arrangements of strength 2 only. The above definition leads to the
possibilities of k dimensional hypercubes of strength d <k.

(10) The existence of the array (f, m, k, d) leads to confounded factorial arrangements
consisting of ¢ factors each at m levels arranged in blocks of m* plots, preserving all main effects
and interactions up to the order (d—1). Its use in getting balanced arrangements for asym-
metrical factorial designs has been discussed by the author in (Rao: 1943).

(11) It is shown below that the array (¢, m, k, d) can always be constructed for optimum
values of t and d to be determined when m is a prime or a prime power with the help of k di-
mensional projective geometry with (m-1) points on a line.

(12) We take a (k—1)-flat in PG(k, m) and call it the flat at infinity. Through each
(k—2)-flat on the (k—1)-flat at infinity there pass m, (k—1)-flats (excluding the one at infinity)
which do not meet in any finite point (all points other than those on the (k—1)-flat at infinity
are called finite points) in which case they are said to be parallel. If we identify the (k—2)-flats
at infinity with factors and the m parallel (k—1)-flats through each of them with the m levels
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of that factor by some method of identification, then any of the m* finite points in PG(k, m)
can be uniquely represented by an ordered set depending on the nature of the flats passing
through them. We thus get m* combinations corresponding to m* finite points. Since any
two (k—1)-flats belonging to different (k—2)-flats at infinity as vertices intersect in a (k—2)-
flat we get the result that any combination of any two factors occur in m*-2 combinations
corresponding to m*-2 finite points on this (k—2) flat.

Hence we get the result that the optimum value of ¢ for (¢, m, k, 2) is the number of (k—2)-
flats lying on a (k—1)-flat. This number is (m*—1)/(m—1). This leads to an important result
in the theory of factorial experimentation in the design of experiments. The mazximum number
of factors each at m levels that can be used in an experiment with blocks of size m* (plots) such that
all the main effects and first order interactions are preserved is given by (¥ —1)/(m~1).

(13) The conditions for the array (¢, m, k, 3) are satisfied if any three (k—1)-flats through
3 different vertices or (k—2)-flats at infinity meet in a (k—3)-flat. This requires that the
(k—2)-flats at infinity which are to be identified with factors must be such that none of them
passes through the intersection of any other two, i.e. no three of the chosen (k—2)-flats infinity
should have a common (k—3)-flat at infinity. The optimum value of ¢ is the number of (k—2)-
flats at infinity which possess this property. We may determine this number for m = 5, k = 3.
We need consider a plane [(k—1)-flat] with 52+5+1 points and lines. These lines are to be
identified with factors. In order to satisfy the above conditions we have to choose a set of
lines such that no three of them have a common point. This may be detected by actually
finding the lines and selecting properly. In this case we get the number of such lines as 4, 6
and 6 for the values of ¥ = 3 and m = 3, 4 and 5 respectively. For the actual construction
of the array we have to consider the geometry of k dimensions.

(14) From this it follows that if we are using blocks of 53 plots the maximum number of
factors, each at 5 Jevels, that can be allowed in order to preserve main effects and intefactions
up to the second order is 6. In the case of m = 3 and 4, the corresponding values are 4 and 6
respectively.

(15) In general the highest value of ¢ for which (¢, m, k, d) can be constructed is the number
of (k—2)-flats at infinity such that no d of them should have a common flat at infinity of dimen-
sions less than or equal to (k—d). The method of constructing is to take the (k—2)-flats satis-
fying the above condition as vertices to be identified with the factors and get ordered sets for
the m* finite points corresponding to the (k—1)-flats passing through them from the chosen
vertices as indicated in para. (11) of this section. .

(16) The general methods of finding this optimum value and the construction of arrays
of strength d and their application in the problem of confounding in symmetrical and asym-
metrical factorial experiments will be considered in detail in a subsequent communication. It
appears that these arrays supply proper representation of orthogonal cubes and hypercubes
without resorting to diagrammatic representation.
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