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Envelope-soliton propagation for three interacting coherent
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SUDHANSHU S JHA
Tata Institute of Fundamental Research, Bombay 400 005

MS received 7 April 1978

Abstract. An initial value problem is set up to describe propagation of a low-fre-
quency wave-field interacting with two almost transparent wave-fields in a dispersive
medium. With no linear loss, perfect phase-matching, and equal group velocities for
the two high-frequency wave-packets, it is shown how the solution of the above pro-
blem can evolve to well-known soliton solutions of the sine-Gordon equation. Other
attempts for solving the more general problem in which all the group velocities are
different are also discussed.
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1. Introduction

In recent years, there has been a revival of interest in investigating pulse-like solitary
wave propagation in different nonlinear dispersive media (Zakharov and Shabat
1971; Scott et al 1973 ; Lamb 1971 ; Armstrong et al 1970; Bers et al 1976; Zakharov
and Manakov 1976; Makhankov 1978). In particular, the case of coherent-optical
pulse propagation in a resonant two-level medium has been considered extensively
by Lamb (1973; 1974; 1976). Armstrong et al (1970) had found that in the slowly-
varying envelope approximation (SVEA), the propagation of a low frequency wave
(w,) interacting with two other (almost transparent) waves (wy, ws, wg=w;—+w,) of
group velocities V, ~ Vy=u can be described by equations similar to those of the
resonant two-level system. Their method of obtaining localized travelling wave
solutions was applied later to a specific problem in plasma physics by Nozaki and
Taniuti (1973). In this paper, we show that the complete initial value problem can be
set up for describing such propagations of interacting waves, and their evolution to
soliton solutions can be obtained by using standard methods in the field. For defini-
teness, we consider here only the case of interacting electromagnetic excitations
(individually longitudinal or transverse) but similar results follow for other types
of three interacting classical fields in physics. Even in this limited sense of electro-
magnetic waves, our approach is general enough to deal with the interaction of any
three wave-packets which may individually represent either an ionic mode (phonon),
an electronic plasma mode, a transverse photon mode, or any of the possible collective
coherent excitations of a charged system. In this way, it uses a common framework
for different processes, instead of individually considering stimulated Raman process
(Steudel 1977), etc. Moreover, note that we are interested in finding the complete
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solution of the initial value problem instead of just the possible particular soliton
solutions, already obtained for the first time by Armstrong et al (1970). In the end,
we will discuss the mathematical difficulties associated with the solution of the initial
value problem in the general case in which all the group velocities are different, and
for which, in reality, only a numerical method is available at present.

2. Three interacting electromagnetic excitations

In the absence of linear damping and nonlinear interaction between the three waves in
a ‘homogeneous’ medium, we can describe these electromagnetic modes by the
electric fields e; &; (r, t) =e; A; exp (—i w; t-+i q'1); i=1, 2, 3; where e; are unit
polarization vectors. The transverse and the longitudinal mode frequencies are
determined by the relations e, (q, w) =c?¢?%/w® and ¢, (q, w) =0, respectively. The
linear damping rates are determined by I';=[Q? e, (q, Q)/(8/0 Q) Q2e;, (q, Q)] Qs
and T, =[e (q, Q)/(0/0 Q) ¢ (9, Q)]w, and the group velocities are determined
by V;=(0w/0q);. Here ¢, and ¢, are the real and imaginary parts of the trans-
verse dielectric function, etc.,, In the presence of linear damping and nonlinear
polarization given by e, - Pyyy =, - XNL: €€ 62* E3=xnp 65" 63; € P2y = XNL
81* 635 & Py, = xXp, €183, for propagation in an effective x-direction, Maxwell’s
equations lead to the following coupled equations (in SVEA) for space-time varia-
tions of the amplitudes A4;:

(2472 410) =5, w4y 4yt exp (1220%) (18)
O 17,241, g =i8, XNy, Ay Ay exp (i

o1 253-6 [y | Ay =10, XANL 43 4,* exp (IAgx) (1b)
R I SO . o
5 + Vs py” + Ty | 43 =13, NL 41 4z exp (—iAgx). (le)

Here, Aq=0s,—qa,—4y, is the phase mismatch, V,=V,-% are x-components of
group velocities, and new frequencies §; are given by 8, = 27w? lqc [(0/082) Q (&),
for transverse waves, and 8,=[4=/(3/5()) €1 (9, Q)]w, for longitudinal waves.

Now consider the situation in which V; ~ V,=y and IFy~T3>0. Using the
new variables ' ' :

€ =x—ut; t'=t; p=—i|XNL|dyA* o Q
W= (452 33)‘1/2 [82 iAalz — 83 |A2 12] ; W(t"—>-— oo)sPV}nzconstant (3)
Ey = Arexp (—iAqx) Gl /| xne D Cado™® | xp |2 | Wil =wg @

P =p||XNL Win|; N=W || Win|; E=E, | | XNL Win| -0
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Equation (1) leads to-the new set of equations:
oot = — 2wy NE; oNJot' =y (PE* + P*E) (6)
BEfot’ + (Vi—) 0E[of = — 8 P — Ty E—1 V; AqE )
where we have taken all 8’s positive, as a particular case. Because Bloch equations

(6) imply N2 + | P |2 =const = Nijy? =1, since N(—o0) =Njp =41, | P(—c0) | =0,
they can be transformed into a new form

oplot’ =vy E+ vy #* E¥, : : (8)

b=ty P, M | ©

IR A T s

where,

The general initial value problem in our case is defined by (7)-(9). When Ag#0,
E is complex, in general. However, for Ag=0, one can assume E=FE*. Insucha
case, (8) and (9) give :

$ = — Nin [tan (o/2)]Min; =2 wy j i LA E®);
P = — Nj,.sin o; N = Nj, cos o, - - (10)

so that the propagation eq. (7) can be written as

%o — N sin o— - ‘ _ ‘
| oXoT Nin sin o—(I'y/3,) (80/8T) (1)
Where T=2wg [t—E/(V—u)]; X=£38, (Vy—u)™t (12)

| In the absence of damping term T, (11) is the well known sine-Gordon equation.

Its solutions have already been discussed by many authors (Lamb 1971, 1974), using
a Bicklund transformation, or a similarity transformation. The corresponding
initial value problem has been considered by Ablowitz et al (1973). Note that Nj,
=-}1 corresponds to the situation in which initially at time t=— oo, the wave at the
highest frequency wj fills the space, with 4,(—c0)=0, whereas Ni,==—1 corresponds
to the presence of the wave of frequency w,, with 43 (—o0)=0. However, in our
problem it has also to be noted that the relative signs of the group velocities V; =V X
can be either positive or negative. To avoid confusion, note that Armstrong et al
(1970) had assumed all group velocities positive only. Only when the wave 1 is
moving in the direction opposite to the waves 2 and 3, or when | ¥; |> | u] if they are
moving in the same direction, t=— co implies T-> — oo, otherwise t— - co implies
T— — oco. We assume that we are dealing with the former case; this is so, e.g., in
the case of the backward stimulated Raman or Brillouin process, or when V; > u

in the forward processes:” Then, for Nin = -+ 1, one has the well-known =-pulse

solution for the wave 1. - If one also retains the damping term in (11), this leads
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to a steady state saturated parametric amplifier (Armstrong et a/ 1970). When
Nin=—1 and [';=0, the initial value problem (11) can be reduced to the solution
of a linear eigen-value problem whose potential is related to the solution ¢ and
which can be constructed by using the inverse scattering method. We will discuss

this solution in the next section.

3. Solution of the initial-value problem

In the absence of damping, i.e. when I'; € & | XNL\ | Win|*2, the initial value
problem defined by (10)-(12) can be written as

&% . '
= Njp sin 13
BXoT in SIN o 13)
x—ut (x—ut)d,
T 2VNL (t — ) Vl—u ’ ( )
Nin“—"-W!in/IWin|=:f:1§ VNL=(8283)1/2|XNlelWrin| (15)
E = do/T. | (16)

Now, for definiteness, let us consider the case in which Nj,=—1, and ¢ - - o0 and
— oo imply T— -+ co and — oo, respectively. This problem can be solved by
the following inverse-scattering method developed by Zakharov and Shabat (1972)
and used by Ablowitz et al (1973) for the sine-Gordon case. One has to introduce
a complex gpinor

L) ®
a . which satisﬁes the following linear partial differential equations:
00, /oX +im v, = h(X, T) v, (18a)
00/0X — im vy =—h(X, T) v, (18b)
0v/0T =~ (if4m) (v, cos o + v, sin o), (192)
dvy/0T =— (i/4m) (v, sin & — vy cOSs o). (19b)
Here, o satisfies the sine-Gordon equation (13), with Nijp=—1, and the ‘ potential ’

SERE h(X,T)= — I_?U_(H_), | (20)

| in which ¢ 0 or multiple of 27, as X - 4 0. By cross-differentiation of (18) and
S (19) one can indeed show that the eigenvalues m are independent of X and

L
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T. Thus, if the initial value of the ¢ potential * 4 is known at a given T, say T=0,
i.e., t = x/V,, the eigenvalues m, valid for all T, and scattering solutions corres-
ponding to X > - oo, for =0, can be obtained by solving (18). By using
(19) one can then find the scattering data at any T, since it enters only as a
parameter. The  potential’ A (X, T), and hence ¢ (X, T) and E(X,T), can then
be constructed by solving the inverse problem represented the Marchenko integral

equation.
At T=0, in terms of a linear combination of the complete set of two linearly

independent solutions given by

som=[aGn]. seem =[50 e

any solution of (18), for a fixed m, can now be expanded. In particular, for real m
(in general m=m'-im"), one can introduce the scattering data as the coefficients of

the expansion of the Jost function

o (X, m') =a,(m)y+b,(m') v, (22)

which has the asymptotic form

i) _}[(1)] exp (—im'X) as X —oo, (23)
where » and  are assumed to have the asymptotic forms

v—>|i(1):| exp (im'X), v= [(1)] exp (—im'X) as X - +co. 24

The scattering coefficients a, and b, can be analytically continued to the upper-half
m-plane, Im m>0, if the potential & (X, 0) is well behaved. Then the zeroes of ay(m)
in the upper half-plane give the discrete eigenvalues m;(j=1, 2,...N), and at these
values one has

@y =cjov (X, my): cjo = by (my). (25)
Equations (19) then lead to the following 7-dependence of these scattering coefficients:
ap(m') =ay,(m'), bp(m') = b, (m") exp (iT/2m") » (26a)
Gr  =cpexp (IT2m). - (26b)

In terms of these coefficients, the complete solution of the initial value problem is
obtained by solving the Marchenko integral equation problem:

K, (X,Y)=B*(X+ V)— f;‘}dk (%42 B* (¥ +2)

X By (k + Z) Kp (X, K) @7
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B0y =L [* dm 2o exp (i x + T2
' 2 J —w a, (m') -
- =i 2?;1 Co ©Xp [i(my X + T2my)] - (28)
h(X,T)z__lQ‘i=_zK (X, X) | B (29)
29X - T o
X . __ 0o
a(X,T)=o(T,T)_,+4fT dY Kp(V.Y); EQT) = 2. (30)

The solution K (X, X) of eq. (27) contains development due to two different parts:
the part associated with discrete eigenvalues 7; which gives rise to soliton solutions,
if any, and the part associated with the continuous eigenvalues (the first term in (28))

which gives rise to a background. However, it can be shown that the contribution

due to the background part falls off as 1/4/7, for any X, so that in the asymptotic
limit the discrete part, if it exists, dominates. Although, it is necessary to keep the
background part to assure vanishing of the non-causal contributions. from the
discrete part, as long as we retain the contributions only in thé causal region, we

can ignore the background part. In such a case, one can solve the Marchenko

problem to obtain

2

s
;1372{111 [det (I:{—'AA*)]}-]--W o

where the matrix elements of the N X N matrix 4 are given by

Ay _ (€s0ei0™)" exp [E (_1_——._}..) TJ exp [i(m;—m;*) X]. (32)
. C(mi—=m® T 14\m omp* ‘ ‘ S

Note that the above truncated solution may satisfy the given starting initial condition
h(X,T=0)=Fh(X,0) only after a possible translation of axes, for each Aij.
From the preceding analysis it is quite clear that the crucial problem one has to

solve for investigating the evolution of the initial value of E to N- soliton solutions at

large T is to obtain the discrete eigenvalues m; of (18), and the corresponding
coefficients ;). For complete solution at any 7, the scattering coefficients ay(m’) and
bo(m’) for continuous eignvalues are also needed. This eigenvalue problem can
be rewritten in the Schrédinger forms (at T=0)

(— i h2;'if{1)g&;mz¢, - o R o)

ax: dx

(*a»‘a-h+’;z‘xf)¢=f?% e

o e e e

B wke

[

St
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where we have intfoduced new variables
$ =y +ivg; =0, — i, (33)

In the Scrodinger eq. (33) or (34), the potential — A2 i(dh/dX) is complex, but
its real part is always attractive, since #(X) =h(X,0) is areal function. In the absence
of the term F~i(dh/d X) in the potential, the discrete eigenvalues m, correspond to the
bound states of the potential —42(X), with m? purely negative, i.e. m; always purely
imagmary (Im m>0). However, with the complex potential, the discrete eigenvalues
can either be purely imaginary or arise as complex conjugate pairs m;, —m;*. To be
specific, let us consider, as an example, the most familiar initial condition on nX)
given by ‘ ‘

B(X) = h(X,0) = — :12 93%,_0) — Bsech o X (36)

where without any loss of generality we take a>0. With the substitution
Z = tanh o X -+ % sech o X (372)

o : , o ' F) a o :
- = h?a X — i X tanh = =- —_. 37b
5% o (sech? o i F sech a X tanh aX) VAR f(@ v (37b)

Equation (33)'can be transformed into the form -

0 d 2p2 4m? )
— f@) =+ "4 Z) = 0. 38
5/ @L+E+ Ve (9
Note that for X—» -+ 00, Z—+1, and when X— — o0, Z->—1. Ingeneral, f(Z)is an
involved function of Z, but when f=d-a, f(Z)=(1—2Z?%. Then, the bound state
solutions which remain finite at Z=-1 can be written for a: more general problem
(Landau and Lifschitz 1965) '

|2 a-z9 2 s = G lu=—0 e=- 2, (39)
in the hypergeometric foﬁn |

by = Yoy = (1 — 20" Fle—s, e+s+1,e+1,1—2)2]  (40)

s—e=mn=0,1,2,..;n<s - T (41)

so that F becomes-a polynomial of degree n. There are only a finite number of
bound states for which m2<0 and >0, i.e. n<s. Since in our problem (38), s=1
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for f=d-«, we have only one discrete eigenvalue, with n=0, e=s=1, i.e.
my =iaf2 (42)
which is purely imaginary. In this case, the eigen function is of the form
| ‘/{1 =nzg = (1—Z%2 = 4/2 (sech? o X F i sech a X tanh aX)2;
= - @3)

A similar result follows for (34), with the same eigenvalue. Thus for B=-a in the
initial value for A(X) given by (36), we have only one purely imaginary discrete level,
with my=ia/2. For such an initial value, (31) and (32) lead to the soliton solution

_ Lo _ [lco|/a]2aeﬂ ==T___a
an ==l f ol el
o =4 tan™ {exp [0 4 In(|cy | /a)]}- (44b)

If we ignore the phase-factor In (| ¢, | /a), which is equivalent to only a translation
of the axes, the above solution leads to the evolved electric field of the low
frequency wave in the form '

E(X, T) =2° =2 sech [(T/w)—aX]
oT a
— ( T ) sech [(t—x/V))r] | (45)
V, NL 77
where, 1 2y ( u ) ud,a ‘
P = 1 ! 1 ‘ 46a)
s a * Vi—u + Vi—u : '( : ?‘)
V. u
1————1) (— —-1) =20, 8,72 Vo=V,=u. (46b)
( Vp Vp NL 1'p 2 3 4 )

Thus the fractional decrease in the pulse velocity V, of the low-frequency wave from
the group velocity V) is essentially determined by the parameter 8,85 | XNL 2
| Ap(—0) |2 7,2, where 7, is its pulse-width. Note that in this case

o(T>0)=2m, W(T—00)=Win=W(— 0), - (47

so that there is no net energy exchange between the two high-frequency waves and the
low-frequency wave. The low-frequency pulse is equivalent to the 2m-pulse of the

>
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self-induced transparency. Also, using (1b), (1¢), (2)—(5), one findsthat the other wave
packets evolve as

AP = A | W—o) a0 . @sa)

Ay=—Ay(— o) tanh 6= | Ay(— )| tanh0 48b)

Ay=(83/8,)"/* | Ay(— c0) | sech & , (481:3’}

o=2 —ax=1-_%. | 484}
@ Tp VPTP

Contrary to what has been attributed by Hirota (1976), the above 2m-soliton solut icx ?”"
was first obtained by Armstrong et al (1970) as a special case of their more genc¥
solutions, and not by Nozaki and Taniuti (1973). »

It is clear from our analysis of the eigenvalue eq. (33) and (34) that £+?
obtain the above soliton solution it is not necessary to have the exact initial form €*:
h(X,0) given by (36). Any initial arbitrary shape of 4 which leads to only one bouried
state for the eigenvalue problem [(33) and (34)] will evolve into the 2m-solit¢& T
solution given above.

We conclude this section by noting that by solving the linear eigenvalue proble ¥3%
[(33) and (34)] for any given initial condition A(X,T=0), the complete tlme-evolutxwﬂ
of the pulse profile can be determined.

4. Discussions

We have presented in this paper the method of obtaining the time-evolution of a 1<y
frequency wave-packet of group velocity V; interacting with two other wave-pack & £ %
having equal group velocities ¥,=V,. Apart from assuming V,=Vj, we also igno re«d
the linear damping of these waves, to allow us the soliton-like solutions at large: .
In reality, we should put back the damping term, at least for the low-frequency
wave packet of centre frequency w,. The disintegration of the soliton-structure dtzer
to this damping can, however, be investigated by perturbation methods, without axyy
severe difficulty. The main drawback of our approach is the assumption of eqursi
group velocities V,=V,. This prohibits us to see how other solitary-wave like
solutions obtained by Armstrong et al (1970) evolve from the initial conditions. Iy
the last few years, there has been several attempts (Zakharov and Manakov 1973
1976) to solve this difficult problem, with ¥, # V, # V,, using new transformations ari<i
the inverse-scattering method. But at present it is fair to say that apart from obtairy..
ing some trivial solutions, the analytical problem of the time-evolution of initial valirerg
to the interesting general solutions obtained by Armstrong et al is still unsolvexi,
In this sense the progress has not been made for the general case much beyond oxar
earlier work. However, there exists a semi-analytic method developed by Bers ez ¢z}
(1976) to investigate this problem numerically.
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