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1. INTRODUCTION

RECENTLY, very extensive work (Pople efal., 1959) has been done to
investigate the NMR spectra of groups of interacting nuclei in different
molecules in the liquid state. Here, as in any other spectrum calculations,
energies and stationary state wave functions for the system in the absence
of a time-dependent r.f. field have first to be calculated. The problem
starts with finding the eigenfunctions and eigenvalues of the spin-dependent
Hamiltonian of the system given by

Z=E,=B+C

> >
= — Y vrHem," + % § Jrs (I . I5)
=— X o’ + % 5 Tys (m0ms® + mytmg™) M

where the various groups of nuclei in the system are denoted by index r,

N \
the group r having the spin I, yr is the gyromagnetic ratio of the nuclei and
H,, is a constant magnetic field effectively acting upon the group r in the
z-direction. The notation

mp® = Iz
m,.i = I.’XIT ﬂ: inr,
where the operators Igy, Iy, and I,, represent the x, y and z components

respectively of the spin vector -fr has been used here following Bloch (1956).
This paper will hereafter be referred to as II. In the Hamiltonian, a coup-
ling invariant against rotation and bilinear in the spin operators has been
assumed with coupling constants J.s = Jg, independent of the external field.

: 13




14 SUDHANSHU S. JHA

This spin-spin interaction is the most effective part of the interaction for
groups of nuclei within a molecule in the liquid state. The othfar .tu m
‘dipole-dipole interaction’ is zero due to rotational motions in liquid.

The case of two groups of nuclei, where the total spin of one group
is %, the exact solution of the problem reduces essentially to a diagonalisa-
tion of matrices of maximum order 2 x 2. The spectrum for this casc has
been worked out in detail by Banerjee et al. (1954). The two-group system
is usually referred to as Ap,B,, system, if the groups contain m and » nuclei
respectively of the same species, and as A, X,,, if the nuclei in each group
are of different kinds with quite different gyromagnetic ratios. For a system
AB of two interacting spin % nuclei, the widths of the resonance lines have
been calculated in IT in terms of the longitudinal and transverse relaxation
times Ty, and T, respectively exhibited separately by the nuclei r = s, f,
where s and ¢ are the two groups under the conditions considered by
Wangsness and Bloch (1953) in the paper hereafter referred to as 1.

For arbitrary number of nuclear groups, but only with equivalent
nuclei in each group, perturbation calculations have been done and applied
to specific systems by Anderson (1936), Alexander (1958) and various other
authors. As reported in Anderson’s paper, higher order corrections beyond
the second order perturbation calculations gave better agreement with the
experiment for some specific cases. Fessenden and Waugh (1959) and
Alexander (1960) have analysed the ABC type spectra of some compounds,
but they did not derive an explicit expression for the intensities and the
frequencies of the various transitions and had to resort to numerical com-
putations to diagonalise the two 3% 3 matrices involved in the solution of
the present problem. They have, however, evolved certain useful relation-
ships such as the intensity and frequency sum rules which can be applicd
unambiguously only to cases involving moderately strong coupling. 'The
use of these relationships made in conjunction with the inspection of the
observed spectrum for this type of molecules helps to reduce the number
of independent parameters (J, and 8s) to be evaluated and makes possible
the assignment of proper values to them. Further no attempt has been
made by these workers to calculate the linewidths for such spectra. There-
fore, it is thought worthwhile to find the exact solutions for ”SiIn.plel case
of 3 groups of interacting nuclei. We report here the exact solution of tl
problem of ABC system, without any restriction on the mae .
spin coupling relative to chemica] shifts.

s
C
agnitude of the

- The method for calculatihg the linewidths with only the ext

elaxati ; ernal dipole
relaxation, as in Sec. 5 of II, has also been considered for this sys o ipole

tem in terms
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of longitudinal and transverse relaxation times of individual nuclei from
the general expreosmn derived in II with strong spin couphng compared

to the r.f. field H1 (f) and to the effects of relaxation.

2. SpecTRUM CALCULATION

In the system ABC, we have three nuclei s, 7 and u of spin , with
Larmor frequencies wg, w; and w, respectively, so that

Ey = — (0gn® + wm® + ogm®) + Iy mdm® + & (nsme
+ metmg)} + Ty {mdmy® + 3 (mgtoy A+ mytmgT)}
+ T3 {m®my® 4 3 (mgtmy™ + mytmeT)} S )
with .
Jst = jts‘.= jl -
Jsu = Jus = Ja
Jiw = Tyt = Ja.

We take our initial complete set of kets as the product of eigén kets of indi-
vidual nuclei without the interaction |mg) |mz) |my), in the _representation

where m,® and 1,2 are diagonal with eigenvalues of mo=m,; (r=-s1t 1.

We label these kets in short as |mgmihy). The proper eigen kets for the
Hamiltonian given by equation (2) will then be some linear combinations of
l msmtmu) kets. Since here, Z,'m,.“ commutes with our total Hamiltonian

U, ‘we can label the proper e1gen kets of the system with a number M, the
sum of the eigenvalues of mg®, m;® and my’.

It can be easily seen that the proper kets for M = & 3/2 can be only
EEE2 and | —%, —% — % respectively. For M = 4 1, the eigen states
will be linear combmatlom of the states | =4, =4 F1), |£3 FL £3)
and |F %, 1+ 1, +4). Now, if we write the eigen state

g (M) = I (mgmgmy |gOD) |mgmema), 3)
msmtmu
‘the transformation functions for M = — 3 [2 and M = + 3/2 can be written
as | _
(mgmymy, lE (— 3= Sms,—i Sm;,-—i Sm,;,—i 4)
and

(msmtmu lE @)= 8m8,i Smt,-} 8mu,i . , (5)
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respectively, with the corresponding values of energy in units of # given by,

E(—§)=45+30 + %+ 1) ©)
and -

E@=—30+10+5L+171. Q)
Here @ is the average Larmor frequency

ws 1 Cgt + wy ,

of the three nuclei.

For the states with M = + 1, we can get the transformation functions
by solving the corresponding sets of homogeneous equations

hH (m'sm'sm'y, | g (M)) {(msgmymy, | E, ]m’sm'tm'w

' gt ymt’
- Egmxm’samtm'zsmum'u} = 0. (8)

Thus the secular determinants, to be solved for M — + 1 for getting the
-eigenvalues E and the transformation functions, are

J1+J2.+J3 § — _1_3 J2
Y& —=—F—F3F 2 5
J J4+-T14T w J
3 Yot — 2 5 —F > =0
J J J 4T @
% 3 Y,® — i’_—# ¥5—E
®
with
J 8, — 28
+ T2 2 1
Y2 - 2 j: 3
_Ja 8143,
Yot =5 & =5— (10)

where the chemical shifts 8, and 5, are given by
8 = wg — wt | |
and

82-: ws — Wy,
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These determinants are expanded so that the solutions of resulting cubic
equations in E for M = X % give the eigenvalues

Bi(25)=F 53— 3t Tt 10— 25 /1009, (1
for i=1, 2, 3. In equation (11),
_ (b%)®
0% = Gy (12)
7 Y IV kT
L] [ a1
h(®) = 20y |
_ _ L) 2(0 1 : (13)
f@=—02 4 JEO_ L
__L® (0 I |
fs(e)““T“\/f4()“eﬁ(e) J
with
a=—5(Y 2+ Y2+ Y, — Y, Y, — Y, Y5 — Y,Y5)
) — 102+ 124 T1?) 4
and

b= — 2‘2"7 (Yl + Yo+ Y3)3 + % (J12Y1 + 1:2Y, + 15%Yy)

+ 3 (Y, + Yo + Y {Y Y, + Y Y5 + YoV,
— 32402 + IO — Y Y, Y — 30,00, (15)

The functions f; (8), f2(0) and f; () are tabulated for a wide range of 6 by
Salzer (1958). From the expression for ‘a’, one can easily see that for real
values of J;, Jo, J5, 8, and 8,, we will always get the value of ‘a’ negative
and hence the value of 8 will always be negative. Further, in our case,
since all the roots will be real, 8 will have the values such that

4
-—_2-;/<0<0.

The orthonormalised eigenvectors corresponding to the characteristic
values E; (& %) of the matrices
" A2 ‘ -
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i+l @ I3 Js ]
Yot T T3 2 2
J_-_3 Y, J1+J2+J3 E “J}
4 2 2
J I , JitdetH)s __
i 2 | 2 Yo == —F 7 |
can be denoted by
Cy
Cin*
Ciai
The explicit values of these in our case are obtained as
Cut Tir® {(12%)? + (n3a)2 4 (py2)2)
Cip* = e {E)? + (i %) + (g t)2) (16)
Ci® M= {2 ®)® + (732 %)? + (mat)HH
where
J 1 bt
E = f{Yzi - 'G(Jl + a4y + a—iff,(ei)} - -%g
- J 1 bt
Pipt = *21 {Yli — E(Jl + T4 J5) + YERL (Gi)}_ - !24i3
J52 1 +
mot = — {0 —g Ut L+ 1)+ 2 4 00)
; 1 +
(Yot — g Ot n+ 1)+ 2 f0m) a7)

Now the transformation functions for the states with E (4 %) can be easily
written. They are

(msmymy, 1 E; (+ ‘21» = Ci1+3ms§8mti8mu—i + Ci2+8ms§8m,—;8mu§
+ CHiadm,—48m,:8m, (18)
and

Jstiiy, l E; (— )= Ci1—3ms—z_r3mt—%5mué + Ciz—sms—iamtiamu—i

+ Cia_smsiamr-&am,,—;- (19)
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The magnetic dipole transitions due to a weak r.f. field are possible only
between the states

|E(—8), |Ei(—=%); [Bi(—=D), |E;(+1)
and
|E;(+3), |E(+$9)

where i, j=1, 2, 3. The relative intensities of these 15 lines, for the
transitions between different allowed pairs of states |g), |g’), can be
calculated by evaluating the quantities

lg| X Iz lg') |2 (20)
In Table I, we give the relative intensities for allowed transitions.
TABLE I |
No. Frequency », Relative
Transitions of in cycles/ inten-
lines sec. sities
 (— 2 (=1 3 1[-, 1 b 2+ C 2
BEDHTY P Le+30+n 40+ Za@)] Gt Cat &)
— E 9 1f[. b b+ CH,C i+ CHC
BODOEY 0 LB Tre+Dne]  CuCEtCe
+ CHCys
+ CtysCip
+ CHjCrip)?
8 1 — ] + 2
& (?Z E gf)3 : g [w — 30+ T+ 1) — f;_f, (0+)] (Cot Cat G

3. LiNEWIDTHS

Bloch has explicitly given the general expression for the linewidths in
Sec. 5 of II, where he has assumed a spin-spin coupling term C strong in

-

comparison to the r.f. field H; () and to the effects of relaxation (consider-
ing only the external dipole relaxation). Following the same notations
and assuming the isotropy of molecular surroundings, which is a good
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approximation for molecules in liquid state, Bloch’s expression for the

linewidth for the transition between the stationary states b and a, is given
by y

Pabzé'rpaa‘l“rpbb—zroab (21)
with
TPog = Z &P gLl g +p) (g +pI10]g)
+3lI L g4+p) (& +p|L*g)
T3 L g +p) (8 +p Lt g) (22)
where
L° = m,,
Ll = L PER

| g) is one of the stationary eigen kets for the system and the coefficients

4P, characteristics of molecular surroundings, are given by equation (5.25)
with (5.26) and (5.27) of IL

- For calculating the linewidths of transition spectrum in our case, we
neglect the slight variations of the coefficients ¢P due to chemical® shifts
and spin couplings, so that

P E B D-E (- — @B —H-E (+) — BB = 4 5
and

B DB ) = f B (—)~F () by
for

i, j=1, 2, 3.

Now, replacing 24’;; and ¢%: of equations (5 .3) and (5.4) of I, by
¢ 7% and $,°, we get

= 1
W e T, 23)
o _ L 1 ‘ -
‘?S'r - T; 2T1r o (24)
where
K =%

]?T‘ s
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k being the Boltzmann constant and T the absolute temperature of the
system. Since

‘lsra = e“kqsr""a?’
all the coefficients ¢,P for evaluating I'’y, can be known approximately
in terms of the longitudinal and transverse relaxation times T;, and T,y

which are exhibited separately by the nuclei under the conditions con-
sidered in I.

We can easily verify that for our system, we have only the following
non-zero matrix elements for 1,0 and I,*:—

(EBi(—DILBE(=9) =B E (=) =GCy

Ei(— DL E) =EEFD LT E (—D)=Cy
CEEDILEE D) =E- I L E( D) =Cy

EEEDILTEG) =E®I|LHHE (D) =CipCy

+ CjtCia™
Ei(—D I E;Q) =(E @I Ei(—3) =Cpu*Cy

+ CjitCia™
(Bi(— D L E;®@) =(E@ILNE(—D) =CiuCh

+ CygtCia™
(E;® | L EG) =(E@) |Is* | E; () = Cjs*
EDILIE®)  =(E® || E@) = Cya*
(E; ®) | L, E®) =(E(® L |E; @) = Cjt
(E® |L|E®) =—5L(EEDIL|E-H) =13

for r=g,1t,u
(Ei (i ‘%) l Iso l Eg‘ (:l: %)) = - % [Cnicﬂi -+ C@gicjzi
‘ F CistCjt ]
Ei(EDILCIEj (£ D) = & 3[CiytCiu* F Cip#Cjat +
CiatCjg]
(Bi (£ 1) | T®) Bj (£ 3)) = =  [F CyytCjr¥ + CptCyt
+ Ciaicjsj:].
With these expressions, I'P g4, and I, can be calculated for all g and g’ from
the equation (22). Finally equation (21) directly gives the linewidths for
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the resonance lines. Since the analytical expressions for these are very
complicated, they are not reported here, but it is clear that for any set of

values for J;, J,, J5, §; and 8, we can always calculate the linewidths by the
procedure outlined above.

4. DISCUSSION

To analyse the experimental results of the system ABC, one has to
proceed by a method of trial and error and assign some of the observed
transitions to definite initial and final states by a clever guess, and then
deduce from the values of their measured frequencies and intensities, the
relevant constants J;, J,, J3, w, 8; and §,, using Table I. The relationships
evolved by Fessenden and Waugh when used in conjunction with these
calculations will reduce the number of independent parameters. From
this set of valués, one can find out the relative intensities and frequencies
of all other transitions theoretically and try to see that all the transitions
are described together in a self-consistent manner. Thus even if all the

15 lines are not well resolved in the experimental data it is possible to give
unique solution for Iy, J,, Js, @, 8; and §,.

There has so far been no attempt to verify the theoretical expressions
for the linewidths even for the system AB of spin 4 nuclei. This is probably
due to the fact that the linewidths in question may be very small. It is
hoped that as the precision in the experimental techniques of high resolution
nuclear magnetic resonance spectroscopy increases, it may be possible to
compare the results of linewidths for not only the system AB, but also for

the more complicated system ABC and to get more information about the
mechanism of relaxation.

The n.m.r. spectra of some trisubstituted benzenes have been analysed
in our laboratory on the basis of these equations and the results will soon
be communicated for publication.

SUMMARY

The exact solution for the splitting up of nuclear resonance lines due
to J couplings of spins between three like nuclei of spin % with relative
chemical shifts is worked out. Here no specific assumption about the
magnitude of the coupling constants compared to the chemical shifts is made.
It is shown how the linewidths of all the resonance lines can be calculated
for the present case from the general expressions derived in Bloch’s dynamical
theory of nuclear induction with external dipole relaxation mechanism,
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