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A dynamical study of the principle of maximum hardness

P K CHATTARAJ* and S NATH
Department of Chemistry, Indian Institute of Technology, Kharagpur 721 302, India

Abstract. Temporal evolution of local and global hardness during an ion-atom collision
process has been studied within a quantum fluid density functional framework. A dynamical
variant of the maximum hardness principle has been found to be operative. Entropy
maximises in the encounter regime. Time dependence of density and its laplacian provides
important insights into the collision process vis-a-vis the hardness maximisation.
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1. Introduction

Hardness (n) (Parr and Pearson 1983) and chemical potential (i) (Parr et al 1978)
are two important concepts in chemistry. Within density functional theory (DFT)
they are defined as (Parr et al 1978; Parr and Pearson 1983; Sen and Jorgensen 1987;
Pearson 1988, 1990; Chattaraj 1992b; Chattaraj and Parr 1993; Sen and Mingos 1993)
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where E and v(r) are electronic energy and external potential of an N-electron system
respectively. Definitions (1) and (2) remain unaltered, within the Born—-Oppenheimer
approximation, in case total energy is used in place of electronic energy. Assuming
validity of Koopmans’ theorem for closed shell molecules, n and u can be wntten as
(Pearson 1987)
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- where g, and g, denote energies of HOMO and LUMO Reciprocal of hardness
is softness (Yang and Parr 1985) given by
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It was found that the stability of a chemical species can be associated with its hardness.
Pearson (1987) postulated the principle of maximum hardness as “there seems to be
a rule of nature that molecules arrange themselves so as to be as hard as possible”.
Later Zhou et al (1988) and Zhou and Parr (1989, 1990) established the connection
between aromaticity/stability and hardness which has been associated with half of
the HOMO-LUMO gap. Zhou and Parr (1990) discussed the maximum hardness
principle (MHP) within the Hiickel molecular orbital (HMO) theory. A formal proof
of maximum hardness (minimum softness) principle has been provided by Parr and
Chattaraj (1991) using the fluctuation—dissipation theorem of statistical mechanics.
They have considered the electronic system of interest as a member of a grand
canonical ensemble with bath parameters u,v(r) and temperature, 6. It has been
shown that any nearby nonequilibrium state of the system will evolve towards the
equilibrium state with maximum hardness provided the bath parameters do not
change. The applicability of statistical mechanics to a many-electron chemical system
has been assumed in the proof. Various studies confirm the validity of such an
assumption (Parr and Yang 1989). An alternate proof of MHP has been provided
very recently by Parr and Gazquez (1993) through the construction of a new ground
state hardness functional. The proof of MHP (Parr and Chattaraj 1991) has been
supported by several subsequent papers. Pearson and Palke (1992) calculated # and
p from (3) and (4) for vibrational modes of NH, and C,Hg molecules using ab initio
molecular orbital (MO) theory and found that in asymmetric vibration modes in
which p and v(r) remain constant for small change, 7 is maximum for the equilibrium
geometry. But for symmetric vibration mode, in which neither x nor v(r) is constant,
variation of 7 is monotonic. Same conclusion has been reached by Chattaraj et al

(1993) when vibrational modes for several molecules belonging to C,,, C;,, C,, and .

D, point groups were considered. The importance of nuclear repulsion energy (v,,)
in determining a state of maximum hardness has been discussed by Parr and Gazquez
(1993). They have shown that for a state with maximum hardness, electronic energy
(E) and nuclear repulsion energy reach their respective extremum values. It has been
found that for asymmetric vibrations, v, remains more or less constant, while it
changes monotonically for symmetric vibrations. The fact that E reaches its minimum
at the equilibrium state in case of asymmetric vibrations but changes monotonically
in the symmetric mode explains why hardness reaches its maximum value at equilibrium
in case of asymmetric vibrations only. It has been found by MNDO calculations that
thermodynamically favourable exchange reactions proceed in a direction which
produces hardest possible products (Datta 1992a). The same conclusion has been
reached for exchange reactions where anomeric effect is operative (Hati and Datta
1992). It was shown both in MNDO (Datta 1992b) and ab initio SCF (Chattaraj et al
1993) level calculations that the transition state of a reaction is associated with
minimum hardness which is in agreement with MHP. It has been found that MHP
is useful in detecting the most stable isomer of a chemical compound. Work carried
out on Si, clusters (Galvan et al 1993), Si,H, and alkali metal carbonyl cations
(Chattaraj et al 1993) shows that the isomer having the least energy has the highest
value of hardness. In these cases MHP has been found to be valid even if the conditions
of constant x and v(r) are not satisfied. Relatively more stable lithium clusters
comprising the ‘magic number’ of atoms and exhibiting intense mass spectral peaks
are found to have relatively larger hardness values (Harbola 1992). In this study u
has a constant value but o(r) changes with the number of electrons. Impurity
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segregation at grain boundaries has also been analysed (Dal Pino et al 1993) in the
light of MHP. Chattaraj and coworkers have studied the implications of MHP in
static (Chattaraj et al 1993; Chattaraj and Schleyer 1994; Nath et al 1994) and dynamic
(Chattaraj and Nath 1994bj) situations.

It has been suggested (Berkowitz et al 1985; Ghosh and Berkowitz 1985) that
hardness of a chemical species at equilibrium is not constant over space although
the chemical potential is. The local variant of hardness has been found to account
for chemical reactivity. By studying the profiles of local quantities like local hardness
(Berkowitz et al 1985; Ghosh and Berkowitz 1985), local softness (Yang and Parr
1985) and Fukui function (Parr and Yang 1982) which are expressed below, one can
predict the type of attack (electrophilic, nucleophilic or radical), the site for attack
and the orientation of attacking molecule. Local hardness is given by (Berkowitz
et al 1985)

)
n(r>=(1/2)[g’ﬂ 6)
v(r)

or as the following density functional (Berkowitz et al 1985; Ghosh and Berkowitz
1985)

1 J 52F[p]
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where F[p] is the Hohenberg-Kohn (HK) universal functional consisting of kinetic
energy (KE), electron—electron repulsion energy and exchange correlation energy
functionals. Expressions for Fukui function f(r) (Parr and Yang 1982) and local
softness o(r) (Yang and Parr 1985) are respectively as follows,

n() p(r')dr, (7)
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Local hardness and softness integrates to corresponding global quantities as
n= J‘f(r)n(r) dr, (10)
) ja(r) dr. | | 11)

Although MHP has been found to be valid in a number of situations a detailed
dynamical study of it is still awaited. In the present work, we have studied the time
evolution of global as well as local hardness in a chemical reaction modelled as a
collision process between a proton and a nitrogen atom. We also have studied the
time evolution of electron density, p(r,t), effective potential, v . (r,t), and current
density, [j(r,z)| to follow the time-dependent process. In this context, we have tried
to understand the prognosis of Bader et al (1984) that the Laplacian of density (V2 p)
could be used to predict the hard—soft behaviour of an atom or a molecule. For this
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purpose we have compared the spatial profiles of —V?p and #(r) at different time

steps. In the ion—atom collision process, we have also studied the time dependence-

of entropy and surprisal which give information of a dynamic process. In dynamic
situations, entropy reaches a maximum which is a consequence of Jaynes' (1963)
maximum entropy principle (MEP). In the present work, entropy has been taken
from Deb and Chattaraj (1989) who defined the entropy density functional for a
system of N noninteracting particles moving under an effective potential field.

The main objective of this study is to understand how local and global hardness
as well as entropy vary with time (“along the reaction path™) in order to have a better
understanding of the maximum hardness and the maximum entropy principles in a
dynamical situation. Collision between a proton and a nitrogen atom has been taken
as a test case and has been studied within a quantum fluid density functional (QFDF)
framework whose basic formalism was developed by Deb and Chattaraj (1989). The
QFDF theory has been applied to solve various time dependent problems, viz.,
H*-Ne collision problem using an alternating direction implicit method (Deb and
Chattaraj 1989) and the problems of an He atom colliding with H* (Deb et al 1991)
as well as interacting with an intense laser field (Chattaraj 1992a) using a leapfrog
finite difference scheme. Note that the numerical algorithms developed so far to solve
time-dependent problems within QFDF theory would allow us to study only H*-atom
collision problems. Studies on ion (other than H* )-atom, atom—atom, atom—molecule,
molecule-molecule and gas—surface collisions require different algorithms which can
take care of electronic/vibrational/rotational states of the projectile and vibrational/
rotational states of the target. It is for the first time that we are solving a collision
problem within QFDF theory involving an open-shell system and calculating the
time evolution of local and global hardness as well as entropy of that system by
writing them as density functionals. We have studied the H*—N collision because of
the theoretical (Liu and Verhaegen 1970) and experimental (Colin and Douglas 1968)
importance of NH*, which is a stable molecule of chemical and astrophysical interest
(Liu and Verhaegen 1970; Huber and Herzberg 1979; Baeck and Lee 1990), with a
dissociation energy value of 3-39 ev. It is worth noting that this dissociation energy
corresponds to N(*S) and H* whereas the dissociation products for the 2II ground

state are N* (*P) + H(%S). It suggests that collision of N(*S) and H* may lead to the
formation of NH™ in the electronically excited *X ™~ state.

42. Methodology

The key equation in QFDF theory is a generalised nonlinear Schrodinger equation
(GNLSE) (Deb and Chattaraj 1988, 1989; Deb et al 1991; Chattaraj 1992a) given by

[— 12V 4 v (] (5, ) = a"’(' J 12

This equation has been derived from the followmg QFD equations involving p(r,?)
and a velocity potential x(r, t), viz,,

0
SAVEV)=0, (13)
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using polar form of wavefunction written as
¢(r,1) = p*/* exp(iy). (15)

In (14) G[p] consists of kinetic and exchange—éorrelation energy functionals, i.e.

G[p]l= T[pl+E,_[pr] (16)
where

E_[o]=— | Cp¥%dr - p dr, 17
=L/ j P f9'81_+21'437p"1/3r 1)

and
C, = (3/4m)(3n?) /3.

T[p] can be divided into atomic and molecular parts (Deb and Chattaraj 1989) as

Tlpl= T,[pl+ T,,L0] | (18)
where T_  [p] has been expressed as
,N
n¢m=fm;UMn (19
and ,
f(R,N)=(1/R*?)(N/10)!** R? exp(— 0-8R). (20)

In (19) R is the internuclear distance. The atomic part of the KE functional is given by
1 2% .
T, [p]=Cx f pdr 4 f VOVP e+ a(N) J E—Z-ﬁdr Q1)
p r

where a(N) is an N-dependent constant expressed as (Ghosh and Balbas 1985)

a(N)=ao+a; N~ +a,N™%3,
and
Cy = (3/10) (3n2)*.

In (12) v, is given by

5 aN) f(RN) SE. [ p(r')
Vg1, 1) == Cp*? — + + —% 4
) =3Cal = T T e

4
dr' ——+v,_, (1, 7).
r
(22)
In (22) v, (r,2) is the time-dependent external potential which can be written as,

1

"0 R

@3) -

where R(z) is the classical trajectory on which two nuclei move. Assuming that the
proton is approaching the nitrogen nucleus in a straight line with velocity v,, the
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expression for R(r) becomes
R(t)=[b*+ ()],
z(t) = [2(0) — v,t], . (24)

where b is the impact parameter and z(t) is the z coordinate of the proton at time ¢
in a rotating coordinate frame. Cylindrical symmetry of the system permits integration
over the azimuthal angle analytically.

To calculate time-dependent density, p(r,t), (12) has been solved at every time step
using a leapfrog finite difference scheme. A near Hartree—Fock (HF) density profile
of nitrogen atom in the *S state (Clementi and Roetti 1974) has been used as input
at t = 0. The numerical solution of (12) has already been discussed at length elsewhere
(Deb et al 1991; Chattaraj 1992a).

In a TD process, knowledge of current density is essential along with the knowledge
of electron density since all properties including time-dependent energy are unique
functionals of p(r, ) and j(r,t) according to TDDFT (Runge and Gross 1984; Dhara
and Ghosh 1987). Current density is expressed as

i) =[9,V¢,,—,,Ve,. =0V (25)

Local hardness has been calculated from (7) using HK functional as

Flol= Tl + E (o] + j J POLE) 4 gy )

r—r'|

where the forms for T[p] and E__[p] are as given in (18)—(21) and (17) respectively.
Time evolution of »(r) has been obtained after calculating TD charge density p(r,t)
at every time step. Global hardness can be obtained from (10) provided time evolution
of f(r) is known. Following Berkowitz et al (1985), the expression for
Hellmann-Feynman force is written as

j p()du(rydr =N j F(©)do(r)dr — 4N Re{z’ <¢'°1dvl¢£> <‘”E°"’(')"1”*>}
k k— Lo

27

Since the second term in the right hand side of (27) is often small (Berkowitz et al
1985) we neglect it to get an approximate form for f(r) as

f(¥) = p(r)/N, : - (28)

which and consequently the hardness functional obtained from (10) can be improved
by incorporating appropriate inhomogeneity corrections in (28). It should be
mentioned in this context that a similar approximate form for f'(r) has been obtained
by Gazquez (1993) considering an uniform charge addition and removal to be natural
in a density functional framework. Very recently Parr and Gazquez (1993) have
suggested a more general hardness functional.

Taking the expression of f(r) from (28) global hardness becomes

n(t) = (1/N) Jn[p(r, t)1p(x,1)dr. | | . (29
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Here, it may be noted that there is some ambiguity in the definition of #(r) (Harbola
et al 1991) since it requires change in p(r) at constant v(r) which are interdependent
according to the HK theorem (Hohenberg and Kohn 1964). In a time-dependent
situation also the invertibility of the map between p(r, t) and v(r, t) has been established
(Runge and Gross 1984; Dhara and Ghosh 1987). Although the unambiguous definition
for n(r) is that it is equal to global hardness, other definitions for #(r) would be useful
in specific situations (Harbola et al 1991). It is also tacitly assumed that whatever
ambiguity is present at t =0, will remain unchanged during time evolution and the
qualitative nature of the temporal evolution of local and global hardness will not be
disturbed.

Considering an N-electron system as a system of N noninteracting particles moving
under the influence of v (r, ), entropy density is defined using an average density
argument as (Deb and Chattaraj 1989),

s(r, 1) = (5/2)kp — kpln p + (3/2)kp 1n<§—6->, - (30)
, T

where k is the Boltzmann constant and 0 is a space—time dependent temperature
defined in terms of KE density as,

t,(r; p(x, 1) = (3/2) p(r, 1) kO(r, 1) + (1 17/2p). (31)

Equation (30) can also be obtained from information theory by writing Shanon
entropy for the system involving p(r,t) and maximising it under certain constramts
The global entropy is obtained by integrating (30) over whole space,

S= Js(r, t)dr. (32)

Surprisal of the distribution is defined as (Levine and Bernstein 1976; Gadre and
Benda1¢ 1985; Chattaraj 1992a),

I(r,1)= —1{5%%1)—)} (33)

where p"F(r,0) is the near Hartree—Fock density at ¢ =0.

3. Results and discussion

Spatial profiles of v_,p,j, —V*p,n(r),s and I are plotted in cylmdrlcal polar
coordinate (g, Z) mesh at different time steps.

Figures la~c show the spatial profiles of v at t=0, 5, and 15 (all in a.u.). The
vertical dimension of v, is taken from — 50 to + 50. At t =0, the plot of v, consists
of a deep well at the nuclear site (p =0, Z=0) due to the attractive potential. This
infinite trough is surrounded by a valley-like structure. There are small undulations
around #=0 and along the increasing j axis (figure la). At t=5 a.u., besides the
attractive region around the nucleus, a high peak of positive potential builds up in
front of the deep well, and several small peaks and troughs are formed along the
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increasing p axis around z =0 (figure 1b). At £ = 15 a.u. when the proton comes very
close to the nitrogen atom, two troughs are formed along the 7 axis placed sym-
metrically at the two sides of the central attractive zone (figure 1c). All other features
of the v, plot remain almost similar to that of figure 1b.

Figure 2a shows spatial variation of charge density at t=0. In this figure p is
found to have a maximum around the origin (p =0, Z=0) where the attractive
potential dominates. In later time steps (figures 2b and c) density accumulates at the
nuclear region due to the nonlinear effective potential. At ¢ =15 a.u. the profile of p
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Figure 1. (a) & (b) (Caption on facing page.)
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Figure 1. Perspective plots (a.u.) of effective potential (v,

a proton in cylindrical polar coordinates (g, Z). The basal rectangular mesh designates the

(,2) plane where 0< j <4 and —3 <% <295. The nucleus of nitrogen atom is at (0,0).

t =00 (a), 50 (b), 150 (c).

Figure 2. (a) (Caption on next page.)
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Figure 2. Perspective plots (a.u.) of electron density (p) of nitrogen atom collid
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coordinates (g, 7). See caption of figure 1 for details. t = 50 (a),

Figure 3. Perspective plots
proton in cylindrical polar

15:0 (b).



240 P K Chattaraj and S Nath

does not show much change in contrast to the conspicuous change in v, plot at
that time step. Accumulation of charge density near the origin is due to self modulation
(Hasegawa 1975), a typical nonlinear effect. This effect is not an artifact of the QFDF
formalism because it has been shown (Takabayashi 1983) that the GNLSE (12) will
not show any unphysical nonlinear behavior if dynamics is not actually nonlinear.

Figures 3a and b depict the time evolution of |[j| at t = 5§ and 15 (in a.u.) respectively.
These plots are similar to those of charge density at those time steps. In each of the
figures current density shows a maximum at the nuclear site where p is also high.
The nonvanishing current density at nonzero time indicates that the excited states
of the nitrogen atom are getting mixed with its ground state as the proton approaches
it. :

Spatial profiles of — V2p att=0, 5, 15 (in a.u.) are shown in figures 4a—c respectively.
The vertical dimensions of these plots are taken between — 10 and + 10. Initially, at
t =0 (figure 4a), — V2p shows two maxima and one minimum as was observed by
Bader et al (1984). The first maximum around Z =0 corresponds to the core region
and outer minimum and maximum are formed due to the valence shell. It may be
noted that the signature of this shell-structure is also present in the v . plot at this
time step. Trough and crest in v, correspond respectively to charge accumulation
and depletion which in turn are related to maximum and minimum in — V? p, a fact
in conformity with Bader’s observation (Bader et al 1984). The radius of the nitrogen
atom is calculated as the average distance where charge accumulation of the valence
shell is maximum (which corresponds to the second maximum in the — V?p plot).
It was found to be 0-414 A which is close to Bader’s value of 0-411 A (Bader et al
1984). At later time steps, the ground state shell structure of the nitrogen atom is
lost as — V2 p plots in figures 4b and c consists of one high peak at the high density
region and one trough. The shrinking of the base of the high peak in — V?p plot
indicates the accumulation of density at the nuclear site.

(@) TR

Figure 4. (a) (Caption on facing page.)
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(b)

(c)

i Figure 4. Perspective plots (a.u) of —V?p of nitrogen atom colliding with a proton in
cylindrical polar coordinates (5, 2). See caption of figure 1 for details. t = 0-0 (a), 50 (b), 150(c).
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Plot of n(r) at t = 0, shows a high peak at the high density region (figure 5a). Some
small undulations have been found along the increasing p axis, around Z =0 which
gets magnified in later time steps (figures 5b and c). The peak position of 5(r) at later -
time steps remains unaltered though the base of the peak shrinks as density gets
concentrated around the nitrogen nucleus. . -

The presence of a high peak of 5(r) at the high density region agrees well with the
fact that hard-hard interactions are charge-controlled (Klopman 1974). It is also
found by Lee et al (1988) from ab initio MO calculations that in linkage isomers
SCNT, the nitrogen end possessing maximum gross charge is harder. In the present
case, 7(r) plots resemble density plots more than — V2p plots.

The plot of entropy density s(r,t) at t =0 (figure 6a) shows a high peak around
p =0,Z=0. This peak and a nearby trough are surrounded by a ridge-like structure.
In later time steps (figures 6b and c) the trough and the ridge-like structure disappear.
Only one peak is found at the high density region. The maximum entropy zone,
associated with a high value of probability density, is a'consequence of MEP (Jaynes
1963).

Figures 7a and b depict the surprisal plots at ¢ = 5 and 15 (in a.u.) respectively. In
both figures, I shows a deep trough where p is high. The trough is surrounded by a
ridge-like structure. There is not much difference between I plots at t =15 and t = 15

Figure 5. (a) (Caption on facing page.)
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(c) |

40 °

Figure 6. Perspective plots (a.u.) of entropy density (s(r, 1)) of nitrogen atom colliding with
a proton in cylindrical polar coordinates (3, 2). See caption of figure 1 for details. t =00 (a),
50 (b), 150 (c).

(in a.u) which indicates that the process of NH™ supermolecule formation has reached

a situation where further change in time-dependent profiles is not conspicuous.

Temporal evolution of 5 is presented in figure 8. Global hardness is found to
increase with time and to ultimately reach a high value. It remains constant thereafter.
As there is a negligible change in density and surprisal plots after certain time steps,
it seems that the whole system of NH™* supermolecule has reached some sort of
“dynamic equilibrium”. So the maximisation of global hardness in a dynamical process
may be thought of as a consequence of the maximum hardness principle (Pearson
1987; Parr and Chattaraj 1991) in a time-dependent situation. '

Time evolution of global hardness, does not enable one to divide the scattering
process in three regimes, namely, approach, encounter and departure corresponding
to approach, interaction and departure of proton as has been possible in case of
time evolution of u (Chattaraj and Nath 1994a). However, time evolution of entropy
(S) presented in figure 9, shows that in the interaction regime entropy increases
to a maximum value and then decreases indicating the formation of a stable NH*
species. A preliminary report of this work is given in Chattaraj and Nath (1994b).
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- (b)

.Figur.e 7.. Perspective plots {a.u.) of surprisal(l) of nitrogen atom colliding with a proton
in cylindrical polar coordinates (5, 2). See caption of figure 1 for details. ¢ = 50 (a), 15-0 (b).
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Figure8. Time dependence of global hardness (1) of nitrogen atom colliding with a proton.
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Figure 9. Time dependence of entropy (S) of nitrogen atom colliding with a protomn.



248 P K Chattaraj and S Nath
4. Conclusion

In the present work, values of local and global hardnesses of a nitrogen atom in a
field created by an approaching proton have been computed and the dynamics of
global and local hardnesses have been studied for the first time within a quantum
fluid density functional framework. Evolution of global hardness to a maximum value
may be treated as the dynamical extension of the maximum hardness principle. An
approximate functional form for f(r) has been presented and the direction towards
its improvement has been discussed. Increase of entropy in the interaction regime
indicates that the reaction of a proton with the nitrogen atom to form NH™ is a
favourable process. Maximisation of entropy during the interaction between H* and
nitrogen atom is a consequence of the maximum entropy principle. In this study it
has not been possible to characterise the state of the NH™* molecule if at all it has
‘been produced. Further study in this direction especially in predicting, from the

maximum hardness principle, in' which state the NH* molecule is formed would be
important.
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