
This article was downloaded by:

On: 17 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Synthetic Communications

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597304>

Regiospecific Functionalization of Cyclic Allenes with Catecholeorane

V. V. Ramana Rao^a; S. K. Agarwal^a; D. Devaprabhakara^a; S. Chandrasekaran^a

^a Department of Chemistry, Indian Institute of Technology, Kanpur, India

To cite this Article Rao, V. V. Ramana , Agarwal, S. K. , Devaprabhakara, D. and Chandrasekaran, S.(1979) 'Regiospecific Functionalization of Cyclic Allenes with Catecholeorane', Synthetic Communications, 9: 5, 437 — 442

To link to this Article: DOI: 10.1080/00397917908064174

URL: <http://dx.doi.org/10.1080/00397917908064174>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

REGIOSPECIFIC FUNCTIONALIZATION OF CYCLIC ALLENES
WITH CATECHOLBORANE

V.V. Ramana Rao, S.K. Agarwal, D. Devaprabhakara,
and S. Chandrasekaran*

Department of Chemistry,
Indian Institute of Technology, Kanpur-208016, India

Reaction of diborane¹ and disiamylborane² with cyclic allenes, resulted in the formation of a mixture of products resulting from the addition of boron at the central carbon as well as terminal carbon. Fish has reported that addition of 4,4,6-trimethyl-1,3,2-dioxa-borinane to 1,3-disubstituted allenes takes place at the central carbon atom preferentially when the hydro-boration was done at 130° for 35-50 h in a sealed tube.³ The reactivity and stability of catecholborane at high temperatures which is known to provide greater stearic

*To whom the correspondence should be addressed

control over diborane⁴ prompted us to examine the hydroboration of 1,2-cyclononadiene, 1,2-cyclodecadiene and 1,2-cyclotridecadiene.

The monohydroboration of cyclic allenes with catecholborane followed by oxidation resulted in the exclusive formation of the corresponding ketones of high purity in 70-77% yield (see Table). The formation of the ketone as the one and only product clearly shows complete regioselectivity in the attack of boron at the central carbon atom of the allenic linkage. In order to examine the stereospecificity of this reaction, we did the protonolysis of the intermediate organoborane with acetic acid, which resulted in the formation of the corresponding oleins in 96-98% yield (Table).

The formation of (Z)-cyclononene and (Z)-cyclodecene clearly indicate the approach of the hydroboring agent from hydrogen side. Ring side attack is not possible. In the case of 1,2-cyclotridecadiene the approach of the hydroboring agent is possible from ring side as well as from hydrogen side as evidenced by the formation of (Z)- and (E)-cyclotridecenes (76:24). These results can be explained in terms of steric requirements on a four-membered transition state.^{5,6}

Work is in progress to study the monohydroboration of acyclic allenes and dienes with catecholborane.

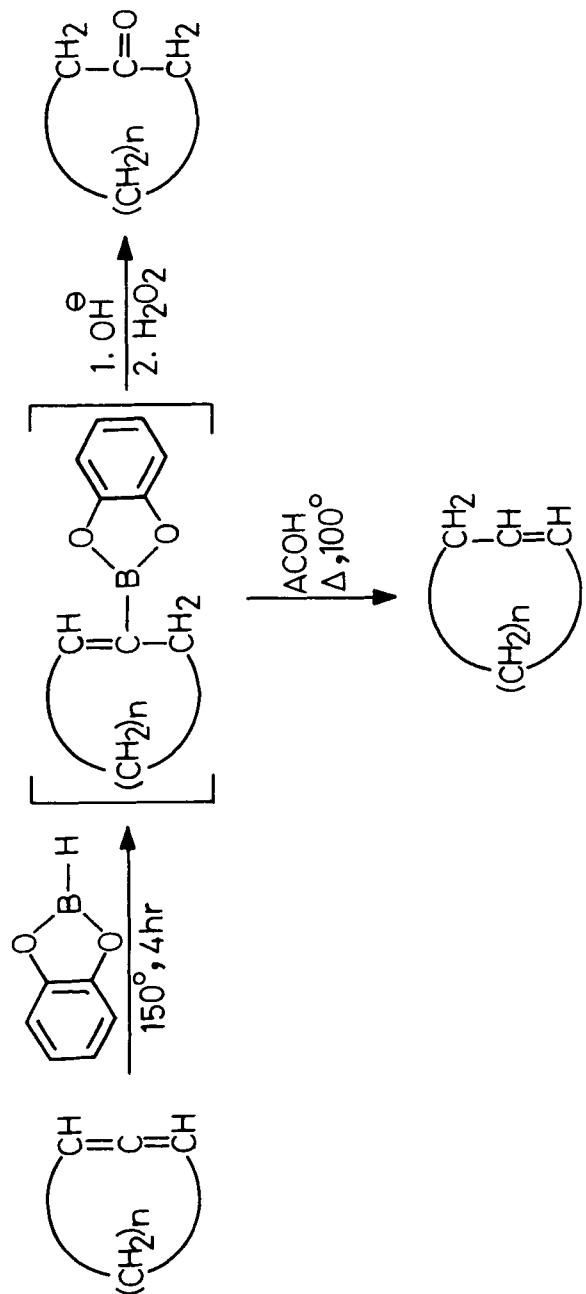


Table: Monohydroboration of cyclic allenes with catecholborane at 150°

Allene ^a	Ketonic product ^b	Yield ^c (%)	Olefinic product	Yield ^e (%)
1,2-Cyclo-nonadiene	Cyclononanone	71	(Z)-Cyclo-nonene	98
1,2-Cyclo-decadiene	Cyclodeca-none	77	(Z)-Cyclo-decene	96
1,2-Cyclotri-decadiene	Cyclotri-decanone	73	(Z)-Cyclo-tridecene (76%) ^f (E)-Cyclo-tridecene (24%) ^f	98

a. Allenes were prepared by known procedures and thoroughly characterized prior to use.

b. Oxidation using NaOH and H₂O₂. The identity of the individual product was established by comparison of GLC retention times (carbowax 20 M, SE-30), IR spectra with those of authentic samples and m.p. of semicarbazones with reported values.

c. Isolated yield.

d. Protonolysis using glacial acetic acid at 100°. The identity of the individual product was established by comparison of GLC retention times and IR spectra with those of authentic samples.

e. Yield was calculated using internal standard.

f. Separated by preparative GLC.

EXPERIMENTALHydroboration-Oxidation of Cyclic Allenes with Catecholborane: General Procedure

A mixture of allene (5 mmol) and a catecholborane (5.5 mmole) was stirred under nitrogen atmosphere at 150° for 5 h. It was cooled and the organoborane was dissolved in THF (15 ml). Excess hydride was destroyed with 1:10 mixture of water and THF at 0°. The oxidation was done by dropwise addition of sodium hydroxide (3 N, 10.2 ml, 30 mmol) followed by dropwise addition of 30% hydrogen peroxide (4.2 ml, 12 mmol) at 0°. The temperature was subsequently raised to 25-30°. After 2 h the mixture was diluted with water, after saturation with potassium carbonate, it was extracted with petroleum ether (40-60°). The extract was washed with brine, dried over anhydrous magnesium sulphate and evaporation of the solvent gave the corresponding ketone in 98% purity as analysed by GLC.

Hydroboration-Protolysis of Cyclic Allenes with Catecholborane: General Procedure

A mixture of allene (5 mmol) catecholborane(5.5mmol) and *n*-decane (internal standard) were stirred under nitrogen atmosphere at 150° for 4 h. It was cooled and excess of hydride was destroyed with a few drops of ethylene glycol. 5 ml of glacial acetic acid was added

to the reaction mixture and stirred at 100°, extracted with pet.ether 40-60° washed with ice cold sodium hydroxide (1N), water, dried and filtered through a bed of silica gel to get the corresponding olefin in 96-98% yield.

Acknowledgement: We thank Council of Scientific and Industrial Research, New Delhi for financial support and Dr. R. Vaidyanathaswamy, Defence Research Development and Establishment, Gwalior for IR spectra.

References

1. D. Devaprabhakara, F.D. Gardner, *J. Am. Chem. Soc.*, 85, 1458 (1963).
2. D.S. Sethi, C.C. Joshi, Devaprabhakara, *Can. J. Chem.*, 46, 2632 (1968).
3. R.H. Fish, *J. Am. Chem. Soc.*, 90, 4435 (1968).
4. H.C. Brown, S.K. Gupta, *J. Am. Chem. Soc.*, 97, 5249 (1975).
5. H.C. Brown, 'Organic Synthesis via Boranes,' Wiley-Interscience, New York, N.Y., 1975.
6. D.S. Sethi, G.C. Joshi, D. Devaprabhakara, *Indian J. Chem.*, 6, 402 (1968).

Received: December 15, 1978