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ABSTRACT

The scaling law theories of the critical point phenomena, together with
possible stability conditions at the critical point, allow a whole range of criti-
cal exponents in a 2-dimensional system but only two sets of exponents
a 3-dimensional system. In the 3-dimensional case the two sets explain the
differences between the critical exponents in magnetic and ferroelectric
transitions. It also seems possible to correlate the small differences between
the exponents of liquid/gas and magnetic transitions. No set of exponents
is allowed in a 1-dimensional case, corresponding to the absence of phase
transitions in a l-dimensional system with short range interactions.

. INTRODUCTION

RECENTLY, Baxter! has announced a solution of the eight vertex problem,
which includes as special cases the square lattice Ising, dimer, ice and Slater
KDP models. One of the unexpected features of the soluticn of the
2-dimensional problem is that the form of the singularity in the configura-
tional free energy depends upon the nature and the magnitude of the inter-
actions, which implies that the critical exponents could depend upon the
strength of the interactions. This is surprising because the experiments
appear to give the same exponents in many different physical systems: for
instance the configurational specific heat has a nearly logarithmic or weak
power law a ~ 1/8 behaviour in almost all the experimental studies.®** It
is the presence of such common features which is responsible for the con-
cepts of scaling and universality in critical phenomena.

1t is interesting to point out that the scaling laws, taken in conjunction
with the conditions for the stability of the system, admit the possibility of
an infinite number of sets of critical exponents for a 2-dimensional system
but only two distinct sets of exponents in 3 dimensions. Furthermore, the
3-dimensional result seems to clear up the anomalous differences between
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the critical exponents observed in magnetic, liquid-gas or alloy ordering
transitions on one hand and those observed in dielectric transitions on the
other.2: 45 There is now clear evidence that in ferroelectric transitions
B =1/2, v = | while in magnetic or liquid-gas critical points 8 ~ 1/3, y ~ 11,
at the same time all these transitions yielding a ~0 or 1/8.

2. INEQUALITY ARISING FROM SCALING LAWS AND STABILITY CONDITIONS

The scaling law equation of state in the vicinity of the critical point
g6

P = p (1, pU8) = o0 (1) : § =1 + (¥/B). (1)

Since the equivalent quantities in the magnetic, dielectric and other systems
(PeoHOE; pp — p e M Py, etc.) are well known, there is no loss of
generality in considering the case of fluids. The thermal stability of the
system requires that the first non-vanishing derivative of the free energy
be an even, say 2n-th, derivative. In terms of the state variable P, the
stability condition at T, is accordingly

P =9—2—£zt02n-—2terms=0

op op=

d 2N 1]) * (2)

1 #0

This condition applied to the equation of state (1) yields

S =2n — 1. | m

In deriving eq. (3), it is further assumed that the 2n-th derivative of the free
encrgy, besides being non-zero, is also definite. This assumption is equi-
valent to a well-behaved critical isotherm T = T, not only in the 1 phase
region but also at the critical point. The co-existence boundary is usually
taken to be a branch cut in the phase plane, but the above assumption and
the consequent integral value of & are not new.?” Experiments give a value
of 8 which is near but not necessarily equal to an integer and in this respect
the present analysis is suggestive but not rigorous.

Now the scaling law hypothesis gives the fo]IOwing relations among
the critical exponents:®

=D — =y -+ 28, | : (4)
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where d is the dimensionality of the system. The cxponent 7 is [(urther
restricted® as

0<y<, (5)

and this yields

_d+ QD (0)

0<n n

Vi

The restriction on » would normally appear to be 0 <% <2 as could
be inferred from the definition® of the exponent 7 on the basis of the pair
correlation function G (k) ~ 1/k*" as k—0. However, as Fisher? himsell
points out, the stronger restriction 0 <y <1 seems to be called for. In
any case, this point does not alter the subsequent discussions. In such a
case the value n = 1, corresponding to the situation near an ordinary Ist
order phase transition, would also be allowed. Since the present analysis
is concerned with the singular behaviour of compressibility, clc., the results
are not changed.

DiSCUSSION OF THF INEQUALITY

Consider now a 2-dimensional system. Eq. (6) poses no restriction
on the value of » >2 and an infinite range of values for the cxponents is
. lowed. In the case of a I-dimensional system 0 < (1 -| n)/n =21 allows
no value of », which is a reflection of the absence of critical phenomena in
a 1-dimensional system. Only one value 5 == 2 is allowed in a 4-dimensional
system and if « = 0, then one has B=4%v=1,8=3, etc., a sct of values
identical with the most recent estimates?®,

The situation for a 3-dimensional system, 0 << (3 — n)/n < 1, is interest-
ing and allows only two values of n. The values of the other cxponents
are given by

T, 0 =3, '}722}9; a,=2-—4ﬁ} (7)

1
=0, 8=5 y=4B; a=2-6p

In almost all the investigations, the specific heat seems to have a logarithmic
or weak power law singularity « ~0. Then the two sets of critical exponents
arc

w=0(og), B=102, y=1, §=3
}. (8)

a =0, B=1/3, y=4/3, §=5
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This scems (o explain a striking result observed in many experiments. Mag-
netic transitions appear to follow the second set B~ 1/3, v ~4/3, whereas
diclecetric transitions give the eritical exponents f ~ /2. 9 ~1 and yet both
groups of transitions show the same singularity in specific heat o ~0. The
specific heat divergence near the liquid-gas critical point seems 1o be a weak
power faw «  [/8 singularity.™ 1 so, one would have B - 5/16, y == 5/4,
There is some evidence as yet meonclusive that the y exponents are slightly
dilferent in liquid-gas  transitions,  being nearer this set y - 5/4, cte., than
(he set 9 4 3 ete. obeyed at magnetic transitions. So in the absence of
exact solutions of 3-dimensional models, 1t s diflicult (o comment on the
applicability of the interesting exact results in 2 and 4 dimensions 1o a study
of I-dimens onal systems,
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