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Abstract. The design and construction of precision temperature controllers, capable
of tracking the temperature of the samples to within 1 mK for ramp heating rates
from 0-05 to 10 K per hour, are discussed. A tutorial section on the evolution of
the control loop configuration is first given. This is followed by an outline of the
refinements of the basic control loop desirable in the actual implementation of the elec-
tronic controller. The novel features of the present system and its performance are
then briefly discussed. Finally the inadequacy of the conventional PID controllers
for this application, the estimation of the time constants of the physical system needed
in the design of the electronic controllers and the pitfalls in using.a simple model of
the heater plus thermometer assembly with a single pole are also discussed.

Keywords. Temperature controller; linear system; PID controller; high precision
calorimeter; control loop configuration.

1. Introduction

Precise control of temperature has been an important problem of process control
in many areas of science and technology. In adiabatic calorimetry, especially of the
precision type described in an earlier paper (Williams ez a/ 1978, hereafter referred to
as Part I), the temperature control problems become very severe. In the vacuum
adiabatic calorimeter the temperature of the sample may vary at different rates and
yet the surrounding environment must follow the sample temperature to within a
millidegree C.

Because of the widespread need for temperature controllers, a large amount of
literature exists on the topic (Griffith 1951; Coxon 1960; Miles 1965; Kutz 1968;
Roots 1969; Stoecker 1971). However all these texts were writien purely from the
point of view of either heuristics or of the feedback control system theory. The
same is true of the numerous papers on the subject. As a result, systematic ways
of designing the control unit with the required gain, time constants and other charac-
teristics do not seem fo have received adequate attention, especially for laboratory-
type physico-chemical applications. ,

The present paper is therefore divided into sections of which §§ 2 and 3 are brief
and tutorial in nature. Some of the novel features of the present control system are
discussed later, followed by a brief discussion of the performance of the system.
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The results of the physical investigations performed with the apparatus are reported
separately (Part I; Williams ef a/ 1979, 1980).

2. Statement of the control problem

A simple ON-OFF controller has inescapable overshoots and undershoots of tem-
perature about the mean value. A better constancy of temperature is obtained with

a proportional controller, wherein power 0 proportional to the difference between
the instantaneous temperature T and the desired set temperature T is applied to the
system. The quiescent loss of heat from the system is proportional to (I'—T),),
where T, is the ambient temperature. Thus for a system of thermal capacity MC,
the heat balance is of the form

Q=MC(dT|dt)=P(T—T,) — LT —T,) + 4, 1)

where P is the proportionality constant of the controller power output and L that
for the heat loss from the system. A, is the mean off-set output of the controller,
equal to L(T,—T,) when the error input (T—T}) has become zero. This ideal system
approaches the set temperature 7, exponentially and there is no overshoot or under-
shoot. Apart from the serious problems caused by the non-ideal time-lag between
the sensing of the temperature and the correcting heat input, which will be discussed
below, the simple proportional controller has another disadvantage for physico-
chemical investigations. If a new set temperature Ty is needed, the controller will
settle into a finite error signal P(T,—T,"). So the absolute independent temperature
calibration of the temperature sensor would no longer be valid. This off-set error
can be reduced by increasing the controller gain P, but this would inevitably lead to
oscillations because of the time-lag between the temperature sensing and the control
power output (Caldwell et a/ 1959). Another way to solve the problem would be to
introduce a control power proportional to the integral [ (I'—T)dt of the error signal.
When this complexity is attempted, it is not too much of a bother to solve the sluggish
response of the ordinary proportional controller by introducing a derivative term
(d]dt) (T—T) so that the system can follow rapid changes of temperature. Thus

one has
O = MC(dr/dt)=I [ zdt-+-Pr+D ‘g LA, @)

where r—=T—T. is the temperature deviation from the set value and the loss function
L can be more general than a mere proportionality upon (T—T,). This is the cano-
nical form of the PID controller of the linear system control theory and the PID
controller is usually considered to be the most refined and versatile of linear con-
trollers. The working of PID controllers is explained in a very simple manner by
Warren (1967).

Being a second-order differential equation, the solutions may result in undamped
oscillations if the gains P, I, D are not adjusted properly. Further the possibility of
instabilities arising from the lags in temperature sensing will have to be countered
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by appropriate lead-lag networks. Systematic ways of dealing with these questions
in a practical laboratory situation do not seem to be well-known. Therefore §3
deals with this question in a simple tutorial fashion. If temperature controls at milli-
degree levels are attempted, the task of sensing temperatures at these levels and the
design of adequately sensitive and stable electronic circuitry become nontrivial prob-
lems. ‘

3. Design of basic control system for linearly varying temperatures

The sample in the adiabatic calorimeter is usually heated at a steady rate and to a first
approximation one can say that the shields should follow or track a steady rise of
temperature. It is known (D’Azzo and Houpis 1966) that a simple proportional
controller, with a transfer function G(s)=K,, would give an off-set error for a general
steady temperature and that the off-set can be eliminated by the addition of an inte-
grator. Thus a type-1 system with a dominant transfer function G(s) =K, /s would
give zero off-set for any steady temperature but would give an off-set for a linearly
varying temperature. A type-2 control system with the dominant transfer function
G(s)=K,/s* is the simplest controller which will follow a ramp input with zero off-set
error and therefore it forms the start of our discussions.

The simplest equivalent network of a heater is a parallel combination of a resist-
ance Ry and a capacitance Cpy with a time constant =Ry C (figure 1a) so that its

transfer function is of the form X’/ [s-+(1/rg)] (Roots 1966). As will be discussed in
appendix I, 7y is of the order of 10® sec. There is a similar model for the thermo-

meter or temperature sensor with a time constant of the order of 10* sec. In our
apparatus the heater is wound on the adiabatic shield on which the thermometer is
also fixed and the control is effected from outside. The situation would be similar in
most other applications. The effect of the energy put into the heater is sensed by
the thermometer to actuate the control system. So the transfer function for the
heater-thermometer block may be taken as 1/(s+4) (s-+-B), where A =ry e

10%, and Bl=ry 00 oter & 10 (figure 1b). It must be mentioned that some

workers have used a simple one-pole network 1/(s--4) for the heater + thermal
sensor combination. However this can lead to instability under some conditions,
as will be discussed in appendix II.

The combination of a type-2 controller with a heater -- temperature sensor gives a
control network as shown in Figure 2a. In order to study the stability of this network
it is convenient to use the root locus method. The open loop transfer function is
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Figure 1. (a) Equivalent circuit of a simple heater. (b) Equivalent circuit of the
heater plus thermometer assembly.
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equation is s?(s-+4) (s-+B)+K=0.
atures of the root locus plots (Drans-
llowing simple features: (i) There are
acteristic equation. (ii) The loci start
at infinity (the zeros of G) for K- oo.
, the angles made by the asymptotes
> and +135°. (iv) The point of inter-
~B)/4. (v) On the real axis the loci

point exists at 0 and another one

;s the Y-axis (Im o-axis). Based on

e root locus plot to be as shown in

merical values could be drawn using
ical methods also exist which would
hape of the root locus plot. The
\oinary axis (real part of the root «
is unstable and that this is so for
_constants (poles) of the problem

going further, i.e. compensators

vices can be used either in the for-
ward feed or feedback loop of the system to provide the necessary change in the
systems transfer function. In the calorimeter, the temperature differences are meas-
ured with thermocouples. Since the error signal alone is available for control,
the conventional feedback compensation cannot.be used and one has to apply cas-
cade corrections. Also since the summing point is a very low impedance point, a
thermocouple, it is not good to incorporate correction networks at the input.
Instead one may follow the procedure of adding zeros to the system. Thus one may
consider the control loop with the transfer function G(s) = K(s+-c) (s+d)/s* (s+4)
(s+B), formed by adding two zeros as shown in figure 3a. Assuming for simplicity
the time constants to be such that A<B<c<d, one gets the main features of the
root locus plot, such as the number of branches, the starting and ending points, loca-
tions on the axes and the locations of the asymptotes. The shape of the root locus
plot, obtained by the methods outlined earlier, is shown in figure 3b. The system
is still unstable. If the time constants are such that A<c<d<B and further (¢-+d)
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-Figure 3. (a) Type-2 controller connected to a heater with two zeios added to the
system, (b) Response of the system when the zeros are large. (c) Response of the
system when the zeros are small compared to the poles.

<(A+B), then the root locus plot has the shape shown in figure 3¢. 'While the system
is theoretically stable, the loci Iie_a very close to the Im o-axis (since 412100 s). So
there is low damping and hence very poor system response. Thus the network is not
acceptable. ‘ D ’ a
_The solution to'this problem is to pull the complex roots further away from the
imaginary axis to give better system response. A simple way to effect this is to add a
zero so that the transfer function’ is of the form G(s) = K(s-+¢)(s-+d) (s+e)/s2(s+A)
(s+.B). For this system one may deduce the main features of the root locus plot as
indicated above. The shape of the plot is shown in figure 4b for the case 4<B<c
<d<e. Thesystem of figure 4a is clearly stable. If the time constants are such that

+ K {s+c)(s+d){s+e)
A (s+A)(s+B) 52 =
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. Figure 4, (a) Type-2 controller. connected to a heater systems with three zeros

added. (b) Shape of the root locus plot when the poles ave smaller than the zeros.
(c) Main features of the root locus plqt when some of the zeros are small,
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A<c<d<B<e, the features are slightly changed and the plot is shown in figure 4c.
The system is still stable and acceptable.

Unfortunately those shown in figure 4 are not good solutions from the point of
view of noise immunity in practice. In any electronic system the 50/60 Hz hum and
their harmonics are always present. The pick-up of these signals from the wiring is
not easy to avoid. Further the devices themselves produce noise at low levels. The
differentiator Ks has a gain which increases with frequency and so would amplify
the high frequency noise. The networks (1-¢/s) (1+d/s) allow an unattenuated
path for the high frequency noise, which then gets amplified by the (s-+e) differentia-
tor block. Itis for this reason of noise immunity that a straightforward differentiator
is not preferred in control systems. It is only under some special conditions that a
band limited rate amplifier is successful (Heck 1980).

To reduce the noise susceptibility, add an integrator and consider the control loop
shown in figure 5a with G(s)=K(s+c) (s+d) (s-+e)/s* (s+4) (s+B) (s+g). Let
A<e<d<B<e<g, taking the clue from the considerations of figure 3c. One gets
the qualitative features of the root locus plot to be as shown in figure 5b.

The time constants 4~ and B-! are properties of the physical apparatus and the
electronics engineer has little control over their values. For stability, the point of
intersection of the asymptotes should be as far left to Y-axis as possible, i.e. (A+B+g)
must be much greater than (c-+d+-¢). With ordinary electronic components, it is not
casy to get integration time constants much greater than say 1 second (R==1M,
C=1uF giving RC=1 sec). The extra freedom of making g as large as possible and
keeping c, d, e small, consistent with an acceptable pass band for noise signals, makes
the control loop of figure 5 a an acceptable one. '

It must be mentioned that there are many other ways of analysing the control loops
to arrive at the above or equivalent solutions of the problem. The present procedure
seems to have the virtue of making the path and the solution quite transparent.

4. Improvements to the control system

In thermal systems, especially of the type discussed in part I, there is active heating

+ K s+c  s+d  s+e

N (s+A) (s+B) s s s+g “

(b)

Figure 5. (a) Type-2 controller connected to a heater with zeros and lead/lag net-
work added. (b) Topology of the root locus plot for G(is) = K(s+c)(s+4d)
(s +e)fst(s+ A+ B(s+ g)- . ‘
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with the help of heater windings operated by power amplifier outputs. There is how-
ever no active cooling. Though thermoelectric and other active cooling are possible
it is more common to have passive cooling by radiation or conduction through the
support tubes and structures. As discussed in appendix I the time constants of the
two processes, about 10% s and 10%s, differ by orders of magnitude. To a first approxi-
mation one may take that the output power controller can heat but not cool the
system. This requires a nonlinearity in the control loop so that, say, negative
error signals activate the output power element but positive signals do not. Such a
nonlinearity is easily provided by introducing a precision diode rectifier in the control
path.

Secondly the control system assumes that the correcting power fed to the heater
is proportional to the error input. In practice electronic amplifiers give an output
voltage which is proportional to the input volatge and hence the output power fed to
the heater is proportional to the square of the input error signal. This problem is
solved by introducing a square-root amplifier in the electronic control loop. The
circuit described by Smith (1972) is well suited for this purpose and has been used by
us.

With these refinements the final circuit takes the form shown in figure 6. As is
common in these studies, the basic control loop was tested by simulation on an analog
computer. The transfer functions of the type (s+d)/s and (s+e) /(s+g), which are
needed in the loop, could be realised in the hardware form by the simple circuits
shown in figures 7a and 7b. However in order to ensure flexibility when testing the
various units, the functions were actually realised using the circuits of figures 7c and
7d. While these circuits do increase the number of operational amplifiers somewhat,
one has the great advantage of varying d, e, g without altering the gain of the system.
Even in the final circuit of the electronic temperature controller it was found desir-
able to use these forms of the circuits (since the time constants of the physical system
could be only approximately calculated and so one has to retain some flexibility in
the time constants of the electronic controller). The control loop was found to be
quite stable and efficient when tested by patching on the analog computer. Apart
from stability one requires good response to step and other inputs and this was
broadly optimum when the values were of the order of (s-+0-1)/s, (s+0-1)/s, (s-+0-1)/
(s4+1:0). One could also check the instability when (c4-d--¢) was made larger than
(A B+g) as was observed in figure 5 b. '

5. Circuit details

The centra.l part of the final electronic controller circuit is shown in figure 8. Not
shown are the details of the power supplies, overload indications and similar indi-

——
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Figure 6. Final control loop incorporating nonlinearity and square root corrections.
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Figure 7. Hardware realisation of transfer functions. (a) Simple network for realis-
ing (s -+ d)/s. (b) Simple network for getting (s + e)/(s + g). (¢) Flexible form of
network to obtain (s + d)/s. (d) Flexible network to get (s -

- e)(s + g) for e< g.
cative/protective devices incorporated into the final unit (Heck 1976, 1979). The
complete drawings are available from one of the authors (H Heck). '

In a system requiring control at millidegree levels of temperature, the noise levels
and the d.c. stability at the input stages assume considerable significance. In the
present calorimeter system, thermocouples (MacDonald 1978) were uscd to measure -
the temperature differences between the sample and the adiabatic shield, dictated
by the small size of the thermocouple junction, the small time constant and the small.-
heat conduction allowed through the fine thermocouple wires, thereby reducing the -
thermal link between the sample and the environment. However thermocouples
have a thermo-emf of about 38 microvolt/deg and so voltages of the order of micro-or
nano- volts are encountered at the input stages. These voltages were amplified with
the help of a Keithley Model 148 nanovoltmeter. This instrument has a non-cumu-
lative d.c. drift of less than 10 nanovolts per 24 hr, which is very critical in thermal
measurements extending over 100 hr or more. The input noise level is less than
1 nanovolt peak-to-peak, which is also much better than what can be obtained in
any simple manner. Indeed the stray noise in the calorimeter (pick-ups, hum, etc.) is
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Figure 8. Circuit diagram of the electronic controller (R, = 10K ohm, 1 ¥; R, =

1 M ohm, 1% R, = 10K potentiometer; C; = 1 uF; IC, = BB 3522; IC, = BB 3500;

D, = AN 204; T, = 2N3906; T, = 2N3904; T, == 2N2102; T, = 2N3055).
very much higher than this and is of the order of microvolts. The nanovoltmeter
used has a -+1 Volt output, which was used as the error signal to the input of the
electronic controller shown in figure 8. The inputs to the nanovoltmeter have to
be taken through special thermo-electric-free connectors and switches, because of
the low level signals involved. The output of the nanovoltmeter is at a higher signal
level and so ordinary precautions are adequate.

The circuit shown in figure 8 closely follows the control loop configuration of
figure 6 and the various sub-units are easy to follow. The controller uses high quality
operational amplifiers, dictated by the considerations of d.c. stability and noise
performance. The need to use high stability components and low leakage capacitors
in circuits involving long time constants is well-known. Since the controller has to
operate for 100 hr or more in a rotitine fashion, attention to d.c. operating conditions
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and to reliability considerations is very important. The final power amplifier has a
floating mode. It is convenient in this particular application for trouble-shooting
the cryostat in the early stages, since the different parts would be at different poten-
tials. The heater windings have 25-100 ohms resistance and the controller has 25 W
maximum power output. Under normal conditions power levels of only a few Watts
are needed. The nanovoltmeter is operated in the 10-100 microvolt ranges (voltage
gain 80-100 db). If the gain is set too high, then the noise signals inevitably present
in the cryostat overload the electronic circuitry. If the gain is too low, the internal
noise levels of the electronic controller begin to dominate over the operating signal
degrading the temperature control. The gain of the amplifier influences the damping
and the settling time of the controller, though a type-2 controller has zero-tracking
error for all values of the gain. v

The controller has been tested under various conditions. Figure 9 shows a mosaic
of the error signal (output of the Keithley nanovoltmeter) recordings under different
heating rates of the sample. The system stabilises within 3-5 cycles. The period of
oscillations, ~ 5-2 min., depends upon the ¢, d, e time constants. For heating rates
from 005 to 10 K/hr the adiabatic shield could follow the temperature of the sample
with rms fluctuations of the order of 1-2 mK.

There is no easy way to measure the tracking error if any in the system. A quantity
of water was taken in a sealed sample holder and the melting point of ice was deter-
mined by monitoring the temperature of the shield. Assuming that the temperature
at which the heating rate abruptly changed is an indication of the melting of ice, it
was found that the difference in the apparent melting points at heating rates of
21 K/hr and 86 K/hr was 0-741-5 mK. One must conclude that the tracking error
if any is less than the measurement limits.

It may be mentioned in passing that conventional PID controllers tend to be type-1
controllers. They will have a finite tracking error when following a ramp input of
temperature. This error can be made small by increasing the gain of the controller.
The system noise would set a limit to the increase in gain. For the slow heating rates
used in the present apparatus, it has been calculated that the tracking error could be
made of the order of 1-2 mK, for the 80 db gain of the nanovoltmeter. The situation
would become adverse when faster rates of heating are required. A type-2 controller
clearly becomes necessary under such conditions. ’

: — 5
B ”"’{rgin"" mK
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Heating rate‘ . Heating rate switched to - ‘ Heating tate changed from ‘
OK/hr . {K/hr . {K/hr to 8K/hr by a linear

incregse of sample heater
‘ . o . . voltage in- 40'min. . .
Figure 9. Mosaic of the controller performance. The thermocouple error: signal,
amplified by the nanovoltmeter, is given as a function of time for various heating
conditions, . e , .
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The response of the controller to very large error signals, driving it into the non-
linea.r region, has been satisfactory when sudden increases in the rates of heating
are encountered. The controller rapidly follows the increase of temperature and
settles down into control after a few oscillations. Such situations are often encountered
in the beginning of the experiments when large differences of temperature are present
before the controllers are put on. When the controller is driven into the nonlinear
1egion by sudden decreases in the rates of heating, it latches up because of the absence
of active cooling. The situation could possibly be improved by clamping the volt-
ages across the integrator capacitors from becoming excessively negative. It would be
necessary to ensure that the clamping diodes do not introduce leakage resistances
in the reverse bias conditions, especially in circuits involving large time constants.

Finally a comment is necessary on the time constants of the system and the control-
ler. As shown in the appendix I, the time constant of the heater wrapped on the
adiabatic shield is calculated to be about 88 sec under active heating conditions.
Under passive cooling conditions, the heat transfer is through radiation and through
conduction along the support structures. The time constant for the passive cooling
is estimated to be a few hours. These are the pieces of information used in the design
of the electronic controller. Experimental measurements of the time constants
using heating and cooling cycles give values which are within 50 % of the calculated
values. The time constants of the controller have sufficient lattitude in design to
cover these variations. The method of analysis has obvious applications to other
situations. '

Appendix 1: Estimation of the time constant of the heater

The calculation of the time constants of the adiabatic shield heater is made with the
help of a sketch of the shield heater shown in figure 10. The copper adiabatic shield
can, of dimensions ~ 5 cm diameter and ~ 15 cm length and of mass M ~900 grams,
has the heater wrapped on it. The can is supported inside a vacuum enclosure and
has aluminium foil wrapped round the heater to reduce radiation losses. Assuming
the operation around 300 K, the specific heat of copper C, is & 0:38 J /g K and so
the thermal capacity is MC, ~ 900x0-38 ~ 340 J/K. - Thus the effective thermal
capacitance Cin can be taken as ~ 340 J K.

J
Support - > N
structure Connecting
. J leads
f— ity . ‘
| Epoxy
"1 .
Copgg; g % insulation
Sample —% : Heater wire
4 s
Vacuum —»- = -1 Aluminium foil
enclosure

Figure 10, - Sketch of the adiabatic can heater.
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Consider now the active heating case... 20 turns_of heater wire of effective dia-
meter ~ 1 mm are wound bifilarly over the.can and thermally bonded with epoxy
resin. Thus the effective area of contact through which heat is transferred to the
can is nearly .60 cm?  The insulating epoxy resin may be taken to have an average
thickness of ~0-2 mm and its thermal conductivity as &~ 1-3 mW/cm deg. Fora 1°C
temperature difference, the heat conducted would be 3:9 W and so one may take the
thermal resistance of the heater to be Rgn & 0-26 K/W. Neglecting the heat capacity
of the heater, the aluminium foil and the epoxy resin, the time constant of the active
heater comes out to be Cin X Rin =~ 88 sec. o R O

In the passive cooling case, one notices that most of the heat loss from the can is
to.the surrounding floating vacuum chamber walls. The sample kept inside the
adiabatic. can is quite small and its area can be neglected. One has to estimate the
heat transfer through the support structure and through radiation.  The support
structure consists of three stainless steel rods of ~ 2 mm diameter and ~ 7 cm Jength.
Assuming the theérmal conductivity to be 025 W/em ‘deg., the heat transported
through them for a 1°C difference of temperature is nearly 3 mW. In addition there
are a number of wires attached to the heater and other sensors placed on the adiabatic
can. These may. be taken to the equivalent of 6 copper wires of 0-5 mm diameter.
The thermal conductivity of copper being 3-9 W/cm deg., the heat transferred through
the copper wires for a 1° temperature difference is nearly 7 mW. The total area of
the can is 250 cm? and because of the aluminium foil the emissivity can be taken as
0-05. Thus for a 1° temperature difference compared to the outside, the heat radiated
would be ~ 8 mW. Thus the total heat transfer by passive cooling is ~ 18 mW/deg.
and so Rin &~ 55 K/W. Consequently the time constant for the passive cooling
mode is & 34055 ~ 18,000 sec. Such long time constants are not uncommon in
adiabatic systems where thermal isolation from the surroundings is essential. '

“The experimental measurement of the time constants is done after assembling the
cryostat, when all the required temperature sensors are in position. A step heating is
given to the heater winding and the temperature rise is monitored. The approxi-
mately exponential temperature rise gave a time constant of nearly 62 sec for the
heating case, in approximate agreement with the calculated value. After heating
the adiabatic can to a temperature of ~ 2°C above the surrounding the passive cool-
ing is monitored. The passive cooling time constant is obtained as ~ 2 hr. The
probable source of the somewhat large difference from the calculated values is the
presence of the connecting wires with vacuum grease, varnish and other components
which are not taken into account in this idealised consideration. As long as the pas-
sive cooling time constant is much larger than the active heating time constant, one
has no problem in the actual control system, where the passive cooling time is taken
to be infinitely large compared to the active heating situation. Also the design of
the electronic controller has sufficient freedom to take into account the rather large
uncertainties in the estimation of the time constants.

Appendix 2: Consideration of a single pole network model for the heater plus thermo-
meter combination

In many cases of thermal control, a simple network 1/(s+-4) has been used to repre-
sent the heater plus thermometer .combination. . The final controller .performs ade-
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quately in many cases. In this appendix we present some of our results which show
the regions where the control was adequate and where it failed.

Suppose one considers a type-2 controller connected to a one pole network, giving
G(s)=K/s*(s+A). Using the methods of finding the main features of the root locus
plots, one can easily obtain the shape of the root locus plot to be as shown in figure
11, giving a clear instability. This is so for all values of the gain X and thus one must
stabilise the system first. As was done with figure 3a, the starting point is to add
zeros making a transfer function G(s) =K(s+C) (s+ D)/s? (s+4). Assuming the
time constants to be such that 4 < C < D, one obtains the topological shape of the
root locus plot to be as shown in figure 12. The system is stable and could form the
basis for building a controller.

Indeed similar considerations were the basis for an electronic controller built
earlier, The controller worked well when the calorimeter was assembled initially
in air but became unstable when the calorimeter was evacuated. In studying the
oscillations and the response to pulses of heating and cooling in vacuum, the probable
reason for the instability became evident. The heater plus thermometer combination
should really be considered as a two-pole network instead of the one-pole approxi-
mation.

In other words, while the controller is built on the analysis of the network G(s)
=K(s-C) (s D)/s*(s+A), the calorimeter is really described by a transfer function
G'(s) =K'(s4C) (s+D)/s*(s-+A)(s-+B). The behaviour of G’ has already ‘been dis-
cussed. If the time constants are such that 4<<C<D<B and (C+D)<(4--B),
the system is stable (figure 3c). If however 4 and B become small and C+ D become
greater than 4+-B, the point of intersection of the asymptotes moves to the right of

Angle=60°] '

To® =45 - °

Figure 11. Shape of the root locus plot for a system with the transfer functions
G(s) = K[s* (s + A).

Figure 12. Approxxmate root locus plot for a type-2 control system with a transfer
function G (s) = K (s + C) (s + D)/s* (s + A),
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‘the Y-axis resulting in unstable conditions. When the calorimeter is assembled in-air,
the heat exchange between it and the surrounding is efficient. The time constants
‘A-1 and B! remain small and one has the case of figure 3c. When the calorimeter is
evacuated the heat exchange is reduced and the time constants become large. Aand B
become small and the root locus moves to the nght of the Y-axis. At this stage the
system becomes unstable.

This illustration of the earlier electronic controller, Wthh was satlsfactory under
some conditions but became unstable under other operatmg conditions, shows the
need to make detailed studies of the stability of the control 1oop before constructing
a precision temperature controller.
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