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SATNT-VENANT'S flexure problem has been solved only in a limited number of
cases. All the cross-sections discussed by Saint-Venant, and many writers
after him possess bi-axial symmetry, there being an axis of symmetry in the
plane of loading and also an axis perpendicular to this plane. But more
often than not we come across sections in engineering problems which have
only uni-axial symmetry, and these have received attention from very few
authors.! The present paper deals with the flexure-solution of a hollow shaft
with a cavity placed excentrically.? The torsion solution for this section
has been already obtained by Macdonald.?

In the case of umi-axial symmetry we can have the axis of symmetry
(1) perpendicular to the plané of loading, (2) in the plane of loading. We
propose to deal with the two cases one after the other.

(1) Axis of symmetry perpendicular to the plane of loading—
The transformation we require for our purpose is
x+iy=ctan7}(§+z’n), .. .. .. .. (1)
which gives rise to the two families of circles
22 + (v — ccoth n)? = ¢ cosech® 7,
and (x + ¢ cot ) + y* = ¢* cosec® &,

the n-family being the one which enables us to take the two circles of the
cross-section, shewn in Fig. 1, as = a, and y = B, o being greater than B.

1 Young, Elderton and Pearson have been the first to discuss such cases in Draper’s
Company Research Memoirs, Technical Series, 1918, No. 7. When the axis of symmetry is
in the plane of loading, Seeger and Pearson have obtained a solution in Proc. Roy. Soc., 1920,
96A, 211. Recently, we have treated a few more cases in Proc. Lond. Math. Soc., 1934, 37 (2},
502, and in forthcoming papers in Phil. Mag. and Proc. Lond. Math. Soc.

2 The problem has been suggested as a soluble one by Love in his Mathematical Theory of
Elasticity (4th Edition), 1927, p. 340.

3 Cf. Love, Mathematical Theory of Elasticity, F ourth Edition, p. 320.
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The weight W is supposed to act along a line through G parallel to the
x-axis. If a, b are the radii of the two circles, and % the dist
their centres, we have the relations

¢® = a? sinh? a = b* sinh? B,
42 = (0® — a®)?fR? + B2 — 2 (a® + 1),
% and y are given from (1) by the equations
¢ sin ¢ _ ¢ sinh 7
~ cos £ +cosh 7’ Y = Cos § +coshy " i (2)

The present case involves what is called the *“ associated flexual torsion’.

So we should write the components of displacement and stress as

ance hetween

w=—ayz A ol 90 —(y =33 + 412 — 3
W + Bzt oy .. .o .. (3.1)
v=m2x+ o (I —2) (v - ), .. .. . (3.2)

werh + 5 Kly) =2 ls —12) —x (5 —

— B x + 9y, .. .. (3.3)
y=pr (+a)+ [ - rae =N ] @

B () RT3 —der — =k (5 - 5]

23 = —

H <

| oo
% (- 2), . .. . c (4.3)

w =yy =xy =0, e .. o (hay
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where x (x, v) is the flexure function, ¢ the torsion function, I the moment of
inertia of the cross-sections about an axis through G parallel to the y-axis,
[ the length of the beam, and =, ay, By, 71, 7, are constants.

The boundary condition

%z cos (xy) -+ 375 cos (yy) =0 .. .. - (5)
gives

3%~ hos — (1= 10) (= 5?]cos (a)

d — |
[ -erar -] =0 @

which if we put .

X=X +oyd+ (1 —%o)y?x —2yxy, .. . (7
and assume ; to be the hormonic conjugate function of X;, becomes

¥y 1,2 1) ox :

af ~——-[ij +(1 20).3}:[ ag /(2—!—0’)5‘7_’)/ bé‘.‘ . (8)
A little calculation gives - :

oy . sin® £ d¢
2 Y — 3
fx ¥ 4§ = ¢ st n (cos € + cosh 7)*

¢® sinh 7 cosh 9
(cos & + cosh 7)¥

’fxy g—gd‘f:%x?y—%fxég—%df,

6 ¢ sinh 7 cosh 7
(cos & + cosh 7)¥

=—3cty+i¥y+3

and

Hence we can write

oy ‘ ox
1 pa _1(] — % - =
wfngdms(l ba) y (2+o)fxyb§d§
. I 8a1
! — 1B 420y —F@aty — ) + 3 T

{cos ¢ + cosh n)z'
(9)

Comparing (9) with (8) we see that we should express

~sinh 7 cosh 7/(cos § + cosh7)?
in a Fourier’s series in §.  To simplify we write
k= —12B3 420y 1By - +ECh
Assuming _ o : ’
by = E‘o_[A,,_ Sinh # (g — a) + B, Sinh # (B8 — )] cos # £,

7n=1 . :
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we see that the new boundary condition

__ sinh 7y cosh g
¢2—<COS§+COS]1’)])2 +f(77> .. . . (10)

gives over 7 = a
sinh a cosh a

+ f(a) = > B, sinh z (B — a) cos » &, (11)

(cos ¢ + cosh a)? —
where the constant f (a) is given by
+ar
i 1 sinh a cosh a

Sle)= =g f (cos £ + cosh a)? 4¢

1 - d g ag

= e— ]_’]_ —_— . 2
T cost @ da f cos ¢ + cosh a coth® o

Hence f () should be taken equal to — coth? in (10). The general co-
efficient B,, in (11) is given by

+
sinh o cosh a cos n ¢
- 4 2.
7 WSiIlh’l’L(lB _ a) f (COS g; + cosh a}z d§ (1 1)
—r
In like manner by considering (10) for n = B we get
+r .
__ sinh Bcosh B cos né ‘ .
A = sinh# (B —a) ) (cos £ + cosh B)? ¢ . .. (12.2)
—TT

It should be mentioned here the a term D#, where D is an arbitrary
constant, can be added to the expression for i, x will now get a term D ¢,
and hence the w-displacement will become manv-valued. 7To secure a one
valued expression for w it would be mnecessary to put D =0. A similar
result holds good for any hollow shaft. ‘

Now

A = — cosh B cos n &
" msinhn (B —a) aﬁ cosE-l—cosh,B

- _ cosh f8 3_[ 2% 1 — 2 i
= T smhn(B—a) B LI =& 1+2hcosg+hzcosn ,g]

ag

-7

‘cosh B d 2 (— 1) 7 e
—wsinhn(ﬁ—-a)gg[ sinh B ]
— (= 1) 2 coshf  nsinhf +coshp -

sinh # (B — a) sinh? B o

(h = ¢B)

(13.1)
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In like manner

Bn = ("' ]-)72

2 cosh a n sinh a+cosha _,,
sinh # (8 — a) sinh? a d - (13.2)

Thus we have

. co _ )2 ’ .
b =2 )i: Sinh( n (.8) — a) g% [coth o (n + coth a) sinh % (B-— 1)

+ ¢ coth B (n+coth B) sinh # (n — 'a)} cos 7 &, (14)

and
X=Equ—|—x[(1—--?ga) yz—%02(3+20)]-2§xy

— 1 — B + 1S _,{5° [A, cosh 7 ( — a)

— B, cosh # (B — 7)] sin f .. (15)
The value of the torsion function ¢ is known to be given by

o2 (—L)ysinnm £
qS 2 7 51 sinh 7 (E——a)

cosh # (B — 7)) .. . O ¢ 1)
and, if Q be its conjugate harmonic function, the boundary condition satisfied

[e7B coth Bcosh n (n —a) — e cotha

by Q is
Q=1+ +(} —cothyg) .. - .o (1

Presently we shall need these results.

As regards the convergency of the infinite services in (15) we observe
that both sinh # (n — a)/sinh # (B — a) and cos n& are less than unity in the

region enclosed by the circles n = a and n = . The series 5 (— 1)* e
1

w0 .

and X (— 1)’ ne™® being both convergent, the convergency of the series
1

in (15) follows at once.

Determination of .

T determine = we have the equation

— Wy = I (w2 — ya) dady L Loy
the double integral being taken over the area of a cross-section. Substituting

the values of 372 and ¥z we get
Wy =g EyW) (# + 5 20 _ g{?)
Wy =p (7 + BT ff LA A v yby dxdy

_ 1 pEW (E‘k , e
— ¥ TRI ,ﬁ. *5e Y oy dxdy

A3
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2
+ !‘LC'IE} 3__1_‘)0- ﬂ'ydxdy
+ ;}; (1 - jf (%2 + 42 dxdy .. (17.2)
By Green’s theorem

K(xg )dxdy ——%fﬂz—gds

where #* = %% + 3%, dn an element of the inward drawn normal, and the line
integral is to be taken for the circles n = a and 7 = B in opposite senses.

Now

s
2 cosh
2 _._d 22 4 1 il
fr 5= f ¢ = f(cosf—f—coshn ) d.
-7

Putting the value of @, and evaluating the resulting integrals as in (13), we

get

E ( 2 4y ) dudy

oo 5 e ratg)
= 8 = ¢* coth a coth B 21 [Sinh W (B = a)]
— 4wt S ncothn (B — a) {coth? B e*f 4 coth? a 279
1
= (b® — a®) (@® + 8* 4+ ¢?) — 4 7 ¢* (coth o — coth B)?
oo n g-n(a+‘g)
X)'l:sinh‘n(ﬁwa) .. .. .. (18)

Also

[ ) dxdy =7 (B — @) [* + £ (B + a¥)]

Proceeding as in (18) we get

% 1y g0g
[ =y

P -12(a+g)
=4mwc2cothacothf X ne F
1

b (B = o) (27 + cotha + coth B)

—dm Y #n coth n ’(B — a) = coth? B (n + coth B
1 .

»

—4nc 3 ncothn (B — a) &% coth? a (1 + coth a) (19)
1




On the Flexurve of a Hollow Shaft—1 537

But
e?8 cothn (B — a) = sinhe:((?ﬁi 3 — VB
g2 coth n (B — a) = sinhe:((gﬁ—)- 2 + e
ct Z ne?p = — 1 dﬁ (slnhﬁ) 152 2
¢t 217' n2e B =% ¢t ‘;Zﬁ: (sufﬁ Sinh B = 1 b2 ¢® coth B.

Using these results we can re-write (19) as

2 ff( asbz n yaﬂl’z) dxdy

=277(b4cothﬁ——a4cotha) + 2w (b —a?)y

oo 2 (0t B)
— 4 gt RRY ne

— 2 b2
2 b (B — 9 4 7 ¢ k* (coth a+coth B) %

y Zo;'o " 6_7z(a+ﬁ)
1 sinh#n (B —a)’

%, as we have already assumed, being the distance between the centres of

the two circles.

Also

/]’y (0 + %) dxdy =mcy (B* — a)
+ 2 ¢ 7 (b% coth B — afcoth a).

Substituting the results obtained above in (17 .2) we get

_BETT 1 i 4 222 3 n gtp) ]
W [“b @) HACR S G =)

oy (0% — at) — H_I’_C( - o) (b* coth B — a* coth a)

C3k2 < %2 g‘?l(a+ﬁ)
T207 BT Y Gaha (B — 9

" e-n(a+5 )

c2h2 b
+2pm gy [ (cotha +cothf) + 2038 o

(20)

which determines = The infinite series in (20) are quite rapidly convergent.

TR T
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(2) Axis of symmetry in the plane of loading—
The components of displacement and stress are now given bv -

W — .
u=EE—I—x(Z—z) (y — ), .. .. .. .. (2L.L)

R ) (L2 s I SR iy A

(21.2)
w=}§—§§£x @) =y =9 @ +E—3A] = By +» (213
~ _BW[ _
xz=ﬁ[gg—c-(2+cr)x(y——y)} (22.1)
[ W o 5 ¢
yz=f"7[5—§~(1——1—o)x2-—%o(y—y)*], (22.2)
—~ W _
zzz—ﬁ(l-—-z) (y =), .. .. . .o (22.3)
X% =3y = xy = 0, .. . .. . (22.4)

I being the moment of inertia of the section about an axis through G parallel
to the x-axis.

Proceeding as in case (1) we find that the boundary condition (5) gives

oy _

I Jb._.y...._. ! —a.;y_. ax
Y: -—20xga§ 2(1T°)xyb§ 2

¥3e (23)

where 3
X =302y +30y (x® —3%) + (1 —%0) (x2y — 5% + Xy,
and i, is the function conjugate to y,.

A little calculation gives

O 20 4 sin? £€d ¢
[ ade = o (o5 £ F cosh )

e sin & _ 3
1 ¢®sinh g [(cos € T cosh 7) f cos ¢ -+ coshy

, ¢
+ coshiy f (cos £ + cosh 7,)2]’

'1 " o [ Gn ¢
}‘x_y82 d ¢ = 3% Asinh?q [cos £ F cosh 7

a¢ a¢
- f(cos ¢ + cosh 7)* Teosy f (cos € + cosh ~17)3]
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n
(oM
\O

and

o% d
.2,__d =z 2 .9 y
fy = ¢ x vy fxyb__édf_

Hence we can write

QGIVV?df-* U+wﬂ§j‘ fdf_J.z ¥ag

=2 (1 + o) [¥ » y* — § ¢ sinh® 9 Hy + § ¢® sinh® 5 cosh 7 H,]
—xy2 —2 (1L +o0)y[kxy — % csinhnH,

+ % ¢? sinh % cosh 7 H,] e . (24)
where . )
d¢ ‘
H, = (r =
4 f(cos & + cosh )" =123
Putting

gy = — (1 4+ 0) y xy +

and comparing (24) with (23) we see that the boundary condition can be

written as
— ¢ (1 4 o) sinh 7 (ycosh 9 + § ¢ sinh n) H,
14 2 ¢8 (L + o) sinh®7 cosh n Hy
sin ¢ sinh? 7 . .
(cos ¢ 4 cosh 7)® +re o (29)

where f () is as yet an undetermined function of 7.

— 316 (1 — 20)

To sat1sfv (25) we assume series of the form

S, = 5 [C,.» smhn (g —a) + D, sinh n (B — )] sin n £,

n=1
| (r =1,2, 3, 4). . L. (28)
| che H,, H,, H,, sin £/(cos § + cosh 7)? are all odd in f we easily see
that f () = 0.

(Si)n=ap = (sinb. 7 Hi) n=a. p:
and proceeding as in (12) and (13) we find

I N e S b | ot e
Cora 7 sinh 2 (B — a) "1 nsinhn (B—a) (27.1)

Again we have
(So)r=apg = [sinh y (y cosh 7 + % ¢ sinh 7) Haln=a,p;
(Se)reap = [sinh? 7 coshq Hoboaps
(Sone :—.[ sinh? 7 sin £ ]
Tan=ag (cos £ + cosh 7)? g
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which give

c (— 1)" 2 (y cosh B + % ¢ sinh B)
e nsinh® B sinh # (B — a)

— cosh 8], .. .. .. .. .. (27.2)

D. . — (— 1)# 2 (y cosh a -+ £ ¢ sinh a)
" # sinh? o sinh # (8 — a)

— cosh a] .. .. .. .. .. (27.3)

(— 1)” cosh B

Il

[e#f (n sinh B 4 cosh B)

(e (n sinh a + cosh a)

ns = ' (n2 sinh? B + £ # sinh 2
Cua # sinh® B sinh 7 (8 — a) [ (n* sinh® B + § n sinh 2 B
+ 3 cosh® B — sinh* B) — (3 cosh? B — sinh? B)] .. (27.4)
D, = (= 1)” cosh o [e"® (n? sinh?a + € # sinh 2 a

7 sinh®a sinh # (B — a)
"I" 3 COS]_‘_I,2 o — sinh? o,) — (3 COSh?‘ a — sinh? a)J, . (275)

. (_. 1)fz+1 n "8 ] o
Coi = Bsinh 7 (f —w) " Sioh £ + cosh §) .. (27.6)

(_ 1)7z+1 n e-"a
Dia = sinh a sinh # (8 — a)

(n sinh o + cosh a) .. (217

Thus we can write
dp = (1+0)yS —cA(l +0)S, +263(1 + o) S,
— 3 (1 — 20)c® 3,
and hence
X =305y — 35 9% +(1—}o) (2y — 39

- 62 (1 +U) fjo [5’ Cn,l - Cn,2+?§ c Cn.s

n=1

—35¢C,q (1 —20)/(1+0)] cos n £ cosh # (n — a)
+ c? (1 + 0)722_7 1[& Dn,l - Dn,2+% c D7z,3
—3%¢D,4 (1 — 20)/(1 4 0)] cosn £ cosh n (B — ),
where C’s and D’s are known from (27).

The convergency of the series S;, S,, S,, S, can be proved in the same
manner as in case (1).

Determination of ay, By, y1.
Case (1)—

Instead of following Saint-Venant’s mode of fixing a small area enclosing
the centre of gravity of the section we take the more practical case of fixing
two points on the axis of symmetry which is the y-axis in the present case.
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If y,, y, are the y-co-ordinates of the points to be fixed, we have the conditions
y=1v=w =0,
both when v =2 =0,y =y, and x = 2 =0,y =Y,

From (3) we have
alW — WX
oy =—2~ﬁ(y -y = ’EI-O’
where y, is the value of yat ¥ = 0. It is easily seen that x, = 0 for all values
of y. Hence y, = 0. The first equation now shews that y,, ¥» must satisfy
the relation
Nty =29
Hence we can fix any two points on opposite sides of the centre of gravity of
the section such that the sum of their y-co-ordinates is equal to 2y. Tor
example, if we fix the centre of the outer circle, then y, =b cosh B, and
y, = — b cosh B + 2 (6° cosh B — a® cosh a)/(b* — &%)
Case (2)—-
In this case, too, we can fix two points on the axis of symmetry. The
condition is
=0v=w=0
at these two points give
alW =\ XoW
al“‘-‘”‘m(y—y)z: Vlzlgly—”gﬁ“f
The first shews that
Y1ty =2
Putting y =y, and y =Y
the two unknown constants B; and y.
It appears, therefore, that we can always fix two points on the axis of

symmetry of the section of a cylinder possessing uniaxial symmetry. These
e centre of gravity of the section and are

in the second we get two equations to determine

points lie on opposite sides of th
such that 3
Y1 +y2 = 2 Y
Y1, Vo being their y-co-ordinates, and y that of the centre of gravity, the load
acting in any direction whatever.
In Part IT we shall obtain aumerical results for the amount of twist
produced in the asymmetrical case and for the value of stress at different

points of the section.




