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No case of transverse waves in canals of variable depth, whose section is
a closed curve, has yet been exactly solved. When the free surface is at
the level of the axis of a circular canal both Lamb! and Rayleigh? have
obtained an approximate solution. But it is shown elsewhere? that no exact
stable type can exist in a circular canal, and that the constrained type
assumed by Lamb and Rayleigh to get an approximate result is unstable.
In the present paper we propose to shew that transverse waves cannot be
produced in a canal of closed section. Infact, one can anticipate this result
from physical considerations. We shall also shew that in certain cases an
approximate value of the frequency can be obtained, and that this value

approaches (g/p)? as the depth becomes very small, p being the radius of
curvature at the lowest point.

For simplicity we take the section of the canal symmetrical about the

vertical, the origin at the highest point, and the axis of y vertically down-
wards (see Fig. 1).

The polar equation of a comprehensive class of closed curves symme-
trical about § = } = is given by

2 (—1)» “zn+1sm 2n + 1) 8 = 1.

721

(1)
We can take the highest point as 7 =0, § =0, and the lowest point as

v =c¢, § =%m. If we further assume that all the a’s are positive, § =}
will only give one positive value of 7.

Any function which is to represent the solution must be finite and
continuous, together with its first partial derivatives, at least for all points
of the section excepting the highest point. We can therefore assume the
velocity potential ¢ and the stream function i} to be given by either

d +1p =2K, sin &, {2 (— 1) Conti —{—i}, (2-1)

Z22n+l

1 Lamb, Hydrodynamics, 1930, 5th edition, p. 420.
2 Rayleigh, Phil. Mag., 1899, 47, 566.
3 Seth, ibid., 1937, 24, 288-93.
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or

¢ +ip=C+2K,cosk, {2(—-1)” oty +7f} (2-2)

22+ 1

both of which make (1) the stream line </;¥ 0, all the K's, &’s and ¢ being
real constants.
0

"The asymmetrical modes are given by (2-1), and the symmetrical by (2-2).
If we take (2-1), we get
sin (nf -1 pm
b =X A, ( 9 L2 pﬁ ).’ (3-1)
where p is 1 or 0 according as 7 is odd or even, A’s being all real constants,
as yet undetermined. Rewriting we have
1
9{’ =52 PECEY’ [Aznﬁ-l + 2n Azny +
"2 (27 L12—13) (2r 12 =3« - - (2r +12—2n—2r +17)
PN —1)"A,, 2n-2r
ord 1 =2n—1 ( ) w41y ] (2%'—" 27’?: L
n+ 1 2 22) (2’}”?‘"*42> CIE (2’]"2 - 27@"-—2-'}:2)

- gy (21 % -'I ‘
9y [ — 1) LI .
+2r =§":_2~47’ (—=1)7=7 Ay, yi-2rtt @n— 2 + 1)1 (3-2)
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A 1 1
=[50 4 2 (As +2809) + 55 (As + 484y — 44597
1
45 (B 6Ay — 128,57 — 8AY
i (Be + 88,y — 26 Ay — 32 Ay + 16 Agy)

+ ;%—2 (Ayy 10 Agey — 40 Agy? — 80 Agy® + 80 A,y + 64 Agy?)

+ - - -] (3-3)
The condition at the free surface, ¥ = %, which is now of the form
o 9
¢ = —g 32 @)

gives A; = 0, and
2A,(h +1) +1A; =0,
8ARE +4 AL (M +3) —4 A,k +1) —IA; =0,
24 A M3 — 8 A2 (lh +6)— 6 AL 21k +5) +6Ag (1A + 1) +1A;=0,
64 At + 16 AR (Ih + 10)— 16 Agh? (218 + 9)— 8 Azh (3 ik + 7)
+8A; (Ih + 1) + 1Ay =0,
160 A 45 — 64 Aght (12 + 10) — 80 A2 (Ih + 7) + 80 Agh? (Ih + 4)

+ 10AA (4h +9) —10A,, (A + 1) — 1A, =0,
where I = d?/g.
The elimination of A’s from the above equations gives an infinite
determinant to dertermine o. If we proceed to evaluate o by successive
approximations we get equations of the following type :

Ih +1=0, (5-1)
2h2 - 310h 4+ 3 =0, (5-2)
Bhd 61012k +-151h + 15 = 0, (5-3)
4Rt 4+ 10 3h® + 45 122 +,105 I + 105 = 0, (5-4)

..........................

Thus at whatever stage we stop we. cannot expect to get any positive value
for Ik, and hence no asymmetrical stable type is possible.

If (2-2) is used we again get equations of the same form as (B) to
determine k. There exists therefore no symmetrical stable -type as well.

If we take
” cos (2 1) . |
gb: KZ (—' 1) a?rz+1 ° (7,::;_;!; ) 9, (6' ])
— /3 si (2 1 )
b= — KE[(—1) 4., SZADE 4] 6y

the boiqndary condition is satisfied.

e




Transverse Waves tn Canals 107

The surface condition gives
B R) RO R (R
Z[h2<1+h2 U+ E) + R (R ]

R DI (RS AN (REA R

If, therefore, #2/* and higher powers of 4%/A* can be neglected, we get

36l3 Sa a, , 6a,
JERE R R EEl R R
which will always give a positive value of J if all the a’s are positive. In
such a case we can take (6) as the constrained type to get an approximate
value for the frequency of the gravest mode by using Rayleigh's method
for cases in which the normal types cannot be accurately determined. The
condition in this case to be satisfied is that the breadth of the free surface
is very small compared with its depth below the highest point.

If w =¢ + ¢y, we can write

, wlﬁdaf
‘ (M)

0% =g
N é2dv
the double integral being taken over the area occupied by the liquid, and
the single over its free surface.

For very small depths the section may be replaced by its circle of
curvature at the lowest point. In such cases we know thatt

(14 2]

H being the depth of the liquid, and p the radius of curvature at the lowest
point. This value obviously approaches (g/g)t as H —-0.

The last result is perfectly general, and may be verified by taking the
exact solutions for a few hyperbolic sections. We know that for a rectangular
hyperbola and for one in which the eccentricity is 2 the value of o is given by?

o =(3). g

. being the height of the free surface above the centre of the hyperbolas.
In the limit % obviously approaches p.

4 Seth, loc. cit., p. 392.
5 Seth, loc. cit., 1937, 23, 113-14.



