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It is generally believed that the velocity (or stress) in the case of an irrota-
tional potential solution is zero or infinite at an angular point according
as the corresponding angle is less or greater than =. But no general
analytical demonstration is available even for two dimensional cases

excepting the one given by Pearson! for the torsion of prisms. In this
paper we shall shew that if = a4 be the angle,

(i) the velocity is zeroifa < 1 ;
(1) the velocity is in general infinite f a > 1;

(iii) the velocity is zero even in (ii) if the physical problem and the
section are both symmetrical about the bisector of the angle.
This has been generally overlooked by writers. What happens is
that the re-entrant angle behaves like two angles less than 7 and
hence the velocity becomes zero and not infinite.

The velocity potential which is a solution of Laplace’s equation generally
satisfies a boundary condition of the form

B—% _ 3z fs} cos (xv) + [% + z X:} cos (yv) =, -

§=10 s=0
where f,, and y, are homogeneous integral polynomials of the nth degree in
x and y and v denotes the direction of the normal drawn to the boundary.

We can re-write (1) as

a(ﬁ [ z f} cos (xv) — L §0 xs} cos (yv), | (2)

where s 1s measured along the boundary.

For fixed boundaries all f’s and x’s vanish; for a uniform motion of
translation f, and y, are only present : for a motion of rotation and for certain

viscous motions f; and y;, and for Saint-Venant’s flexure problem £, and y,
also have to be taken.

1 Todhunter and Pearson, History of Elasticity, Vol. 11, Part LI, pp. 412-14.
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Let us solve the corresponding problem for a circular sector given by
0 =+ tma, v =c.

Along § = + L wa (2) gives
¥k a B (3)
r §=0 ) .

A’s and B’s being known constants and s integral.

We can satisfy (3) if we take

‘oSl cos (s -+ 1) 8 sm (s +1)0
== B, ——=- ,
v .Zos + 1 [A cos 5 (s -+ 1) wa fsind (s + 1 )mz] + (4)
where i, is such a solution of Laplace's equation that
%‘b«l = U over § = L & na.
Since — § ma < 0 < § 7a the most general form i, can have is
oo ol o\ (25+1) /(z 2
¢1 = [Fr (Z) sin ‘_25_6 - E (}> Ccos gfi.ilﬁ]) (5)
§=0 ¢ a
where F, and E, are as yet undetermined constants.
Along 7 = ¢ (2) gives
= a known function of # which can be expanded in a Fourier’s series.
v [a sin(s+1)0 cos(s—Ll)B]
=8500§T [A‘ os (s + 1)ma  Tsin (s +1,ma
oo [ 9 D) 1 95 - 9
—- X [_s F, cos —— 250 _ ( s+ 1) E, «in (-‘?-i——ll~] . (6)
—oLa a a a

Comparing the co-efficients on both sides we get the values of I, and E,.
The corresponding value of ¢ + ¢ is now given by ?

=0 §=0

é + it =§O Lysy 254 +8.°>°:° F, 2 4§ 5 B, et )
which shows that in general the velocity
a .
g =416+ )|

2 Tt can happen that an E; or a F; may become infinite for some value of ¢. In
such a case a Ly must also become infinite. Combining these two terms we get a term
of the type z° log 2, s being a positive integer. The velocity corresponding to this term
is always zero at z = 0.




138 ~ B. R. Seth

will contain a term of the type r¥e-1 f (), and hence it will be zero or
infinite when » approaches zero according as |

a < or > 1.

When hoth the section and the physical conditions are symmetrical
about the bisector of the angle #» must be odd in 8, and hence A, and I
must both vanish. In such a case (7) shows that the velocity is always
Ze10.

We may look upon the problem in the following manner as well. In
the boundary condition (1) v, the direction of the normal is defined at all
points except at an angular point where it can be anything. Hence at an
angular point the co-efficients of both cos (xv) and cos (yv) should separately
either vanish or become infinite. But this does not give the criterion to
distinguish between the two cases.



