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THE components of finite strain referred to a point (x, p, 2) in the strained
state of an elastic body are known to be given by relations of the tvpe.?
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As there are six relations between the three conmiponents of displacement
(v, v, w), there should exist six identical relations between S, S,. S,
ysr Ooer Oy These are called the consistency equations. In the classical
amall strain theory they are known to be of the form.?
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It is proposed to investigate their forms when finite components of strain
are used.

Let (g, b, ¢) be the unstrained position of a particle whose position after
strain is given by (x, v, z). An element of length in the unstrained state is

given by
(dsy)® = (da)? + (db)? + (dr)? (3-1)
In the strained state we know that it takes the form
(ds)2=(1—2S,) dx*+ (1—2S,)) dy?+ (1 2S,) dz?

~ 20, dy dz— 20, dxdz— 20, dxdy. (3-2)
Putting
g=1—28,. gp=1-28, gz=1-125,
83 = Opzs §a17= — Opgy ;0= 7~ Oy,

1 Seth, Phil. Trans. Roy. Soc., A, 1935, 234, 231.
* Love, Theory of FElasticity, 4th ed., p. 49.
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we can write (3-2) in the notation of the tensor calculus as

(ds)?= gqp dx™ dxP. 4)
That (4) can be reduced to (3) means that it is possible to construct a
Galilean frame of reference. In other words the condition for flat space-time

is satisfied. But we know that the necessary and sufficient condition for flat
space-time is the vanishing of the Riemann-Christoffel tensor, which is

given by
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In three dimensions (5) ha,s"only the six components (1212), (1213), (1214),
(1223), (1313), (1323). The vanishing of these constitute the six consistency
equations. Three of them are of the type
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S NV 212, 6} [12, 0]~ 2 (1L 0} 22, 0], (7-1)

and three of the type
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=2 {31, a} [12, a]— 2 {23, a} [11, a]. (7-2)

The right-hand side of {7-1) is found to be

8u 81z g [12, 1] S 812 gi:s (22, 1]
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831 823 g [12, 3] 831 83 %[22, 3]
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with a similar expression for the right-hand side of (7-2) g is the determinant
(g1 822 &33)-

Tf, as has been done in some of the applications of finite strain, we neglect
terms of an order higher than the second, (7-1) and (7-2) take the form
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In terms of the strain components these may be written as
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(9-2)
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It is understood that terms of the iirst degree are only to be substituted on the
right-hand sides of (§) and (9). If we do that, we find that both sides of (9 1)
reduce to
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and both sides of (9-2) to

d2u 32u+ %y %y tw 2w % %
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To the second order of approximation the relations between the stresses
and strains, if only two elastic constants are used, are found to be given by
equations of the type®

Xr= (084 8,) (1~ 8= 25,) — p (o + 0.59), (10-1)
;;z Ty (1-8— ng) T Oy O Ty (Ad+ 2 11S)), (10-2)

where &= §,+§,+ S..

The consistency equations in stresses may be ‘obtained from (9) with the
help of {10).

Summary

The general form of the consistency equations satisried by the compo-
nents of finite strain of an elastic body are determined, and the particular
case, when terms of an order higher than the second are neglected, is
considered. The method of deriving conmsistency equations in stresses to
second order of approximation has also been indicated.
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