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MosT of the mathematical results obtained for the motion of a viscous liquid
are subject to serious limitations. More often than not we neglect the
inertia terms. But even when it is possible not to neglect such terms the
ordinary theory does not give satisfactory results in the case of many liquids
we have to deal with in everyday life.  In fact non-Newtonian liquids, i.e.,
those in which the rate of shear is not proportional to the shearing stress
do not obey Poiseinlli’s or Stoke’s law. It may therefore be of some interest
{0 work out the consequences of achange in the stress-strain velocily relations.

Anymethod adopted to include in these relations second order terms
must satisfy the following conditions:

(i) It must preserve their tensor form. For the sake of simplicity we
shall assume it to be linear. |

(ii) Like the equations of motion the strain velocities should be referred
to a point (x, », z) in the strained (actual) state of the liquid.
These conditions are satisfied if we take
Pex=— D~ $ud+ 2 uS,. 1
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p=—1% (P:\x'lf Pyy + Do),

A=S,+8,+S.,
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with similar expressions for S, S., 7,,, 7,.,.!

1 Cf. Seth, Phil. Trans. Roy. Soc.. A, 1935. 234, 231-64,
A2 . 329



330 B. R. Seth

We cannot now ase the ordinary equations of motion for a liquid given

by
D 2 d
P rnw=pX Y, Z)- (bw 5 ,a)!)—r,uv (u, v, w).

The fundamental eguations of the type
Du W s

Py - ‘
Poi=° pX+ T dy + \* 3)

will have to be used.

We shall apply the above theory to the following particular cases of the
steady motion of a liquid. The results obtained may not have much quanti-
titative significance, but their qualitative value is not devoid of interest,

(i) Liquid between two parallel fixed planes.
(ii) Flow of a liquid through a pipe.
(i) Two-dimensional simple rotatory motion,

Liquid between Two Fixed Parallel Planes

Let the origin be taken in one of these planes, and the axis of z perpendi-
cular to them. The tentative assumption

u=f(2),v=0 w=0,
satisfies the equation of continuity and gives
Pas=Py= P+ ¥pf" Pu=—p— 34",
=pf’) Pu=0, p,y=0,
where f'= dfjdz.

The equations of motion give

bp dzf P_o¥__,, Y&
by ™ b""m “ I
which shew that
dxf
T 2A,

= f{z)= Az*+ Bz + C,
p=2uAx—3%u(2Az--B)2--K
where A, B, C and K are all constants.

The condition of no slipping at the boundary gives T =0, B + Ah = 0,
h being the distance between the fixed planes. Then
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u=Az(z—h), ' (4)
p = 2uAx — $pA?(2z — h)* + K. (5)
Ifp=patx=0z=3%handp =p,atx =1 z =3h, we get
—(py —p)))2ul, K = py.

Again, if u, is the mean velocity per unit breadth across a plane perpendicular
to x, we have

=" ‘;2 B, 6)

p can now be re-written as

~_[71"P2 ( 1”_!):.“___ (‘22__ h)g

P=bD—"—7— X%~ ?15"‘“' Pu
121 u 24 1 1u,? . '
= py— __;:_2_0 X — -’lli:[—q— (23 - /l) ?‘. (7)

The minimum value of p, say p,,, occars when x=1/and z=90 or A.

Thus

24
Pw=D2 — 3 U™

which is negative unjess

Uy <4h (é’z) | (8-1)

h 1
i — 4104 5 000 e 6 * L]
or | <5, Guph (52

No such result is given by the ordinary theory.
To get a numerical idea of the critical value of 1, we put in C.G.S. units

=980 x 76 X 13-6, h=0-1, u==0-0l,
and we get

uy== 20353 (approx.), the corresponding Reynold’s number being 2053.

Flow of a Liquid through a Circular Pipe
Taking the axis of pipe as the z-axis we put
u=0, v=0, w=f(r), ri= x4 y2
which give

Pys=—Pp+F %‘l“f’z"' ) f”

Poy=— ptipft— 'L%J; 3
Pu=--pthuft
¥’ pxf _pxpft

Py =B P00 Pay= =

when f’ = dfjdr. ' '

A%
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The equations of motion give, assuming that gravity is the only external
force,

op 2 df"* f'2 B
Dp 2.df” f” B
S [3, Lol ]y-—O,
bp pod
vl bl

These give
w= f=+Ar‘+ B log r+ C,

. Tw .
p=(Ap+pg)z— Q%A‘*rva D

Let py, p, be the values of p at the ends of the axis of the pipe whose
length is . The condition of no slipping at the boundary and that w cannot
be infinite for r=0 give

BZO: Cz"-%ﬂﬁ, b:;pi’ Al*l‘+ pg'—'=-~(‘pr~p2)/l.

Thus
1 rp 2 :
veg (25 v (oo ©)
from which the total flow across a section is found to be
D1~ Dy
f 2or. wir =" [A 72 e ] (10)
and

- P> 7 2 .
P=P1"“}—7L‘[‘£’Z o [p lp +pv] re, (11)

Unlike the ordinary theory j is not constant over a cross-section, the variation
being given by the last term in (11).

It wq is the mean velocity over a section, and p,, the minimum value of p
-which occurs at z =/and r =a

Pm= P2 3 I 2 (13)

which will be negative unless

n<da (lﬁ) | (14)
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If in C.G.S. units we assume that
p,=980 x 76 X 13-6, a =0-1, = 0018,
the critical value of the mean velocity is given by
wy= 1735 (approx.).
the corresponding value of the Reynold’s number being 1923.

Flow through a Pipe with an Elliptic Section

In this case we can take

x: R
u=10, v=_0, w—-—-c(lw-b—é- 57”‘)

and proceeding as above we find

a2+ b2 x2 /4 3
p=p1—4u ZpE Wi $ pwy? [“’ prian b2
v /4 3
+h(Fra)] 09
whose minimum value is
(4 3
D= P2— § Wy (};ﬁ- 215’5)’ a>b
which is negative unless
3p, :
3 -1
wg <\ ab [2# (da® = 3b2)]' (16)
Neglecting powers of e? higher than the second we get
wo <}a (5 4”) (1 &), (17)

which shews that the limit is decreased as compared with a circular pipe of
radius a. :

The total flow across a section remains unchanged to this order of
approximation.

Two Dimentional Rotatorv Motion

Assuming the axis of rotation as the r-axis we can put
u=—yf(r), v==xf(r), w=0, ri=x2+ )%
which give
Pre=—p+ 3p (e f7+2rff" +2f?)

o [y (e 2 )
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Pyy== — P+ ku (¥ 2+ 2r ff'+ 21
o
Y DI L),
Pu=—20 +3u(2f2 + 20 + 2f2),
Py:=0, p=0. Dyy =1t [Jf; (xt— y?) — »x—r‘}{ SRf+ o ')]

The equations of motion are all found to be satisfied if

RN AT
.D_N;: 0’ r'é"': "‘":“)-l— 7 == 05

ap 1 E 2472 4 | Y s
%"Prf2+?¥.”’ar(rf 5 2"ff l -'f)
—u[rrersgre e L (er))

which give

=14 4B,

and, if the liguid is at rest at infinity and the internal boundary is a =olid
cylinder of radius @, B=0 and

(. OW, |
= !"?‘ » "

w, being the angular velocity of the cylinder.

The frictional couple on the cylinder is found to be

(p, ¥ o 2w ) = — drpaw,,
r=a
and the value of p as

p=Il — %o —5——3u—7p, (18)

whose minimum value is

Pm=1T — 3 we? Bp a®+ 2;),
II teing the mean pressure at infinity.

Py 18 negative unless

Wy < (qpag T ZF) (19)
No such limit to the value of w0 is given by the ordinary theory,
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Liguid Rotating between Two Co-Axial Cylinders

If the liquid is bounded externally by a fixed co-axial cylinder of radius
b, we get from the above
a2 b2_ r2

f= r2 pE 3 Wos (20)
¢w2 bt
P=Dpy—%u (55:_—‘“212)2 (‘;r‘ 1)

—o (6 ) [ort () 2om ]

b2+a..
D — ¥ uwp? 15

— P {12— (B — at) + 2a%h log Z] (22)

where p == p, over i = i,

The critical value of w, is obtained by equating p,, to zero.

If, on the other hand, the inner is fixed we find from (22) that p,, is always
positive, and hence the motion is always possible. This result is interesting
in view of what Taylor? has discovered in connection with the rotation of
a liquid between two co-axial cylinders. He finds that when the inner
cylinder is fixed the steady motion is stable for all observed speeds of rotation
of the outer one. When the outer is fixed there is stability only for sufficiently
low speeds of the inner one.

Summary

Three simple cases of the steady motion of a viscous liquid are dis-
cussed by assuming a general form of the stress-strain velocity relations so
as to include second order terms in them. The conditions to be satisfied by
these relations are that they must preserve their tensor form assumed linear
for simplicity, and that the strain velocities should be referred to a point in
the strained (actual) state of the liquid. The results obtained are compared
with those of the ordinary theory.

2 G. 1. Taylor, Bhil. Trans. Roy. Soc., A, 1922, 289, 289-343. n



