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THE general problem of the motion of a liquid due to a rectilinear vortex
in a cylinder whose cross-section is bounded by four arcs of mutually ortho-
gonal curves can be readily solved with the help of conformal transforma-
tion. By considering the infinite series of images in the four bounding
planes Greenhill' has solved two particular cases. From his analysis it

appears that this method of images is bound to be rather long and inconve-.

nient in the general case. Moreover it is not always free from preliminary
limitations which may not be found essential when the solution of the
problem has been obtained. For example, in the case of a rectangle
bounded by two concentric arcs and two radii inclined at an angle

h1~ 7 Greenhill has to make the supposition in the beginning that;lL 7isa
sub-multiple of two right angles. As he remarks at the end of his paper

his solution holds good whatever % 7 may be.?

We take the plane of a cross-section as the plane of a coniplex variable z.
Let a system of orthogonal curves in the z-plane be given by
w=a+1if=f;
so that the sides of the z-rectangle can be taken as a =0, a = 2K, 8 = 0,
and B = 2K’, K and K’ being two constants. The w-rectangle can be map-
ped on a {-half plane by means of the relation "

= A fl(E—£&) ({— &) (—&) C—&)Fal + B, LW

¢, fz, &, and £, being the points on the real axis in the ¢- plane that
correspond to the angular points P, Q, R, and O in the w-plane

Putting &, = R'[R, & = oo, €3 = — k[R', and £, = 0, we get
w=A [{& + k) (¢ — ¥R)TFal + B.

1 Greenhill, Quart. J. of Math., 1877, 15, 23-29.

2 This limitation in the method of images has been pointed out by Ramsey in his Hydro-
mechanics, Part 2, Art. 189, (1913) edition. _ b
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Adjusting the constants A and B we can write? -
= —RFCV (3o — K —-iK)=FkEn®(}w) .. .. (2.1)
Ednw —Crnew .
TPl —dnew (2:2)

k being the modulus, and 4K, 4K the per1ods of the elliptic function,

Referred to C, the centre of the w- ﬁgure .as the origin this transformation
becomes b o] i e
L RS NN ‘
Z = C%(w i E Sne .. :.-‘E.Ti* L .. . (.33)
Hence the relation
{ = RS @) D . B
Cu{f (@)} —2 & Sn{f() :

transforms the z-rectangle into the upper ‘half of the - plane

Let there be a vortex of strerigth m at a point z, within the z~1ectang1e
and let w, and &, be'the- c:orrespondmor points of the w-plane  and “Z- phne
If ¢ is the velocity potent1a1 and i the stream function of the motion, we
knovv that o

iy = g g C‘?g’, S LW
which, after using (2.1), becomes _
m' Cn 3 {f(z/)} [Cn2 ${f (2 ) Cn® 3 {f (zo)}]

P B G (FC [P ) — O d )

where {, = £y Mo and 2o = xo 1y,. The stream function is, there-
fore, given by :

b 7 g P U = O b (e [0 () — O 3 (/)]
U ST T TR U E — O (e
L)

8 We have followed Dr. Glaisher in wrltmg nen = 1/enu, with a smnlar notation for
the other elliptic functions.
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To determine the curve described by the vortex we applv the well-
known result due to Routh,? viz.
dg -
7 I, .. .. - (M

X (%, ) being the stream function for the motion of the vortex in the z-plane
and X (¢, n) of the corresponding vortex in the {-plane. From (4) we easily get

m
X(f,n):—-zﬂ—_flogﬂ. .. . . .. (8)

7 and | d{/dz | can be determined either from (2.2) or from (3) according as
O or C in Fig. 1is taken as the origin. Taking (2. 2) we have
9ig =" [dnw —Crow  dno ——-an']
BFL1—dnow 1— dnw
_k [(d% w—dnw)— Crw—Cn o)+ (Crwdn o —Cn o’ dn w)]‘,

k' (1 —dn w) (1 — dn w') _
which, after using Jacob’s addition formulee? for the various terms in square
brackets, becomes
ESnaSniBR2+rCnaCnifB —dnadnipB)

X (%,3) = X (&) + = log

%Q4im =
M= (n o — dn i By
.k SnaSniB dnaCnif—dniBCna ()
K Cnat+Cnif an o — dnip o

Again we have

d i do® (AR ...,
; 4. do =bﬂf@ﬁ@%
where f' (z) = d {f (2)}/d2. VUsing (2-1) we get
4 B SnjoSnie dniwdn}o
fcl i— CridowCniiw '

- Since®

1 dniB — dn
mlwSnio B &

ZE'an’B——Cna’
k2 ani B — dn o
B Cnifdna— Cnadnif
enifB —ena
enmiBdna— cnadnif’

Chliowlnio =

dn

(&0

wdnl o =k

4+ Routh, Proc. London Math. Soc., 1881, 12, 82-84; also Ramsey Hydromechanics,
‘Part 2, pp. 224-5 (1913 edition). » .
5 See Cayley, Elliptic Functions, 1876, 65-66. )
6 For these formula reference may be made to Greenhill, Aﬁplzcatwm of Elliptic Func- "
tions, (1892), 255.
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we have L
i P _ kB Cnif—Cuna (CniBdna—Cnadnip)? (10)
dw| k* Cnif+Cna (dn o — dn i B)? '
and hence (7) and (8) give _
. m 4:(C%2CL-—C%-21: /9) ' 1
X(5,9) = ftog Tt @ 1 @)
= ’81";r log 4 (n$? @ — #3214 B) f'(2) f/(¢)
- g-r log 4 [n3* (o, B) + nS* (B, k) — 1] f'(2) f'(z) .. (11)
If we put | S
w :a+2.ﬁ=f(2)=f1(x)y) +z.f2(x’y)’
we get :
X (x,5) = g 1og £ (1S {fi(w, ), B + 15 (£, (v, 9), ) — 1]
X f'@2) f[&h; .. .. .. . .o (12)

so that the curve described by the vortex is given by
S {fi(x, y), B} + nS% {fo(x, »), B} — 1] f'(2) f'(z') = a constant.  (13)

When the rectangle in the z-plane is rectilinear we have w = 2z, and the
stream lines are given from (6) as

(en*dz— cm®dz) etz — on®iz)

(s r— oz, (B ia = o s 7 = constant.
The curve described by the vortex is |
ns? (v, R) + ns® (y, &) = a constant? .. .. o (14
Referred to the centre of the rectangle as origin it becomes
k2 nc? (x, k) + R* nc* (y, R) = a constant .. .. .. (1B)

For a square cross-section we have
K=K =1.84; k=F =1/v2,
and (15) reduces to '
net (%, k) + nc® (y, k) = ¢ (say).
In Fig. 3 T have traced some of these curves in the first quadrant by

taking ¢ = 3, 4, 7, 31. Obviously these curves are symmetrical both about
the co-ordinate axes and the lines x = y = 0.

The vortex is stationary when at the centre of the rectangle. Using

(3) and (4) and noticing that { = 7 corresponds to z = 0 we get

7 This result is the same as obtained by Greenhill, Joc. cit., 25.

fj/
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neglecting a constant,

The stream function® of the motion is given by
g = M oo (1 —Cnz)(l —Cnz2)

8r 7 (1 4 Cn2) (1 --Cnu 2

m Cnx—Cniy _ Cn x

= e el -1
1 Cnx—{—Cawy 2wt abc Cniy

— % tanh“l {C% (x: k) Cn (y; ]f’)} . .. .. (17 ‘1)»

In like manner

b T tap SRR dn (3, ) (172)

21 Sn (y, k') dn (x, B)
The equation of the stream lines is, therefore, given by ¥
Cn (x, k) Cn (y, &) = a constant = ¢ (say) . ee g L. (18) !
By taking ¢ == -1, .25, -5, -75, 1T have traced the correspondmcr stream g ’
lines in Fig. 4 for the first quadrant of a square cross- seeﬁon '

8 Greenhill, loc. cit., 26. B A L i
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When the cross-section is bounded by two concentric arcs of radii ¢ and
b, and two radii inclined at an angle ¢ we have the relation

2K’ 2K’
w=o0a+1f = Em—K—(log —{—10) - (19)

where it is assumed that @ = 0, @ = 2K, 8 = 0, B = 2K’ correspond with
r =a,v =050 =00 = ¢ respectively. (6) and (13) give the stream
function of the motion as
b =" log [Cn? {(K/[e) log (z]a)}— Cm? {K’ /e) log (z4/)}] .
[Cn? {(K'[€) log (z]a)} — Cn? {K'[¢) log (zo’/a)}}
[Cn® {(K"[e) log (2'[a)} — Cn? {K'e) log (z¢[a
[Cn? {(K'[e) log («'[a)} — Cn? {K'[e) log (2, a)}] N
and the curve described by the vortex as

%z‘[”sz (2K log -, k) + nS? (dKa k) — 1] = a constant ..  (21)

a result quite laboriously obtained by Greenhill.®

I do not think Greenhill is right when he says that the vortex is
stationary when » = #/ab, 6 ==} ¢. This can be easily seen from (11) if we
form the values of 3X/dx and 3X[dy. What actually happens is that the
corresponding vortex at the centre of the w-rectangle is always stationary.
The point ¥ = #ab, 0 = { ¢, in the z-plane corresponds to the centre, C, in
the w-plane. Apparently Greenhill assumes that corresponding vortices in
two conformally represented planes continue to move so as to occupy
corresponding points. We easily see from (7) that in general this is not true.

9 Toc. cit.,, 28,
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In the present case the point at which the vortex is stationary is readily
found from the condition
X X .
w =0 ag - 0
Using (11) we get
B =K' e, 6 =1,
ZK' Cnadna

and 1 - Sia - = 0,

ie dn 20 + Cn2a €2
T an 2a — Cn 2a =~ 4k2. K2’

. ’ 9 2 b
or Sn (20 — K) = Szz(4K 1 - K) LS <

4k")KIO 27
which determines ». We also have the relation
K _ log (b/a)
K €
To take a simple example we put K = K’ = 1.854, b = k' = 1/ v2
@ =1,e = 4. The value of b is &¥7 = 4-810. From (22) we get

?

Sn (§—I§ log 7 — K ) — 0-479,

b
1.e., log v = 3}m (1 -+ 0- KOS) ="0-499

or y = 1.647.

Thus the point at which the vortex is stationary is given by # = 1. 617
§ = %{w. According to Greenhill the value of # should be 4/, 7.e;, 2-193.

When the rectangle is formed by arcs of co-axial circles we can fcake

w +(a1+i/91)———~/w10g

a
9
z24+a (23)

so that the w-rectangle is given by a =0,a =a — oy = 2K, 8 =0,
B =Py — pp=2K. Dutting z—a =1, €%,z +a =7 % we get
from (11)

i3 |1 (s 1o 2t )}M‘% w 6—0) + B, B} — 1]

= a constant .. (24)
as the curve described by the vortex. -

In like manner when the sides are arcs of confocal conics we can get
the corresponding results by using the relation :

w + (ag + 1 B) = sin™? %:

the w-rectangle being the same as in the last exa mple.



