GENERALIZED SINGULAR POINTS WITH
- APPLICATIONS TO FLOW PROBLEMS*

By B. R. SetH, F.A.Sc.

(Indian Institute of Technology, Kharagpur)

Received November 28, 1953

SUMMARY

Generalized singular points are used to discuss irrotational and
viscous flows produced in an infinite liquid by a moving solid. It is found
that the irrotational motion of translation is the same as that due to a
generalized doublet and that of rotation the same as that due to a * rota-
tion singular point”. The corresponding viscous problems are solved
by superposing on the irrotational motion a solution due to a concentrated
force or a couple.

1. INTRODUCTION

SINGULAR points play an important part in all branches of mathematics.
They appear as sources, sinks, doublets, rectilinear vortices, electric charges,
magnetic particles, electric currents, etc. It is customary to think of them
as the limiting cases of spherical or circular elements. It is well known
that all potential flow can be produced by a suitable distribution of them.
But, excepting for simple boundaries like planes, spheres or circles, this
distribution is infinite in number, and, hence for practical applications it is
not very suitable. It is not generally appreciated that a generalization of
these points as ultimate forms of a family of closed surface bodies can simplify
a large number of boundary problems by reducing the infinite number of
spherical or circular points to a finite number of generalized singular points.
For example, an ellipsoidal source or doublet can play the same part for
ellipsoidal boundaries as an ordinary source or doublet does for spherical
boundaries. In fact the uniform non-viscous flow due to the motion of an
ellipsoid can be produced by an ellipsoidal doublet.

It is proposed to discuss how such generalized singular points may be
obtained and used for flow problems. 1t is found that:—

(i) the irrotational motion of a solid through a non-viscous liquid is
the same as that due to a generalized doublet;
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(ii) the irrotational motion of rotation is the same as that due to
rotation singular point *’ '

(iii) the slow viscous motion of the solid can be obtained by superposing
on an irrotational motion due to a generalized doublet a solution due to a
concentrated force in the direction of motion;

(iv) the slow viscous motion due to rotation of the solid, if stable, can
be obtained by superposing on the motion due to ““ arotation singular point,”
the solution due to ‘“a centre of rotation’.

The corresponding analogies in electricity and magnetlsm and heat
conduction can be easily written down.

2. IRROTATIONAL FLOW

Let us take a family of closed surfaces given by

flx, 3, 2 =0, ')

and let us assume that the surface of the moving solid A is given by ¢ = &,.
The family given by ¢ =a constant, is not necessarily a family of equipotential
surfaces. In order that it be so we should have

2F(£)]=0, (2)

e [[G+ G+ (9

should be a function of ¢ only, say z,b (¢). When this condition is qatlsﬁed
the corresponding potentlal is found to be

cfexp [— 4 (O)1dE+d ». (3)

¢ and d being constants.

which gives that!

Let V be the potential at an external point due to the solid A whose
mass is M. ‘Then, by Gauss’ theorem the normal flux across any surface

enclosing S is
ff — ds =—4n M,

the element of normal 8n being drawn outwards. The limiting form of A
when it reduces to a point or a line will be called the generalized source of

’strength M. Its potent1al will be taken as V. V satisfies the following
conditions :—
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6)) ’v2 V=0 throuzhout all space unoccupied by matter;
(ii) the flow across any closed surface containing it is constant;

i (iii) Grad. V vanishes at infinity. The generalized source thus satisfies
all the requisite conditions.

A doublet in the x-direction is obtained by displacing the source or solid
through a small distance in the x-direction. The corresponding potential
is 1 3V/ox, p being the strength of the doublet. Again, the composite body
whose density at any point Q is the difference of the densities at Q of the
given body in two neighbouring positions is equivalent to a boundary layer
of density p cos 8 placed on the surface of the solid A, 6 being the angle which
the normal makes with the x-axis. Thus the doublet can be taken to be
equivalent to a boundary layer on the surface of A of surface density
p cos 8.

If, instead of giving a translatory displacement, we turn the body round
the z-axis through a small angle, we get a “ rotation singular point ’, whose
potential

V AV
is the same as that of a boundry layer on the surface of A of surface density
w (mx — Iy), I, m, n being the direction cosines of the normal to the surface
S of the body A.

- We shall now show how these singular points may be used to discuss
the motion due to the translation and rotation of the solid A in an infinite
non-viscous liquid.

At first we show that a generalized doublet or boundary layer gives
the flow due to the motion of the solid A through an infinite non-viscous
liquid.

By Green’s theorem, if N, N’ are the normal intensities due to the boun-
dary layer of density p cos 6 at points just inside and just outside the layer,
we have

N’ — N=4p cos 6. (5)

Now, since the surface S is an equipotential, we can take N=0. Thus we
see that the normal component of the potential due to the doublet assumes
a value proportional to cos 8, which is the condition to be satisfied by the
potential in the corresponding irrotational motion. The constants can be
easily adjusted in terms of the velocity of the solid A.
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We have thus shown that the motion of the solid A through an 1nﬁn1te
non-viscous liquid can be represented by a generalised doublet, whose poten-
tial can be obtained from the static potential due to the solid A.

In the case of a sphere moving through an infinite liquid we have the
following results :—

The potential V at any external point is
M

.

7

The potential due to the corresponding doublet is

$p=—pn bx( ) ,3,

which is the known result for the potential of liquid flow.
In like manner for a circular cylinder we have

V=c¢c—2Mlogr,
so that

, ¢=HX

which is again a known result. .

Let us take the case of an elhpsmd The confocal family of ellipsoids
is given by
X2 2 ‘ 72

s T ot ey =1

The potential due to an ellipsoidal source is?

_ X yr g du
V_f(l a+u  bTFu C2—|-u)‘71‘ (6'1)‘
L
The potential of the ellipsoidal doublet is therefore given by
| oV
¢ =—p 3% = X, (6.2)

m, being a constant, and 4, o are given by

A= 1@ +0) @+ 1) (@ + P, o f<a2+u>4’ (6.3)

which rcsult is again known.
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For an elliptic cylinder we have?
R ‘2 2
V=—2mp 2, ’; + J.g_) ~ 2mpab log (@ -+ b') - ¢ (7.1

| cz’; b" being the axes of the confocal ellipse through the attracted point.
This value of V gives

ab  x , e
d=u gy R =ccosh ¢, b'=ccinh ¢,
x=ccosh {cosn, y=csinh ¢sin 1. (7.2)

Substituting these values we get the known result

b =p, exp (— £) cos 7.
For the elliptic source V is of the form?

V= — L 7pab (e % cos 21 + 2&).
(7.3)

For the motion of rotation, we easily get the following known results
for the value of ¢ given in (4) :—

(i) for a sphere or a circular cylinder ¢=0;

(1) for an ellipsoid* ¢=p, (8 — a) xy,
(iii) for an elliptic cylinder ¢ =y, e=2¢ sin 24. ) (8)
Thus we see that the irrotational motion of an infinjte liquid due to the
translation or rotation of the solid A can be easily deduced from the static”

potential of the body at any external point, by using the idea of generalised
singular points.

For any internal point V satisfies Poisson’s equation
ViV=—dmp or — 2mp o ©)

according as it is a three-dimensional or two-dimensional problem. p is assumed
to be a constant, and hence V does not satisfy Laplace’s equation. But its
first partial derivatives with respect to x, y, z satisfy it. The potential for
the transational and rotational flows of the liquid contained in the surface
S of the body A remain of the form

3% P\ AN
,Lﬁmandp(xmb-j}—y&_). (10)

* g is obtained from a in (6.3) by interchanging @ and 5.
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The following results now follow immediately:—-
(1) for the motion of translation along the x-axis of any solid = — Ux
(2) for the rotation of sphere or circular cylinder b=20;
(3) for rotation of an ellipsoid, we have to use V=D — Ay® — By?
—Cz% D, A, B, C being constants. This gives
b =, xy
(4) for an elliptic cylinder

- @b (x2 | pP —
V=D 20 (% + %) b =uw.

Thus liquid motion contained in a closed surface given by (D) can be
deduced from the static potential at any point inside the body A.

3. Viscous Frow

For the slow motion of a solid through .a viscous liquid we have to
consider generalised singylar points of various types. In the first type we
‘determine the displacements produced in an infinite elastic solid wherein
a concentrated force X, acts at the origin in the direction of the X-axis, In
this case we know that the displacements components can be put in the
forms : s - :

o d oG
“Tw Tty w
and the body force X, Y, Z in the form

x=2® 2N M

x 'y dz ?

etc. (11.1)

etc. (11.2)

where
(A +20) V% +#D =0, py*F + pL=0, 4G + M =0,
ry*H + pN=0, (12)
The Laplace’s equation in orthogonal curvilinear co-ordinates ¢, 7, éis
5%_ (}_gh.l.s %) + two’ similar termg — 0,
where

1 rax\2 N2 7 az\2 ' |
() + G+ (32) > ete- (13
Let the surface of the moving solid A be given by the equipotential
(¢=¢, Thereisa solution of (13) which is a function of £ only. Letit be
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denoted by ¢ (£). It should be such, that its flux across any equi-potential
surface is equal to 4= in three dimensions and 27 in two dimensions.

Putting
p X dx'dyd:s =X,
we get? . /
_ I o % 1 i 1
| (14)
Since
. d
v () =2 gf-
we can put
_ X — _ X, ”
P g T F=0, G=— oy,
_ X% |
H= B v (15)
u, v, w now take the form
—_ +pwX, » Xy
T TSmO 2w O T g
— O‘ + M) Xo 2 __b_ ‘
v, w = 87!7‘—;1;(/\——#2;3 (‘33) 0 37 ) (xih). (16)
These give
_w  w w X, d 3 |
ATttt wTmoT w 7.1y
= CLEWIX W 040X, 2
XX dm (A 4 2u) x dr (A + 2p) dx?
AFRX, 22 ‘
ryr = _ 4(77 = il@% 5555 0% ete. (17.2)

The equations of equilibrium are satisfied with these values of Txxs Tyz
etc. They have to satisfy the condition that across any surface £ = constant,
they give a force X, in the x direction, independent of £

Xy, the traction component ‘along the x-axis is
X},: l'?'xx + mey + I’I'TX,Z 1
- A+pX, »?2 »? @2
R = p [la‘f‘é TSy T ‘*‘“axaz] Ce)

Xo d 0 d Adp bz[f
+ o (Ix TS )t gt Ko
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I, m, n being the direction cosines of the normal drawn to §¢= constant.
If 8y is an element of this normal we can write (18.1) as

X,= — A+wX, ( 3‘/‘) pXe

N+ 2 "\ ) T @ (T 3y
| A+wX,, ¥
T T e | (18.2

We shall now show that ‘
II Xyds=X,,
the integration being taken over any closed surface &= constant.

We shall assume that the liquid is bounded by the surface S (é= ¢,
and an equipotential surface at infinity given by £= co. 1In the usual notation

JI Xyds = || X,ds — [[ X,ds. (19.1)
But X, is given by (18.2). Also

R 2 (%
jf’“ia? ‘a?)ds"‘ff 5, ()@
_ u dx % dx
—ff D ffb*c > &
_ % % |
~fflb—fds ffz_ﬁds (19.2)

But, since 3~ 1/r, at infinity, we have

o oy , 8 ¥ o, -4
J.fx5’—/(~3})ds—-—3~ﬂ, ffls;cds—— -3—77'
Hence ,
D Y, |
ffx-a-?—, ﬁ_)ds—ffl LA (19.3)
Similarly -
A = 3
[ 5 {f5a=o
so that -

ff % ds = — 4a. (19.4)
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Thus ‘
© Xo (A4 )
ffx ds = — X P X0e (19.5)
which shows that a force X, should be applied in the x-direction. Similarly
Y, = A+m)X, x 2 (% A+wpX, bslf
¥ dm (X F Z,u) by vy dr (X F 2,&)
_ A+wX, . 3 ¢ (A + w) X, a¢
Y (g T 2,%) x (199
from which we easily see that
| HY ds=0, ffZ ds=0.
For the vanlshmg of the couple we should have
J1@EY, — yz) ds=0, (20)

or

ff [g;{i (lz + nx) — %é Iy + mx) — ny %’é’— — mz %‘%J ds=0.

Transforming into volume

integrals,
satisfied.

We see that this condition is also

For a liquid A ~>0, Ao, such that ) A—>— p. Thus we get from (16)

o= —p + 2uB [~—~(x¢)~2 i
yy*“p+2/1'B 2 (x¢)

32
Tzz= —p+2uB 322 (xih),

Typ=2 Bi(x,/,) Typz=1 Bi(xgb)“Z B o (21.1)
yz 1 bybz v Tzxe Iad X2 L Y 21,

B

where y2/=0 and B— — X
A3

of 8mu.
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The tractions become

X, =2uB [l Y tm -l 4 -»«.._Di]rxgz,)
y = 2 30y axoz |

—2HB(1%+771%+”§Z«) 6~ Ip (21.3)
| =2;Bx%,(%? — Ip,
Y,, Z,=2uBx %} ?% , 1{;)
The displacement u, v, w take the form
u=8 |4, h—2 |,
v, w =B (%} , Sb}}\} (x4). | ‘ (21.4) |

Let V be the potential of the corresponding irrotational flow. On the
boundary of the moving solid (¢= constant) we have
V. odx Vo 2x ,

If V is of the form xa (¢), the velocities for the slow viscous motion can be
at once obtained by superposing on the generalized doublet of the correspond-
/ing irrotational motion a generalized singular point of the first type. Thus

we get ;
AV X
u=A = — %[ﬁ (bl/’)fzﬂ,

dV

- Xy 2
v =A 3 8 5"}(1/’): . (23)

e\ Xy 2
w=A '2"—2 -— _87;[1 37 (XI)ZI),
where the constant A can be determined from the boundary conditions.

If the irrotational motion is represented by harmonics of the type Vi,
V in (23) will have V,, and all harmonies of an order less than V.

When V=1xa(£) we get from (22)

A [ao + Xxay" %«] — —g)—jﬁ— [ Xty .g_i” _. by J =U | (24)
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where o, A are the value. M"m, doon the surtiive of the solid, dashes denote
differentiution with Pespevt o Soaud Uhas the uniform velovity of the solid A,
Thus

X‘n’f"n

A M Ny LA e

(s, 1)

These vilues of Nooawmd A also cisige that v 0, w0 on the

Boandany
The dray sutfered by the sadud sind the Constint A aqe piven by

AY N f"‘ ay b ’“f‘t;
Mgy 4

¢

Hh Y
] ’ o ) ] f‘ ¥ (mu “!' 3 j‘
LTI e ST I T

The wecond e when Vo o e teprescated Dy o serien of |

HITR I s vah
besmmhudy teated,

I the purticulir Gase of (e sphiere we gt

‘ S [ oo . )
Voo Vot ifh ;o A . aty X, G L, {6

-

These pive the hnown values of w, 1,

For o cireuliar evlinder we et

¥
\.‘ LY s u“'t Inﬂ}f i,

\ Ao gl TR ¢ -
5 " 1 4 ' v 7
ot oy, I A ﬁ‘i}? o A

An mhinite constant i ne Plevted m the value of o which iy g wellek o
drawbagh .

Foran ellpte ovlinder we have

SIS { (7)
\ drp U TR}
B A N T T
dovwsh b eainl s, o0 g2 N (R)

Foran ellipsond we have the folloming resules -

L ! , ! ; Ug?

1y . wf i ﬁ*&; 5 . ?q . :
T Naby 0 athe Py o
v i(»mﬂn‘% (293

Y i,

R

amd the values for w0 which are knowy,?
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For the slow rotatory motion of a sphere or a cylinder in a viscous liquid
we have to use the generalised singular point, called “ the centre of rota-
tion”. In both cases there is no irrotational motion, and hence we can take
V=0. For a sphere, if G is the couple of rotation, the corresponding dis-

placements in an incompressible infinite solid are

z; V= G (~D— — 2 1 w=0
? mu \ ¥y’ xS 7
If w, is the angular velocity and a the radius of the sphere
G =8ma® w,
For a circular cylinder of radius a we get the following results :—
G d d :
V= o— | — =, — llogr, w =0
, Amps 3’ ax) Ers
G =4mua® o,
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