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THE gravest mode of any vibrating system should be devoid of internal nodal
lines. In some well-known cases only the symmetrical solutions have been
obtained, and hence the gravest mode remains undetermined. The follow-
ing are some examples :

(a) Transverse oscillations of water contained in a canal (i) with sides
inclined at an angle of 60° to the vertical, (i) whose section is a hyperbola
of eccentricity 2.

If we take the axes of x and y respectively horizontal and vertical, the
solution due to Greenhill for (i) is given by the stream function?

= Ax (x2— 3y?) cos (o 1+ €), o= g/h, (1)
h being the depth of water in the canal. The slowest mode, as Lamb remarks,
is asymmetrical and has not yet been determined.
For (ii) we find?
= Ax (32— 1 x%— a?) cos (o 1+ <), o2 = g/h, (2)
which again gives a symmetrical type. |

(b) Standing waves between two transverse partitions in a canal with
sides inclined at 60° to the vertical.

If the x-axis be parallel to the length of the canal, the z-axis drawn verti-
cally upwards, the y-axis horizontal and transverse to the canal, and (n/k) be

the distance between the transverse partitions, Macdonald® finds that the
~ velocity potential of the motion is given by

s=A[cosh k (: - h)—i—gc-sinhk (—h)

+ 2 cosh ky£/3 {cosh k(—; + h)-g’—;c sinh k (%—i« h)}] cos kx, (3)

1 Lamb, Hydrodynamics, 5th Ed., 1930, p. 419.

* Seth, Phil. Mag., Ser. 7, 1937, 23, 113-14.

8 Macdonald, Proc. Lond. Math. Soc., 1894, 25, 101.
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where .
o2 3 kh |
2(gk) =3 kcoth~—+1—-0
omitting the time-factor cos (o 1+ e).

The motion is symmetrzcal about the z-axis, and hence (3) cannot give
the gravest mode.

(¢) Transverse wbrahons of an isosceles triangular membrane con-
taining an angle of 120°,

~ Ifthe sides are given by x =a, y=x /3, y+x v3=24/v/3, it is given
in a recent paper* that the displacement z should be

(m—n)mx '.n (m+n+1)myy/3 .
a a

— 2cos (2m+ 14 P oo 1 £ ) 2 V3

+ 2 cos (Zn + 14+ 2m+ I)Zx cos T D) my+/3 (4

2a .
2(; :]iC {(2 m+ 1)2_1_(2”_{- )24+ 2m+1) (2n+ ])}

Z =2 sin

m and n being integers.
This is again symmetrical about the median bisecting 120°.

(d) Transverse vibrations of a rthombus containing an angle of 120*
and those of a regular hexagon.’ -
If we take the sides as x =0, x =:a, y =x[4/3, y =x//3+ 2a/v3,
in the first case, and as x= =+ a, y= +x/+/3 + 2a/4/3 in the second case, it is
found that the displacement z is given by

(m-— n) wx S(m+ n) my/3
a a

z= 2 8in -

-n2-sin mej—n)wx cos nver;/?)

+2sin <2Ji’?llx MUY )

m and n being integers as before.

4 Seth, Proc. Ind. Acad. Sci. (A), 1940, 5.
5 D. G. Christopherson, Quart. J. of Math., 1940, 11, 65.
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The solution is symmetrical about the diagonal bisecting 120” in the first
case, and about all the three diagonals in the second.

In all the above cases we see that whenever there is symmetry about the
bisector of the angle 120° the modes are also symmetrical about the same linc.

The determination of the asymmetrical types in cach of the above cases,
and hence that of the gravest mode, yields an infinite determinant for the
frequency. Rayleigh’s method can be used to get an approximate value of
the gravest mode. We shall illustrate this by discussing in detail the case of
transverse oscillations of water contained in a canal with its sides inclined at
60° to the vertical. '

We take the x-axis vertically downwards, and the sides given by ¢. 3=
and 6= 4m. Let the free surface be given by x:== — /1. Omitting the time
factor we see that the asymmetrical modes are given by

3 (2n-1) |
b= 2 A, A cos 8 (2n —1)9, 6 1)

8 (2n-1) .
= Z A, r* sin ¢ (2n— 1)6. (6-2)

This Value of ¢ vanishes over 8= 47 and 0 #m, but does not do so over
6= m, which is the line of symmetry.

The condition at the free surface, r cos 0= — A, is
op=—g 2, (7
and since '
o <15 2
Sy —=cos 6 —sin 0 - S5
we get
3 A I8
EEAr costO+4Ar" cosdl 3% Ay ® cos ' 0. . ..]
15
= —o?[A, r" cos$ 0+ A, r’ cos$0-4- Ay r®costf 0] ...... 1. (8-1)

Multiplying both sides by r* cos 1 6 we get
g8 A (14 cos )+ Ayt (cos 4 8 4 cos 3 6)
| + %% Agr? (cos 7 6 - cos 60) |- . .]
= —o?[Ayr? (cos 2 8+ cos 8) +A, 15 (cos 5 6+ cos 4 0)

| + Ay (cos 8 O0--cos 7 0)-}- . .. .. ]
Expanding the cosines in powers of cos ¢ and putting rcos 0 . — A, we get
SEA(—N+3A, (M—8rh2+ 8k 3,354 PR A ]

== [AL QR —r—rh)+ Ay (— 55 B+ 20 r2 h3— 16 K5 4-
—8r* i+ 8rh)4...... 1. (8-2)
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putting ¢ - o*/g, and cquating the cocfficients of like powers of r,
we get the following set of infinite cquations -
Ay 2~ 3)— Al (21 9.23) | A (271 - 15 29)
AR (200 B3 29) e L =0,
DA () A (2% 9.22) | Agh® (201 - 15 25)
o ARY (200 - B 2“) ~-1~ v =0,
At AP (520 D) T Ah® (§ 250 28 21 ",)
/\ i (11 pAT . 1;_. 1&)27)1 O’
Ag/l (f! 2[ 2‘ * Jﬂl) A:; h(i ( ! 24[ - 3 R ';)
| 1A (“’ 2t -2k 2) =),
i | A2/I3 (r;“iz = ) A /1" (9 ST u:,vg.!a. 2,.)
| - A.lllﬂ (1';.!8 26f . ;ﬁrs_ .12i1,,25) e = 0, (9)

Eliminating the A’s we get an infinite determinant for £
~ To get an approximate value of the frequency of the gravust mode we
take
¢ /\1 ¥ o8 ! 3 0cos (ot} €) (10)
as a constrained type. If Tand V represent the kinetic and potential energies
respectively, we find
. $m i sec 0

T} I’f f 9N Ecost (ot ] € ridrdd

g 0
i B AE [2 /31 log (2 1 v3)] cos* (ot 4- €,
‘ Pyso
: Vipg f a” r/.\dlﬁ, sin% (ot | ¢) rPcost 30 dy, (y==— htan9)
3 :
FpAdo® g g ,
16 g h [3}’ V31 3log(2 | V/3)] sin® (ot |- €).

‘Hence

o & O[2V3 1 log 21 VI g
Th38 /33 log (24 4/3) A (0-4112)

o= (0 -641V%- ()

The lowest symmetrical mode is, of course, o:- v/g/h.

9
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For a hyperbola with eccentsicity 2 we should take
4= T A, cosh g (2n—1) Ecos ¢ (2n—T)n, (12°1)
(12-2)

b= E’OA,, sinh ¢ 2n—1) ¢sin§ 2n— 1) 7,

where (¢, ) are the elliptic co-ordinates, and the hyperbolais given by » = § .
The first term may be taken as a constrained type to get an approximate
value of the frequency of the gravest mode.
In the case of (b) we should take

=5 A1 (kr) cos$(@n—1)8, (13)
. 3(2n—1)

3

L,'(7 1) which are Bessel’s function of fractional order with an imaginary
slasi—
argument, can be expressed in finite terms. If we take the first term for the

constrained type, we get
¢=A; I, (krycos$(2—-1)46
T

-

A [sinh kr
:VZ’T_[T— cosh kr] cosg(2n—1) 6. (13-1)

To give an example from the vibrations of membranes we can take (o),
and, in this case we easily see that the displacement should be taken as

= Z AT (kr) sind(Q2n—1) 6, (14)
1 (2n—1)

where & =o/c. 13( ?(/cr)l) can again be expressed in finite terms.
2n—

For the constrained mode we have
A, [ sin kr
Vkr

-
o ==

T~ Ccos kr] sin 2 4. _ - (14 -1)




