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THE theory of finite strain in elastic problems has been developed on the
hypothesis that we do not neglect the second order terms in the components
of strain.®  Some applications of it have been given in recent papers.24-*
When applied to the case of a solid rotating shaft we get an exact solution
- of the stress equations of equilibrium, and the comparison of the results
with those given by the small strain theory becomes quite interesting.

We treat the problem as one of plane strain, with an allowance for uni-
form longitudinal extension, . Since the shaft is strained symmetrically
we can take the components of displacement as

u=x({1—=pf,v=y(1-B),w=az, (1)
where B is a function of r = (x2+ y%)? only.

The stress components are given by
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where
B' =dB/dr, and
d=1- =3 (4 2r )+ a1} a? ©
In polar co-ordinates these stresses are given by

r=28+u 1= (8 + )Y, (4-1)
B0=28+p (1 p2) 4-2)
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with 2z given by (2-3).
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The only stress-equation of equilibrium which is not identically satisfied
is given by

v v b

+prwt=0, (5-1
which, on substituting from (4), reduces to
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where
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and w is the angular velocity of the shaft. .

Since 7, the Poisson’s ratio, lies between 0 and %, c lies between 0 and 1.
The differential equation statisfied by B is therefore

B2+ (1B + B+ ¢ f B dr— o 0= K, (5-2)
K, being a constant.

The general solution involving ore arbitrary constant can be obtained
in the form of an infinite series. Inthe present paper we propose to discuss
only the particular solution obtained from (5-2) by putting K; = 0. This is
easily seen to be

. Cp w?r
p=Ar= w(10F 0 . ©)
The radial displacement is therefore given by
_Lpwtr Y :
(1= itlows) %

The boundary condition over the curved surface is =0 over r= a,
being the radius of the shaft in the strained condition. Using (4-1) we get

(3—2¢) —(1—¢c) (1 — a)2=a®A* (5~ ¢). (8)
The boundary condition over the plane ends is Zz=0o0ver x= =1, 2]
being the length of the shaft. This cannot be exactly satisfied. But we can

make the resultant 10ng1tud1na1 tension vanish over the plane ends. This
requires

frzzdr—O ' 9-1)

which gives
(3—20)—(1—a)?=%a*A%(1~ ). 92




650 B. R. Seth

We have now the three equations (6), (8), (9:2) to determine the two
constants A and «. This implies an identical relation between p, a and «w.
This is the natural consequence of the fact that (6) is only a particular solu-
tion, and not the general solution.

The constants a and A are given by

3= 2¢) (5+ 30)

(A=) = g sa - aony
2¢(3—20)
e 26220 .

and the identical relation is given by
2 (3—2¢) (10+ ¢)

paiwt= 5+ 8¢c— 5c*® (10-3)
The non-vanishing stresses are now given by
ﬁxﬁﬁ%pwz(az-ﬂ), | (11-1)
@xlgic [22 (5— ¢)— r? (5— 40)], (11-2)
R 5‘&2 O(J_.F;)C) (@®—2r7). .. (11-3)

If r?o, f)?)o, ;a:o, denote the corresponding stresses of the small strain
theory, we havel®

17;0:«:%-(4—— ¢) pw? (a%— r?), (12-1)
60, == % pw? [a® (4— ) — r2 (4— 30)] (12-2)
Zzg=% (1= ) pw? (a®— 2 r?). (12-3)

If o, is the correspondmg value of «; we have for w given by (10-3),
(=9 (10+40)
%o Q 54 8c— 5¢? (13)
Instead of making the resultant longitudinal tension vanish we can suppose
that the tension is adjusted on the plane ends so that the length is maintained
constant. Insuch a case a= 0, and the identical relation (10-3) takes the form

o o p(2—0c)0+ )
patw? = TG0 . 72(14)
’, 80 retain the form given in (11) but zz and Zz0 become
S PO 2(1— s N g2 15-
(2——c)(10+c) RE-c)a>—-52~— ¢ ry, (15-1)
pe’(l—9) 14— ¢)q2—2 2~ o2 (15-2)
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If U, is the radial displacement of the small strain theory, we have!0
_ pwlr
0 16up (3—20)
If r; and ry, are the values of » for which U and U, vanish, we have

i [ (548c—5c 1
n=lrosoaral an

Since 0 < ¢ <1, this ratio lies between 1-118 and 1-155. For
n=% (c= %), the difference can be as much as 12 per cent.

In like manner we find that (afa,) lies betewen 1 and 0-732. For
n= %, the difference between the two values is about 10 per cent.

U

For comparing the stresses we find

o 8(5-9

S0 g G- (18-1)
zz 10

zz _ 10 18-2
zzy, 10+¢ (18-2)

The ratio in the first case varies between 1 and 0:97, and in the second case

between 1 and 0-91. For the cross-radial stress we find that (/073/@0) lies
between 1-2 and 0-97.

It appears that, though the stresses given by the two theories are similar
in form, the radial displacements have not the same character. Also, the
mistake involved in using the small strain theory can be as much as 10 to 12
per cent.
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