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l. INTRODUCTION

IN recent years the theory of finite deformation has received fresh impetus
from a number of exact solutions that have been obtained for imcompressi-
" ble elastic bodies without assuming any form of the strain energy function.
' The exact solutions obtained for compressible bodies have not been very
large, and in general they have been of the form obtained by B. R. Seth.
Extensive teferences to existing literature on the subject are given in the

Presidential Address to the Section of Mathematics at the 42nd Session
% of the Indian Science Congress.!

Very few attempts have been made to obtain solutions for the finite
bending of plates into shells. The earliest exact solution on the basis of a
linear stress strain tensor law was obtained by Seth? for a rectangular plate
bent into a right cylindrical shell. The form of this solution has been used
by many workers. In the present paper an attempt has been made to dis-
cuss solutions which may be used to discuss the finite bending of plates
into spherical shells. A linear stress strain tensor law is again assumed,
and this gives sufficiently good results for technical applications.

In cylindrical co-ordinates it is found that, if we take
u=r—¢(r,z), v=0—Ab, w=z—[(r?+ 29,

all the equations of finite deformation and boundary conditions on a
'3 spherical shell can be satisfied only if

b=ar, [+ 2 = — 29 (12 4 9,

=

¥

where a, A, ¢; are known constants and ¢ = (1 — 20)/(1 — o) is an elastic
constant.

2. FNITE STRAIN COMPONENTS IN CYLINDRICAL CO-ORDINATES

For all applications finite strain components should be referred to the
strained state of the body. Let %x be the unstrained and x* the strained
co-ordinates of the deformed body with reference to a fixed frame with
;¢ and gi; as metric tensors. The strain tensor e;; is given by3

265 = gij — g8 (*%3) (Fx,5). 2.1)
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Putting ' = x* — %, (2.1) becomes
261 = 8ij — 48 T aj8U%i T iggUP.5 — opgu; UP, ;. (2.2)

In cylindrical co-ordinates

=ro Oy 2z X'=r, 0, z

u=r—ry, v=0-—10, w=z- gz, »
1 0 0 1 0 0

i8=]0 r*0l,g5=)0 2 0] (2.3) 1

0 0 1 0 0 1 |
The tensor components e; can be replaced by the physical components
ei; by the relation* %’f%
o

“e  aa ) ﬁ

= (gug.”)'}ei)_ (2.4)

Thus we get the components of finite strain in cylindrical co-ordinates as®

=2 [+ Y + )]
e o)’
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We have now to use the semi-inverse method of assuming a possible
sct of displacements. For the type of problem in view we should take

u=r—¢(rz),v==0—Abw=z—f(r?+ z?), (2.6)

where f and ¢ are arbitrary functions to be determined and A is a constant,
The corresponding strain components are found to be

e =% (1 — 6 — 2%, ¢y =K, — K 7{ :

G =3 (1= §5 — 42 ), erp = — $ (et + dr2f ),

€9z=0, 07020, (2.7)
where
Ke=3—-(1—A?% Ki=1-2(1-A)—(1—4A)? (2.8
_% o ¥ Y pe e
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3. STRESS-STRAIN RELATIONS AND BODY-STRESS EQUATIONS .=

We assume that

Tij = Agijﬁ -+ Z;Leij. (3‘1)
The body-stress equations of equilibrium are '
7,5 =0, (3.2)

and

A=1-K,—2(2+29/% - 1K, ég ~ 3 (%2 + 2. '(3-3)I

Subsututlng the value of e;; from (2.7) we see that the first equation g1ves

S [M — 8 [dR® — 80 [ RYF'dR — s (4 + ,9)]

+$(1"‘2K0+K1§2) Mbr[ (iz)+r]

The second is identically satisfied and the third gives

I

0. (3.4)

P 19 113 9 GL1LN I p )
s; (M = 8u [f?dR® — 8u [RFF'dR? — 1 ($2 + $,7)]

= mﬁr[ (%) - 1%] =0 (3.5

* These will be satisfied by _
P =2 —8u[f"2dR* — 8u [RYf"dR? — p (8,2 + 6,9
=g constant, ' R% = 2 + 22 (3.6)
provided

W) - :1“3; = ey

L, ——2K0+I-Sl~("’~) w[e(@+1]=0 69

From (3.7) we get

b=y ) X
which gives
¢ =F [x(2) + logr], (3.10)

e 3%,

ol v:&i" £




TR ‘

R e, -

?u/

New Solutions for Finite Deformation 109

where x and F are arbitrary functions of z and x (2) + log r respectively.
Substituting this value of ¢ in (3.8) we get

(1 —2K¢) r2 4 K4F2 — r3F'%y" () — F'2 = (). (3.11)

From (3.6) we see that
PG M@+ =ME+2, (1)
M being an arbitrary function of (12 + z‘l)‘. Substituting from (3.10) we get
K,F? - ﬁ;\-@i"[rﬂf:'zx'z )+ F?] = Ea (3.13)

Comparing (3.11) with (3.13) we get

M=o R } (3.14)
X =X5%
Thus \
x = —log(cz+ D), f
and (3.15)
$=F [log ;g
Also
rc? .
[@sDp 1] F =0 =K r K
which shows that ¢ =0 and
F = aetr, omitting @ constant, (3.16)
= of,
where
1 — 2Ky + Kja? — a* = (),
or
I-A) [ -A)—(C—A)]=0,
A=l @= =2 3.17)
Thus we see that the value of ¢ is
nf):ar:,\/Hr, if A 1. (3.18)
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4. DETERMINATION OF f
Substituting the value of ¢ from (3.18) in (3.6) we get,
ML= Ky — 7Kya? — 302 —2RY"] — pa® — 8y [ f'2dR?
— 8u [ R%'f"dR?% = a constant.
By differentiating (4.1) with respect to X = R? we get

2

X0+ 2%+ an =,

which gives
[r= G’z‘j,jc};z“)ﬁc" , €= T—%—Bﬂ
f= 20 4 s,
neglecting a constant. |
The components of displacements now take the form

2c .
u=r—oar, v="0—Ab, w=2z— 1 (42 + )0

1—c¢

@

(4.2)

(4.3)

(4.4)

4.5)

where c is the elastic constant (I — 20)/(1 — o) and «, A, ¢, are constants

to be determined from the boundary conditions and equation (3. 17):

The non-vanishing stress components are
T’)"T = AA "l" 2[1:@7-7-
= M1 — Ko — $Kya? — 30?) + p (1 — a?)

— 2X¢;2R~2 — 4uric, 2R-2(+4C)

To9 = A1 — Ky — 3Kj02 — 30?) + p (Ko — $Ka?) — 22¢,°R72,

e = M1 = Ky — $Kao? — 30) + s — 20, 2R->
~ 4z, PR2 (1+0),
Tpg = — 4lu,yzclzR—~2 (1+C)’

Trg = O, Toz = 0.

5. BoUNDARY CONDITIONS FOR A SPHERICAL SHELL

If N denotes the direction of the normal at any point of the shell, the
boundary tractions in the direction of r, 8, z corresponding to the general

set of displacements given in (2.6) are

(4.6)
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N, = vr2+22 M +p—du(®+ 29 f
- A oo+ 280 (5.1

Np= s DA a0t 4 21
- bt (5.2
N, = 0. (5.3)

substituting the values of ¢ and f'2 from (3.18) and (4.3), we get
RNy = r (1 — K, — 3Ky — $a?) 4 p — pa?

= 2(A + 2p) "R, (5.4)
RN, = z[A(1 — Ky — 3Kya? — Ja?) + o
=21+ 2p) "R, (5.5)

If we assume that the inner surface R = a of the shell is acted upon by
a normal traction of the amount ua? we get

Al — Ky — 3K 0% — Ja?) + o — 2 (A + 2u) ¢,%072¢ = Jue®. (5.6

Assuming the external surface R = b to be acted on by a traction of amount
pa?z(b in the direction of the axis, we get |

A1 —Kg—3Kio? —2a?) +pu—2(A + 2u) ¢ € = pal.  (5.7)
These give
b 2C
it = jeat (5.9

and
_3_ .

Also from (3.17) we have
A=1, K=} K =L (5.10)
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‘ 2 (b2¢ — g2¢
In (i) v=0, o*= "% + é —¢) (bzc)—- a®) ’I
. (ab)2°
¢ =3¢ ca® (2 —¢) (6 = a%)

In (ii) A may be determined from (5.9) and substituted in (5.8) to get c,2.
Assuming that the plate is bent into a spherical shell with a plane rim, the
tractions on the rim are

(5.11)

2y = Ty = — dprzc,2R72 40, (5.12)
Ly= 1= Al — Ko — 3Kya? — Ja?) + p — 22¢,*R2C
— 4, ?Z?RE O, (5.13)

Their statical resultant per unit length of the rim z = z,, is

b
f Taz . vdr. = FA(1 — Ko — 3K 0% — 30?) (b2 — a?)
Ac,®

I —e¢

(B1-€ — g+—C) + ‘}_y_{-’_%fff(bc — ).

This is the force which must be applied on the rim to keep the plate in the
spherical form.
6. SUMMARY

The use of finite components of strain shows that a plate can be bent
into a spherical shell if suitable tractions are applied to the inner and outer
surfaces and to the plane rim. The corresponding components of displace-
ment have been obtained.
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